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Abstract— Embry-Riddle Aeronautical University (ERAU) 
has made significant improvements to their fully autonomous 
research platform, Minion. To complete mission tasks, Minion 
uses sophisticated sensory and perception algorithms fusing 
data from a suite consisting of four LiDARs, two wide-angle 
cameras, and a high precision GPS/INS. This data feeds path 
planning and decision-making algorithms that include neural 
network visual detection and tracking, 3D Multi-Variate 
Gaussian classification, and dynamic path planning.  

Taking lessons learned from the 2014 and 2016 
competitions, the Minion platform was developed emphasizing 
refinement of existing systems. This allows it to meet the 
objectives of the 2018 RobotX Challenge and the demands of 
the team’s research and teaching interests. This emphasis on 
refinement led to major improvements in controls, vision, and 
propulsion. This also allowed easy integration of other mission 
requirements, such as the racquetball turret and the 
autonomous underwater vehicle (AUV) deployment system.  

All of Minion’s systems are rated to survive operations in 
adverse weather conditions, including high temperature, high 
humidity, and heavy precipitation, and they have been tested 
in these environments. In the course of development, Minion 
was thoroughly tested using simulations, recorded data, and 
over 100 hours of in-water testing. The result of this is an 
advanced platform that is robust, reliable, and readily 
upgradable. 

I. INTRODUCTION 

A. Background and Vehicle Overview 

Embry-Riddle Aeronautical University’s (ERAU) Team 
Minion includes students ranging from undergraduates to 
Ph.D. candidates with backgrounds in Software, Electrical, 
and Mechanical Engineering. The team draws from 
experiences with many autonomous platforms, including 
entries in the AUVSI Foundation’s RoboSub and RoboBoat 
competitions, as well as the previous two Maritime RobotX 
competitions.  

From its inception in 2014, Team Minion has worked to 
create a platform that is rugged, customizable, and easily 
upgradable in order to meet mission requirements. All 
components are designed to withstand harsh environmental 
conditions including precipitation, humidity, and heat. In 
2016, the Minion autonomous surface vessel (ASV) 
showcased the MAST (Minion Autonomous Systems Tray), 
which allowed mission-critical hardware to be suspended 
under the deck, enabling greater modularity.  

For the 2018 Challenge, Team Minion further worked to 
improve the performance of the ASV by upgrading the 
propulsion system to allow for holonomic maneuverability. 
This allows Minion to sway (i.e., move sideways) to fully 
control position and heading simultaneously. These 
upgrades, along with software package updates, increased 
testing time, and a combination of improved custom and 
commercial-off-the-shelf (COTS) hardware complete a 
system ready for competition.  

B. Software Overview 

Software onboard Minion is broken into individual 
process modules that execute in parallel and communicate 
asynchronously using a publisher-subscriber messaging 
system. This enables modules to run at different rates and 
be selectively activated and deactivated, improving overall 
system efficiency. The competition software architecture is 
shown in Fig 1.  

Sensing is handled primarily by a combination of a 
LiDAR-based Perception module, a camera-based Vision 
module, and a GPS/IMU-based State module. These 
modules leverage the strength of each sensing modality to 
detect and classify objects to create a world map for the 
autonomy modules. 

The MinionTask mission tracker aggregates data from 
various modules and determines the best current objective 
to complete the mission. It communicates the objective to 
the Path Planner which calculates the optimal path, which 
the Controls module then executes. MinionTask also 
communicates the objective to the sensory modules, 
enabling and disabling processing algorithms based on the 
current objective.  

Additional modules enable Minion to localize underwater 
acoustic targets with hydrophones, deploy and control an 
autonomous underwater vehicle (Anchor), and interface 
with a stand-alone racquetball turret (Bodyguard II). A 
custom Ground Station operator control unit enables 
efficient mission control over low-bandwidth datalinks. 

The modules interact asynchronously through the 
MinionCore inter-process communications suite. The 
function of each module is discussed in Vehicle Design and 
in the Appendices. 
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Fig 1. Minion ASV Software Architecture 

II. DESIGN STRATEGY 

Learning from the experiences of the 2016 competition, 
several goals were created to refine the platform’s hardware 
and software to deliver a more robust system that shaped 
the redesign of the 2018 platform.  

One key goal was the implementation of a simulation 
environment. This simulation allowed integration of the 
MinionTask, which drives the actions of the ASV, in a 
virtual environment. While a version of MinionTask was 
created for the 2016 competition, without the simulation 
capabilities, it was not robust. 

Robust controls were a requirement for 2018 
competition. The 2016 competition revealed problems in 
interfacing a controls system with a path planner and path 
following system. For example, the prior implementation 
did not have the ability to follow paths in reverse, posing 
issues with the docking challenge. The 2018 
implementation needed to address these issues while also 
improving overall system robustness through failover 
techniques. In case of motor or azimuthing servo failure, 
the controls module was designed to adjust to the scenario 
to retain positive control of the system. 

The prior perception suite primarily relied on LiDAR 
sensors for object detection and classification. For color and 
shape-related tasks such as Scan the Code, the LiDAR 
sensors provided the camera system with a bounding box to 
consider for sequence detection. This created a heavy 
reliance on the correct LiDAR classification of objects and 
an accurate transformation between LiDAR and camera 
sensors. In a maritime environment, the constant motion 
requires the accuracy of the transformation be very high. 
While one goal was to improve this transformation, another 
was to use neural networks to allow the cameras to detect 
the Scan the Code sequence from raw images.  

A. Simulation Environment 

For the purpose of testing mission and path-planning 
software without access to the boat, a rudimentary 
simulation environment was developed during the 2016 
Maritime RobotX Challenge. This software was developed 
using hard-coded maps and variables, but it proved its 
usefulness and showed the utility of having a more robust 
and versatile software package in developing autonomy for 
the 2018 competition.  

While a simulation environment running in Gazebo was 
available for all RobotX teams to utilize, the RobotX 
Gazebo model was released late in the competition cycle 
and did not match the capabilities of Minion, including the 
extensive perception suite and azimuth-capable thrusters.  

MinionSim was developed through a series of 
intermediary milestones, allowing it to become immediately 
useable by the other modules in the software stack while 
slowly increasing its usefulness in further developing the 
other modules. Some of these milestones include producing 
a synthetic state (position and pose), interpreting the 
received control messages, sending objects the vessel 
discovers in the virtual environment, and describing the 
objects’ visual features in ways that are useful to the other 
software modules. 

The simulation software for the 2018 RobotX Challenge 
includes a mapmaking module for generating fields of 
virtual objects, and a simulation engine that interprets the 
files exported from the map maker that contain the object 
fields. Arbitrary maps can be created that contain 
configurations of objects and tasks expected in 2018 in 
order to test the ability of MinionTask. The simulation 
engine generates and distributes synthetic versions of the 
messages that other modules expect to receive from the 
physical ASV, allowing those other modules to be tested 
without needing the boat to be operating on the water. 
Other functions, including a hardware-in-the-loop mode, 
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allow the simulation of virtual objects in the surroundings 
of the physical boat, which can be used to test path-
planning and controls software. 

B. MinionTask 

Minion’s MinionTask provides a unique capability 
designed to push the system towards the realm of true 
autonomy. The MinionTask does not script missions; 
instead the missions are designed through a series of tasks, 
each of which has defined start conditions, point values, 
and times to complete. The tasks also encode the object 
classifications and rule requirements for each mission in a 
common modular format that can be called by the mission 
engine. Tasks exist as separate compiled code and can be 
modified, added, or subtracted without modifying the 
mission engine. 

Minion begins each mission in a search state with no 
knowledge of the course element locations and no 
predetermined task order. The search area encompasses the 
entire operating area and is searched in a pattern seeded by 
priority locations. As objects are discovered, a ready check 
function is run for each task to determine if the necessary 
conditions for initiating the task have been met along with 
an estimated execution time and point value. Tasks are 
selected and dynamically launched by the mission engine in 
real time to maximize the points scored per second of 
operation time. 

C. Controls 

Minion’s 2018 control algorithms allow for robust 
handling of the new azimuthing system and improves upon 
2016’s path following algorithm. The control module is set 
up in a system that cascades control from the mission 
objective down to actuator allocation. This cascaded 
system, in combination with a new nonlinear optimizer, 
provides a far more robust control system with multiple 
advantages to the 2016 design. The most significant 
advantage is the ability to introduce failure, or “limp” 
modes. These modes enable the platform to operate on a 
reduced set of actuators and still accomplish the mission 
objectives. For example, if the port azimuthing were to fail, 
the system could account for full operation of the starboard 
actuators and operation of the port actuator at an arbitrary 
fixed angle. 

D. Vision 

Minion’s vision module, which uses the visible imagers 
on both Minion and Anchor, supplements the information 
supplied by the perception module, which relies on LiDAR 
sensing. In 2016, Minion relied almost solely on the LiDAR 
system due to efficiency and reliability concerns with the 
Vision module. As many competition tasks require vision, it 
was a key to the 2018 strategy to address this deficiency.   

Improving vision was addressed by using convolution 
neural networks (CNNs), which are a type of deep learning 
network, to increase the speed and accuracy of the vision 
classification and detection networks. The computational 
burden of these networks is also offloaded to the system 

GPUs to prevent slowdown of the other critical systems on 
Minion.  

Ultimately, CNNs are trained using Tensorflow V1.5 to 
accomplish the Scan the Code task, identify buoy colors, 
and identify the shape and color of the target on the dock. 
These CNNs were all created from retraining already 
constructed networks. This design feature allows crossover 
of code between different networks and tasks. For the 2018 
competition, the Mobilenet V1, Inception V2, and Inception 
V3 networks are all used to allow for a trade-off between 
speed and accuracy as well as classification and detection. 
Using this approach allowed for the easy implementation of 
a new network for the sub deployment task as well, since 
the code to run the networks is already compiled and all 
that is needed is retraining a network. 

E. Electrical 

To power and control the improvements to the 
propulsion, sensor, and payload systems, much of the 
electrical system has been improved from 2016.   

The largest changes to the electrical system are the 
changes made for the new propulsion system. New RDPs 
demanded a change in motor controllers; new degrees of 
freedom in the propulsion and vehicle controls system 
required additional actuators and their associated power 
distribution and communications circuits. An off-the-shelf 
motor controller was integrated with the existing safety 
systems and a custom circuit board was designed to power 
and drive both the azimuth degrees of freedom and the 
thruster retraction actuators. 

Each payload system, including the turret and the AUV  
deployment system, also required control circuitry. To 
improve maintainability of the whole system, the circuit 
board designed for the azimuth and retraction actuators 
included some extra peripherals that allowed its common 
use for the control of the payload systems, increasing field 
maintainability. 

A new feature that has been added to the electrical 
systems is an upgraded external indicator system. 
Supplementing the basic light tower of the previous 
competition, a system of large LED arrays that is an order 
of magnitude brighter has been added to allow bystanders 
and operators to easily know the status of the system. 

A problem that was found in the previous competition 
was that the vehicle’s motor noise far exceeded the 
amplitude of the pinger signal, rendering the hydrophones 
useless while the motors were in operation. This problem 
has been remedied with the addition of a 5-stage analog 
filter and gain circuit that attenuates the motor noise. 

Please see Appendix H for more electrical information, 
and Appendix F for more information on the hydrophone. 

III. VEHICLE DESIGN 

A. Design Process 

The design process for Minion incorporates techniques 
from AGILE [1] for both hardware and software 
development. A 2-week sprint cycle was adopted, as well as 
weekly stand-up meetings. Stand-up meetings require every 
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member of the team present their progress in a fast-paced 
manner with few technical details. This permits every 
member of the team to be versed in the progress of the 
entire project. A 2-week sprint cycle concludes with an in-
water test on the final day. This provides a visible metric of 
progress for all team members, as well as incentive to 
accomplish all goals within a sprint cycle. A 2-week sprint 
may also conclude with a design review for projects that 
can’t be tested within a 2-week sprint.  

B. Major Changes 

1) Propulsion Redesign 
Following the 2016 RobotX Competition, Minion’s 

propulsion system was redesigned to address weaknesses 
that were limiting the maneuverability of the platform. Two 
“motor pods” mount to existing hardpoints on the WAM-V, 
one at the aft of each pontoon. The pods serve a dual 
purpose of housing the propulsion system and providing 
required buoyancy to the WAM-V. Each motor pod houses 
a RDP thruster. These are a type of marine electric motor in 
which a brushless motor is built around the propeller to 
improve efficiency and reduce noise compared to electric 
trolling motors. It also minimizes the risk of tangling with 
seaweed or anchor lines and ensures the platform does not 
disrupt wildlife. Minion’s 2016 Torque-Jet RDP thrusters 
been replaced with Copenhagen VM Asymmetric thrusters 
in 2018 for improved efficiency, thrust, and reliability. 

The focus of the propulsion system redesign was to add 
azimuthing and beaching capabilities to the selected 
thrusters. Allowing the thrusters to rotate, or azimuth, 
improves maneuverability because it allows control over 
the magnitude and direction of force from each thruster, 
rather than just magnitude. Independent azimuthing also 
improves robustness as it allows the platform to operate and 
maneuver even if only one thruster is functional. To limit 
the impact of the additional complexity on reliability, the 
azimuthing thrusters can be mechanically locked, returning 
the platform to differential thrust. Azimuthing is achieved 
with Volz DA-30 servos, allowing the thrusters to rotate ± 
85°. These powerful servos were chosen due to their 
environmental ratings and ability to rotate at 150°/s while 
producing 70.8 lbf-in of torque to smoothly and quickly 
azimuth the thrusters, even under maximum thrust.  

The thrusters can also be retracted from the water, 
reducing the human intervention required when launching, 
retrieving, and beaching the ASV. Linak LA-36 linear 
actuators raise and lower the thrusters. Due to their worm 
drive, these actuators lock in position when not powered. 
Retraction and deployment each take under 10 seconds. 
Appendix D further details the design and analysis behind 
the new propulsion system. The final propulsion system is 
shown in Fig 2. 

 

 
Fig 2. Azimuth and beaching enabled propulsion system. 

 
2) Racquetball Turret 

For the purpose of completing the Detect and Deliver 
task, Team Minion opted to develop a logistically simpler 
but more functionally robust solution than the air-powered 
turret used in 2016. The turret, Bodyguard II, is 
independently powered from the rest of the vehicle by a 6-
cell lithium-polymer battery in a waterproof housing, rather 
than requiring a source of compressed air. This simplifies 
the beach operations that will be necessary to recharge the 
turret, and is accomplished by changing the method of 
firing from a compressed-air cannon to two sets of counter-
rotating wheels.  

The 2018 turret, shown in Fig 3, is mechanically simpler 
than in 2016. Bodyguard II operates on two four-bar 
linkages, powered by HiTec D845WP Waterproof servos. 
These servos, when operating at 6V, can produce 35 in-lb 
of torque through their 180 degrees of motion. The 
mechanical advantage of the four bar linkages, which 
reduces the azimuth range of motion to 60 degrees, and the 
altitude range of motion to 20 degrees, amplifies the torque, 
offering smoother and stronger responses to the changing 
positions and angles of the WAM-V deck and target. 

The active targeting system built into Bodyguard II is 
enabled by a Microsoft Lifecam, with processing taking 
place onboard the turret using a Nvidia Jetson TK1. Once 
triggered by a task running on the primary Minion 
computer system, the video feed from the LifeCam detects 
the center of the Detect and Deliver target. The servos then 
move to position the target in the center of the camera view, 
and the turret fires.  

 

 
Fig 3. Bodyguard II Racquetball Turret. 
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3) Underwater Capability 

a) AUV 

Anchor, Minion’s deployable AUV, is a BlueROV2 from 
Blue Robotics, and was selected because of its robust 
design, compact size, and open-source software. The 
BlueROV2 uses two Blue Robotics T200 thrusters to 
control depth and an additional four thrusters for holonomic 
control in the horizontal plane. Anchor is controlled by 
Minion via a Mavlink stream by processing a video stream 
from Anchor’s onboard low-light 1080p USB camera. 

b) Deployment 

Anchor is linked to the ASV with the Blue Robotics 
Fathom Slim Tether that carries 2-wire ethernet and 
includes Kevlar, so it can act as both a physical link and 
data link. A custom ratcheting winch spools the tether to 
deploy and retrieve the BlueROV2. The winch itself is a 
large spool driven by an Ampflow A28-150-F48 48V motor 
through a 3-stage gearbox. The winch is mounted on 
Minion’s modular under-deck payload tray, the MAST, 
shown in Fig 4.  

 

 
Fig 4. Submarine deployment module mounted on the MAST. 

 
Since the deployment system’s location on the MAST is 

port of the ASV’s centerline, a spring-loaded swing-arm 
transfers the sub from the deployment tray to the centerline 
of the platform. This minimizes the risk of the sub hitting 
Minion’s pontoons during retrieval, seen in Fig 5. More 
details on Anchor and its deployment system are in 
Appendix B.  

 

 

Fig 5. BlueROV2, Anchor, and deployment showing swing-arm. 

 
4) Path Planning & Controls Approach 

Two modules are responsible for acting on autonomous 
behaviors: the Path Planning and the Controls modules. The 
Path Planning module is responsible for taking objectives 
from MinionTask and producing a trajectory that 
accomplishes the objective. The Controls module takes 
those trajectories and commands the vehicles actuators. For 
details on controls and path planning, see Appendix L. 

The Path Planning module takes input of different 
objectives (waypoint, path with constant heading, station 
keeping, circling, docking) that produce trajectories for the 
Controls module. The other four, (stop, heading hold, point 
hold, direct) are special cases that do not produce 
trajectories and disable parts or all of the Controls module.  

The Path Planning module coverts the nine tasking 
objectives into three possible controls modes: stop, direct, 
path. In the stop mode the vehicles actuators are disabled. 
In the direct mode the Controls module is receiving surge, 
sway, and yaw targets directly. The path mode causes the 
Controls module to follow a trajectory to an objective. 

The trajectory controller in the Controls module is time-
based leader-follower technique. Trajectories are smooth, 
continuous functions of time. The controller first calculates 
an error using the current vehicle state and the target state at 
time 𝑡. Then, the controller calculates an error between a 
future predicted state and the target state at time 𝑡 + 𝑡௟௘௔ௗ . 
A weighted average of the resulting control outputs is used 
to command the body controller. 

The body controller consists of a set of gain-scheduled 
PID algorithms to control the following states: yaw, yaw 
rate, sway speed, and surge speed. The PIDs also have 
ramped inputs and output rate limits. The output of the 
body controller stage are a set of desired forces and 
moments. These are given to the actuator allocation stage. 

The last stage of the Controls stack is actuator allocation. 
The allocation stage attempts to produce those forces and 
moments with the available actuators. The allocation 
problem is solved with a nonlinear optimization using 
quadratic sequential programming. The nonlinear optimizer 
considers the command limits of both the azimuthing 
actuators and the thrusters, as well as minimizing the 
amount of change in setting for the actuators. If an exact 
solution cannot be found, then a best fit solution is 
produced instead using a relative weighting of the 
objectives. The currently set modes are differential (no 
azimuth), full (complete azimuth), crutch mode (only one 
available azimuth), limp mode (only one motor/azimuth 
pair), and “twerk” mode (only a single, non-azimuthing 
thruster). 

IV. EXPERIMENTAL RESULTS 

A. Test Approach 

1) Simulation & Playback 
In between tests, the software team uses simulation and 

playback tools to develop and improve algorithms.  
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2) Vehicle Shakedown 
A vehicle shakedown takes place the day before a test to 

verify changes and ensure compatibility between modified 
code throughout the past sprint. This procedure helps 
ensure that time is not wasted during a test debugging 
incompatibility between the software modules.  

3) Test Days 
A test day occurs the final day of each 2-week sprint. In a 

standard AGILE method, this would be the member demo. 
During a test, the platform is deployed in the river with a 
chase boat and may be run in tele-operated or autonomous 
modes. These tests may be used to find discrepancies 
between simulation and the real-world environment. 
Similarly, it offers a good opportunity for logging data from 
the sensors to improve algorithms in the next sprint. 

4) Logging 
The Minion platform has multiple methods of logging to 

ensure all the relevant data is captured while on the water. 
Each module automatically logs all MinionCore messages 
or incoming sensor data while open. However, for some 
modules like vision, these logs are compressed and may not 
provide the best information for new algorithms. There is 
also a method for taking uncompressed manual logs. 

5) Test Debrief & Sprint Planning 
After a test, there is a debrief for all team members. This 

debrief covers everything that was accomplished during the 
test, as well as anything that needs to be accomplished for 
the next test. These debriefs are used to begin planning for 
the next 2-week sprint cycle. 

B. Capabilities Testing 

1) Perception 
The Perception module is responsible for the detection of 

waterborne objects, mapping those objects, and determining 
if any of the detected objects are a competition object. The 
goals for this system are: 

1. Detect objects within 25m to bow, port, and 
starboard, 10m to stern 

2. Identify object location and size to within 0.5m 
3. Map an area up to 1 sq.  mile 
4. Classify competition objects within 5 seconds of 

detection 
5. Classify objects with over 90% accuracy and less 

than 20% false positive rate. 
The detection, mapping and classification methods of the 
perception module are all detailed in Appendix E.  

The accuracy of the detection and mapping system was 
found to be approximately 20cm for stationary objects 
within 20m of the vessel. This accuracy can be seen in Fig 
6 where the pier pylons can be easily distinguished. 
However, all competition objects are floating, and can 
therefore have their point clouds distorted by the wave 
induced motion. The point clouds can still be easily 
recognized as the associated object, as evidenced by the 
TaylorMade Buoy and Light Tower object in Fig 7. Both 
Fig 6 and 7 were created using empirical data collected 
from on-water testing and then re-played through Minion’s 
perception module.   

 

 

 
 
Fig 6. Satellite view of a pier compared to the 3D point cloud captured 

by Minion. The yellow polygon surrounding the bottom of the pier 
represents the mapped object boundaries used by the path planner.   

 

   
Fig 7. Point clouds for a floating TaylorMade Buoy and Light Tower. 

The CAD Model for each object has been placed on the figure in 
the location the object was detected. The CAD model for the light 
tower does not include the guide ropes on each corner of the base 
which are connected to the pole just below the panels.   

 
Object features used in classification were collected from 

four competition objects during in-water testing, which are 
unique in spatial capabilities or near infrared reflectivity. 
The confusion matrix of Table I shows the accuracy of 
classifying these objects across a total of 1863 samples. It 
should be noted that a tall buoy with reflector refers to the 
green and red TaylorMade buoys, while the general Tall 
buoy class is a white TaylorMade buoy or totem. 

Table I 

CONFUSION MATRIX OF CLASSIFICATION RESULTS 

 

 Test Class 

 
Tall Buoy A3 Buoy Light 

Tower 
Tall w/o 

Reflector 
Unknow
n 

Predicted 
Class 

Tall Buoy 97.7%    17.4% 
A3 Buoy  97.2% 1.1%  9.2% 

Light Tower   95.8%  3.2% 
Tall w/o Reflector    98.5% 20.9% 

Unknown 2.3% 2.8% 3.1% 1.5% 49.3% 
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The results show that the goal of over 90% accuracy has 
been achieved with the lowest classification accuracy being 
95.8%. Similarly, the false positive rate is under 20% for 
every class with only unknown objects even exceeding a 
2% false positive rate. While not a specific goal, false 
negative rates are also below 4%. These results, combined 
with the history-based filtering discussed in Appendix E, 
allows the MinionTask to trust the class label given by the   
perception module.  

 
2) Vision 

The vision module is responsible for identifying the color 
of objects and shapes used in competition. Color 
classification is required to complete Scan the Code, while 
shape and color detection are required for the Detect and 
Deliver task as well as the Docking task.   

a) Light Tower Task 

A combination of three different CNNs was used to 
determine the sequence of the tower. The first network ran 
using the Faster RCNN Inception V2 (Coco) detection 
model trained with 50 proposal regions to crop the raw 
image from the camera down to the light tower. From the 
tower image, the single-shot detector (SSD) mobilenet V1 
(Coco) was used to crop the image down to the light panel. 
Once the light panel image was obtained, a final network 
uses the Inception V3 classification framework to output 
the color of the panel.  

This task ran at approximately 7 frames per second to 
obtain this number of samples per sequence. Next, to 
determine the sequence, a detector was implemented which 
used a moving mode to determine the color of each panel. 
Using this method, the sequence was output successfully in 
all cases except when the sun washed out the colors on the 
panel.  In this case, the boat would rotate around the light 
tower and attempt to classify the panel in better lighting 
conditions. Fig 8 shows an example of the proposed regions 
(blue bounding box) of the light tower and panel.  

 

      
Fig 8. Light tower and panel prosed areas of interest.  
 
The results in Table II show a robust system that can 

effectively crop down to the light panel when the light 
tower is in range during the task. These networks worked in 
bad lighting conditions as well since the CNNs did not rely 
heavily on color as a determining factor in the detection 
process. This was not true, however, for the panel color 
detection as this CNN was almost solely based upon color 

of the panel, since that is the only difference between red, 
green, and blue. 

Table II 

COMBINED SPEED AND ACCURACY OF LIGHT TOWER NETWORKS 

Network Purpose Type 
Speed 
[ms] 

Accuracy 
[%] 

Inception 
V2 

Crop Tower Detect 100-150 100 

Coco 
Mobilenet 

V2 
Crop Panel Detect 20-40 99.7 

Inception 
V3 

Identify color Classify 20-40 98.2 

Combined All Both 140-230 97.9 

 
An overall results and confusion matrix is shown in 

Table III for an 855-image set over two different sequences. 
This data shows that the color detector is robust as well and 
only fails to work well when the sun washes out the panel.  

Table III 

LIGHT PANEL COLOR CLASSIFICATION NETWORK RESULTS 

 
 
The final step in predicting the sequence is the use of the 

sequence detector, which uses the results of the CNNs in 
real time. The detector uses a moving mode of the last five 
predictions to vote on the actual prediction. This is repeated 
until a sequence is detected; a black panel, 3 non-black 
panels, and a final black panel. A sequence is output once it 
has been voted for three times in the allotted time. If no 
sequence is detected in this time, the boat will circle around 
the tower and try once more.  

b) Object Classification 

The other use of vision for Minion was classifying the 
different colored buoys and the signs for docking. Both 
tasks were also completed using the Inception V3 
classification network. These networks were retrained 
individually for the different tasks they were applied to.  

For the buoys, the network was segmented into 
classifying the buoy as either red, green, blue, yellow, 
white, or black. Only color was of importance, so the type 
of buoy did not matter and was not accounted for in the 
classification. This was possible since the LiDAR data was 
accurate enough to classify the type of buoy.  

A confusion matrix is shown in Table IV for the general 
performance of this network. For this task, if a color could 
not be identified with over a 70 percent confidence and a 
majority vote over a range of 20 images, the color is 
returned as unknown. This was done because a false 
positive is almost always worse than having an unknown 

Black Blue Red Green

Black 100.0%

Blue 96.4% 3.0%

Red 100.0%

Green 3.6% 97.0%

Test Class

Predicted 
Class
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color, as other logic can be applied to determine the 
corrective action to take.  

 

Table IV 

CONFUSION MATRIX FOR BUOY COLOR CLASSIFICATION 

 
 
The second classification network that was trained was 

for the docking signs. This network was used to detect the 
shape and color of the different docking signs. The same 
process was used for this task as was for the buoys. The 
network identified the color (red, green, or blue) and the 
shape (cruciform, circle, or triangle). Due to time 
limitations, there was no available data for testing this 
network.  

 
3) Acoustics 

Localization of the pinger was accomplished utilizing an 
ultra-short baseline array of four hydrophones and a 
multilateration processing algorithm. These sensors were 
arranged in a tetrahedron, allowing for the position of the 
source to be calculated as opposed to the bearing, which 
was employed in the prior implementation on the platform. 
This approach allows for more robust means of rejecting 
invalid returns, as the location can be compared to the 
buoys defining the gate. The specifics of the system as well 
as a detailed discussion of the algorithms implemented are 
in Appendix F.  

At a high level, the goals of the system were to provide a 
more robust system than the prior iteration of the 
technology that could leverage the positioning information 
with enough accuracy. This translated into requirements 
would be: 

1. Bearing accuracies (on surface plane) of ±5 deg 
2. Positional accuracy within ±1m on (surface plane) 

To validate whether or not the algorithm achieved these 
results, two forms of testing were employed. Signal 
simulation models allowed for rapid validation of the 
behavior of the full array; pool testing allowed for a 
controlled environment where the source could be easily 
moved and its location measured. These two forms of 
testing allowed for a confident deployment of the system on 
the platform.  

To process the data, the raw waveform, Fig 9, is taken 
and the pulse, Fig 10, is extracted using frequency analysis. 
This allows the clean signals at the front of the incident 
pulse, Fig 11. At this point, phase analysis can be 
performed in order to compute the position. 

 
Fig 9. Raw waveform – 0.5 second capture.  
 

 
Fig 10. Extracted pulse (seen at t-0.15s above) 
 

 
Fig 11. Wavefront Signals (seen at t=0.001s above)  
 
Evaluating the position involves a numerical solution to 

the location of the pinger in XYZ space. For the signals 
above, doing so yields a position offset of (10,11,1) m. 
Based on the measurements of the pinger and arrays 
location, this results in a positional error of 0.2 and 0.18 m 
and an angular error of -0.1 deg in the surface plane. These 
performance results were repeatable in subsequent testing, 
achieving errors less than that of both the angular and 
positioning requirement.  

 

C. Mission Testing 

The break-down of each mission’s testing, both in 
simulation and in-water, can be seen in Table V. The result 
of this extensive simulated testing was 58 total tests run 
across 5 different tasks, including: Navigation Gates, 
Acoustic Gates, Scan the Code, Obstacle Field and Totem 
Circling, and Docking. This extensive simulation testing 
helped ensure that the limited in-water test time was used to 
tune task run times and thresholds. As a result, the 
approximately 13 hours of in-water testing were used to 
refine the task parameters and to find edge cases to further 
test in simulation. 
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Table V 

MISSION TESTING RESULTS 

Mission 
Simulation 
Test Hours 

In-Water 
Test Hours 

Navigation Gates 20. 5 
Scan the Code 20 5 
Acoustic Gates 10 2 

Obstacle Field and 
Totems 

8 
- 

Docking - 1 
Total  58 13 

 
1) Simulation Tracker Results 

Of the five tasks that were tested, four of these were able 
to be tested in MinionSim. The tasks that were tested in the 
simulator were the Navigation, Scan the Code, Acoustic 
Gates, and Obstacle Avoidance and Totem Circling tasks.  

The Navigation task was the most heavily tested task in 
the simulator. Since it is the entry key to all testing that will 
need to be done on the course, it was critical that this 
challenge would be able to be robustly and reliably 
completed. In the simulator, the team was able to test 
several edge cases such as the gates being severely out of 
spec compared to the listed dimensions in the task outline. 
This included gates that were upwards of 40 meters apart 
and in skewed configurations, such as the case shown in Fig 
12. Testing in the simulator also allowed testing of the 
platform’s ability to complete this challenge both with and 
without color classification information being applied to the 
buoys. Through over 20 hours of simulator testing 
throughout the logic development phase, this task was 
proven to be highly reliable.  

Testing of the Scan the Code challenge was fairly limited 
in MinionSim. Without the ability to simulate the sequence 
in a way that would allow the vision module to be tested, 
simulation was limited to checking the movement routines 
of the platform throughout the task. However, this did allow 
for around 20 hours of behavior and waypoint testing in 
simulation.  

Similar to the Scan the Code task, limitations in 
MinionSim prevented the team from simulating pinger data, 
which would be used to determine the start gate to cross 
through. As a result, the platform would randomly guess 
and then transit through one of the three gates before 
completing the rest of the task.  

 
 

 
Fig 12. Navigation gate simulation using 40+ meter long, skewed 

gates 
 
Although the pinger could not be simulated, MinionSim 

was more than capable of testing of edge cases and of 
situations that would be out of specification for competition 
requirements. Some of the edge cases tested included 
unevenly spaced gates, gates with the start buoys positioned 
above and below the line of fit (see Fig 14) and elongated 
start gates. The robustness of the module was also tested by 
simulating objects with incorrect or missing classifications 
as well as missing color identifications.  

While testing this task, the circling of a specified totem 
was also tested, which allowed for behavior validation for 
the circling that would be done for the totem task. This also 
included testing the behaviors of the platform when only 
one buoy was detected in the region where a totem would 
be expected for circling. As a result, nearly 10 hours of 
successful simulator testing for the acoustic gate task was 
performed. 

 
Fig 13. Acoustic gates with skewed, unevenly spaced entry gates. 
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2) In-Water Tests 
As was to be expected, in-water testing revealed logic 

bugs and edge cases that were not initially considered when 
testing each of the tasks. During the time that was available 
for testing each challenge, four of the five tasks were 
attempted on the water. These included the Navigation 
gates, Scan the Code, Acoustic gates, and Docking 
challenges. Through all this testing, an impressive 13 hours 
of tasks testing was accumulated. 

 In-water testing of the Navigation gates challenge 
showed that several edge cases needed to be accounted for 
in the task logic. The first of these edge cases discovered 
was when the start gates were skewed. This was solved by 
adding a check in the logic for possible skewed gate 
conditions, further described in Appendix I. However, after 
this fix was implemented, it was found through in-water 
testing that it causes the boat to plot waypoints away from 
the end gate location to correct for what it thought was a 
skewed gate when only one of the end gate buoys had been 
classified. This problem was then solved by making the 
skewed gate case toggleable in the configuration file. Real 
world testing also showed that, due to potentially slow 
classification times, there was a need for this task to be able 
to find both the start and end gates with limited, and in 
some cases incorrect, classification information from 
Vision and Perception. After these changes were made, the 
navigation gates challenge was again attempted in the 
water. The platform was able to successfully navigate 
through the gates during 10 hours of in-water testing. 

Testing of the Scan the Code challenge in real world 
conditions proved to be highly successful. This testing 
showed that scan angles, which allowed the sun to appear in 
front of or behind the ASV, hindered the sequence 
accuracy. The configuration files were changed to allow the 
platform to approach the tower at more ideal angles. 
Testing of this task also showed that the ideal scanning 
distance to get fast, reliable sequence returns was anywhere 
from 10-15 meters from the light tower, which was also 
edited in the configuration file. Testing of this task proved 
to be extremely successful with around 10 hours of 
successful in-water testing. 

The Acoustic Gates task in-water testing revealed that the 
details about the ASV’s real-world handling characteristics, 
primarily Minion’s turning radius, were not accurately 
modeled in the simulation environment. As a result, it was 
determined that the circling radius for the end buoys was 
too tight, so this parameter was added into the configuration 
file so it could be tuned. It was also discovered that the 
intermittent waypoint generated after the ASV crossed 
through the gate, but before it went to search for the buoy to 
circle, was too close to the gate buoys. This would cause 
the ASV to make large, circular paths that would often put 
the ASV back through one or more gates while attempting 
to achieve the intermittent waypoint. This was then 
corrected in the Acoustic Gate task code by making the 
parameter for how far out the waypoint was placed past the 
gates a tunable parameter. Unfortunately, the only element 
of this task that was unable to be tested on the water was 

the gate detection via the hydrophones. However, even 
without this element, the ASV was able to successfully 
detect the gates, navigate through a randomly selected gate, 
find the required buoy to circle, and circle that buoy in the 
correct direction. As such, there were only 5 hours of 
successful attempts at this task on the water. 

 The Docking challenge was one that was only able to 
be simulated on the water through hardware-in-the-loop 
simulation of the dock. However, this did allow the logic 
for this challenge to be refined and tested. Through the in-
water testing that was done, it was determined that the 
object growth that was done by the path-planner in order to 
ensure the ASV did not ram into obstacles prevented the 
ASV from being able to successfully complete the docking 
challenge. Thus, it was noted that there needed to be a 
direct mode in the Path Planner that would ignore obstacles 
in the way and simply drive to a point. It was also noted 
that a fall-back option that would be able to directly 
command the controls module, regardless of obstacles in 
the path, would need to be developed or revived. This 
resulted in emergence of Direct Mode, which overrides the 
path-planner and sends direct messages to the controls 
module. Both additions would allow the ASV to 
successfully complete the docking challenge. 
Unfortunately, this resulted in only around an hour of in-
water testing for the docking challenge. 

V. CONCLUSIONS 

ERAU Team Minion has improved on its 2016 RobotX 
entry by improving the electrical, propulsion, controls, 
tasking, simulation, and vision capabilities to address the 
2018 challenges. Additional new capabilities include 
azimuthing control and a deployable AUV. The system has 
been extensively tested with hundreds of hours of 
simulation development and over 100 hours of in-water 
testing. The result is a highly capable autonomous maritime 
system capable of competing successfully in RobotX 2018. 
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Appendix A: Operator and Onlooker Situational 

Awareness 
 

Grady C. Delp, Marco A. Schoener 

 

 

I. INTRODUCTION 

With the increasing presence of autonomous vehicles in 

everyday life, it is necessary to make the intentions and actions 

of a vehicle known, not only to the operators and occupants, but 

to onlookers in the surrounding environment. Team Minion has 

developed a set of novel solutions to this problem, making use 

of the modular nature of the Minion platform, and its software 

stack. These solutions are three-fold: 

• MinionTab Tablet Interface 

• MinionG Ground Station Interface 

• Lighted Indicator Panel Modules 

II. MINONTAB TABLET INTERFACE 

Making a return from 2016, the MinionTab Tablet Interface 

has a new and more fully-realized user-interface, giving it a 

more streamlined appearance and providing greater ease-of-

use. 

MinionTab fulfills the 2018 Maritime RobotX Challenge 

requirement of a “Judges Display”. The tablet enables the user 

to remain updated on the status of the Minion platform during 

a mission run. By displaying information about Minion’s 

physical location, health, and modes, as well as information 

about mission tasks in progress vehicle hardware and software 

The interface (Figure Fig 1) is composed of two panes: the 

navigation panel and the boat monitor. 

The navigation panel displays the different boat monitoring 

panels, gives current general mission state and statuses of the 

boat, and contains user settings for the application. The buttons 

are set to display the available status of the boat. The general 

information underneath the buttons give updates of mission 

tasks; boat speed and bearing; the current wind speed and 

direction; and safety and control states. And the user-settings 

allow the user to change unit systems for data display. 

The boat monitor comprises of the up-to-date status of the 

boat. This panel contains interactive elements to view certain 

aspects of the boat. For example, the boat tab can be zoomed in 

or use buttons to display the search grid as the mission runs. 

A. Mission Tab 

The Mission tab (Fig. 2) displays all of the scoring elements 

required for the “Judge’s Display”, the mission and run-block 

time, and a list of the compiled tasks. Mission information 

comes directly from the Mission Planner running off of the boat 

to keep up-to-date with each run. The tasks are as follows: Scan 

the Code color sequence; the detected active entry and exit 

pingers; the two colors and shapes both for the Dock Signs and 

Detect and Deliver targets; and which totems are supposed to 

be circled. 

 

B. Map Tab 

The Map tab (Fig. 3) displays the boat’s environment which 

includes the boat (red), the visibility horizon (light blue), 

objects in the environment (colored by class), the trail of the 

boat’s movements, the search grid (not shown), and the current 

object path. The boat’s position is displayed as latitude and 

Fig 2. Mission Tab of the MinionTab UI displaying example results for the 

scoring elements. 

Fig 1. The MinionTab interface overall display. 
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longitude.     

 
 

The map can be zoomed in and out using the zoom slider (on 

the right) or a pinch gesture. The search grid and the boat’s trail 

can be toggled on and off. 

C. State Tab 

The State tab (Fig. 4) displays the states of the boat in a set 

of history graphs. The states that can be viewed are translational 

speed, rotational speed, and the angles. The history can range 

between the previous 10 to 60 seconds with the ability to pause 

them. 

D. Cameras Tab 

The Cameras Tab (Fig. 5) displays the images that the boat 

streams out. Each available camera can be toggled to show up 

to two of the available cameras. 

The boat is equipped with cameras on the base and auxiliary 

platforms (submarine and turret). However, the GigE cameras 

on the platform transmit too much data to be handled over a 

wireless link. To alleviate this issue, the GStreamer [1] package 

was used to enable both end-to-end streaming and hardware 

encoding/decoding.  

The boat hosts a server awaiting connection requests from 

viewer devices via MinionCore message. This permits any 

number of users to request individual video streams at any 

bitrate. The server multi-casts the streams such that no duplicate 

streams are used, minimizing the bandwidth overhead of the 

video.  

E. 3D Visualizer Tab 

A 3D Visualizer tab (Fig. 6) was desired to display an 

accurate representation of the world as viewed by Minion. This 

visualizer was built on the PCL [2] library to handle large 

numbers of point clouds and polygons. On the platform, the 

visualizer can view the raw point clouds and the processed 

occupancy grids. However, for remote users, the visualizer may 

show a CAD model of Minion, polygons representing each 

object with class information, and the planned path of Minion. 

  

Fig 3. The Map tab of the MinionTab UI that shows the boat moving about 

its environment. 

Fig 6. The 3D Visualizer Tab in the MinionTab UI that displays the 

boat, path, and objects in 3D. 

Fig 5. The Cameras tab of the MinionTab UI that displays the boat, 

submarine, and turret cameras. 

Fig 4. The State tab of the MinionTab UI that displays the measured 

speeds and angles off of Minion for up to 1 minute of history. 
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F. Boat Tab 

The Boat tab (Fig. 8) displays the hardware statues and 

operations for the boat. A picture of Minion is displayed with 

colored components of the boat to determine which component 

statuses can be viewed. The color of these components also 

determine a general idea on its connectivity and operation 

status. When the user clicks on the component, a popup displays 

that specific information. 

III. MINIONG GROUND STATION INTERFACE 

Minion’s Ground Control Station (GCS) has been revamped 

to focus on providing for a full interface for the vehicle and its 

software, removing the need to use Remote Desktop to interface 

with on-board modules. The 2018 GCS has the ability to 

monitor the vehicle, the environment, and each active module 

in a concise interface (Fig. 7). 

The GCS interface is split into two panes: the environment 

monitor (left) and the module monitor (right). The environment 

monitor displays the vehicle (red), the visibility horizon (light 

blue), objects in the environment (colored by class), the current 

objective path (not shown), the current and desired heading 

extending from the boat (white and red respectively), the 

azimuth angles from the port and starboard motor pods (red and 

green respectively), control target (not shown), and the search 

grid (not shown). 

 The environment monitor has a set of ease-of-use features for 

the user to interact with. The user can zoom in and zoom out, 

follow the boat, or snap the map to show all existing objects. 

Distances on the map can be measured via two user-selected 

points. The user can use the environment pane in order to input 

values for the monitor panes (i.e. drawing the search grid 

bounds by clicking on the environment pane).  

Above the module monitor is the safety monitor that 

indicates the user on battery voltage, safety state, and 

autonomous state. 

A. Mission 

The Mission monitor (Fig. 7) displays the boat’s current 

mission tasks, mission and run-block time, mission generation 

and loading, and general mission parameters. The task 

generator can import pre-existing missions or create new 

missions to send to the Mission Planner module. The user can 

generate a new search grid boundary by clicking on the 

environment monitor. 

Fig 8. The Boat tab in the MinionTab UI that displays the status of the 

boat hardware as popups. 

Fig 7. A screenshot of the opening panel of the MinionG Ground Station. On the left is the environment monitor. On the right the mission module monitor is 

currently selected. The Mission module monitor allows the user to communicate and generate missions from the Ground Station for each run. 
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B. Perception 

The Perception monitor (Fig. 9) displays the LIDAR health 

status, mapping parameters and filters, request to log specific 

LIDAR files, and send general perception parameters. This 

monitor is intended for quick health check on the perception 

algorithms and sensors and monitor the applied settings. 

C. Vision 

The Vision monitor (Fig. 10) displays the currently streamed 

images from the boat and submarine cameras, requests for 

specific logs to be taken, and general camera and Vision 

settings. The image incoming will be from the Vision module’s 

Gstreamer tool to send compressed GiGE images over the 

network. The images displayed will be either raw or processed 

with overlaid LIDAR points to verify the cameras are 

calibrated. The images are also selectable to be displayed 

individually or both port and starboard cameras simultaneously. 

D. Controls 

The Controls monitor (Fig. 11) displays the history of all 

states, displays desired and current histories of specific 

controllable states, set gains and autonomy modes, request 

specific logs, command setpoints for control tuning, and view 

the propulsion system’s commands, feedback and detected 

faults.  

This monitor is primarily a verification of control stability on 

the water. This tool will show what the boat wants to do versus 

what it is currently doing. The history keeps the previous 140 

seconds of data to track patterns and give time to verify data.  

 

 

E. Path Planner 

The Path Planner monitor (Fig. 12) sends path settings to the 

Path Planner module, sends waypoints via user-selection, and 

displays the path calculation and error statuses. This monitor is 

primarily for verifying the correct settings are in the planner 

before the planner begins calculating paths. And during testing 

and controls verification, clicking on the environment monitor 

places a waypoint location and waits until the user hits the 

Fig 11. Communicates settings and objectives to the controls module 

and displays Minion's desired movement. 

Fig 9. Communicates and sets perception settings from the Ground 

Station to the Perception module. 

Fig 10.  Displays the streamed images from Minion’s Vision module. 
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“Send Wypt” button below the module monitor. 

 

 

F. Hardware 

The Hardware monitor (Fig. 13) displays histories of the 

propulsion system commands and feedback. The commands 

displayed are the thruster throttle commands and the azimuth 

angles. The feedback histories are the motor RPMs, 

temperatures, and angles; the motor controller temperature, 

voltage, and current draw, and the RC controller’s PWM 

channels. 

 

 

IV. LIGHTED INDICATOR PANEL MODULES 

When operating in the early interim between the 2016 and 

2018 Maritime RobotX Challenges, it was evident that the 

lighted status indicator, as specified by the competition 

organizers, and built into the Minion ASV since 2014, was 

insufficient for operation in bright daylight. Lighted indicator 

stacks are typically designed for use in factory-floor 

environments. As such, they are not readily available in 

configurations that would make them adequately visible in 

outdoors usage scenarios. Team Minion made the decision to 

develop a purpose-built indicator system that would be 

daylight-visible and provide enhanced situational awareness for 

onlookers and persons in the environment immediately 

surrounding the Minion ASV. 

 

A. Construction 

The lighted indicator panel modules are constructed of 

widely available WS2812B individually addressable RGB LED 

modules. These were sourced in the form of pre-assembled 

flexible arrays, which are low-cost and easy to implement for 

this application. These arrays are available in a variety of sizes 

and pixel pitches; the team opted for the narrowest array that 

would still provide ample numbers of pixels for display of 

simple text and graphics. This minimum size leads to panels 

that are less than four inches tall, and vary between seven and 

thirteen inches wide. 

These LED arrays were built into water-resistant housings that 

include thermally conductive material to sink the heat 

dissipated LEDs into the frame of the housing. The housings 

are mounted to the Minion ASV utilizing the picatinny-style 

Fig 12. Communicate settings and statuses to the path planner module. 

Fig 13. Indicates the statuses and commands of the propulsion system. 

Fig 14. Photograph of the indicator panel modules dry-fitted to the 

Minion ASV during a sensor mount overhaul. 

Fig 15. Render depicting indicator panel modules mounted to the 

starboard side of the Minion ASV. 
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attachment points positioned around the periphery of the deck 

(Fig. 14, Fig. 15). The front face of the housing is a matte-finish 

acrylic, which serves to diffuse the light from the LEDs as well 

as to prevent glare from the sun that may affect nearby 

onlookers. 

Power for the LED arrays is provided through a 5V regulator. 

Signal for the panel is driven by an LPC1768 microcontroller, 

which is seated into the SPI expansion port that is built into the 

BUGS safety system and acts as a daughterboard to the BUGS 

system. This provides it with direct information as to the safety 

state of the system and also allows BUGS to pass along 

information from the software running on the Minion ASV 

primary computers. This information determines which of the 

three modes the indicator panels operate in. 

B. Safety Mode 

Safety Mode is the primary operating mode of the indicator 

panels, is the default if it detects the system changing to an 

active, non-emergency-stopped, state. This default behavior 

ensures that the vessel will, when operating on water, display 

the most relevant information to onlookers in its vicinity. This 

information can be displayed as solid colors or as black text 

with colored background, based on configuration. The 

information displayed in this mode includes: 

• Boat is non-engaged (“STOP”, red illumination) (Fig 

16.)  

• Boat is under manual control (“R/C”, amber 

illumination) 

• Boat is under autonomous control (“AUTO”, blue 

illumination) 

 
Fig 17. Indicator panels in team spirit mode 

C. Static-Display Mode 

Static-Display mode is a mode that allows user-set text, 

images, or animation to display on the indicator panel modules. 

These images can be used to demonstrate team-spirit or provide 

an energetic light-show. Static-Display mode is only available 

when the boat is in the emergency-stopped state for greater than 

ten seconds, and the user purposefully opts to enter Static-

Display mode after that time has passed. The BUGS safety 

system then serves as a passthrough between the Minion 

computer systems and the indicator panel controller. If the ASV 

switches to an active state, Static-Display mode will be disabled 

until the conditions of safe-duration and user-input are met 

again (Fig. 17). 

 

D. Enhanced Operation Mode 

Enhanced Operation mode serves as an extension of the 

safety mode that provides further information to onlookers who 

may not have express knowledge of the boat’s intention or 

purpose. In this configuration, the safety system will actively 

listen to the ASV computer systems to determine and display 

the autonomous operations the vessel is performing.  

For the purpose of the Maritime RobotX Challenge, this may 

include the task the ASV is in the process of performing. In a 

more general purpose, this can include what maneuvers the 

vessel may be attempting. This mode can be likened to the 

reverse lights or turn-signals in an automobile that serve to 

provide the autonomous intent of the vessel to those in its 

immediate vicinity. 

REFERENCES 
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Fig 16. The indicator panel display when the boat is in the 

"STOP" state, shown as black text on red background. 
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Appendix B: Submarine  
 

Nate D. Bloom, James J. Hendrickson, Matthew R. Helms, David J. Thompson 

 

 

I. INTRODUCTION 

The 2018 Robot X Challenge introduced an underwater task, 

which requires teams to recover stationary rings on an 

underwater “tree”. While this task would be feasible with an 

attachment to the surface vessel, developing such a system 

would have very little relation to real world research and 

development opportunities. Therefore, the team elected to 

pursue the more challenging but more relevant path of 

deploying an AUV.  

Minion’s deployable AUV, Anchor, is a Blue Robotics 

BlueROV2. Anchor acts as an extension of Minion and is 

controlled as if being driven by a human operator. Minion 

processes the incoming video stream and generates the 

appropriate Mavlink messages to guide Anchor toward the 

rings. 

Since regulations require the underwater vehicle to be 

tethered to the surface vehicle, a simple winch with a single 

cable that serves as the mechanical tether and communication 

line was designed.  

 

 

Fig 1. The Submarine Deployment System with the BlueROV2, Anchor  

II. AUV 

 

Anchor is constructed from a series of milled HDPE plastic 

and six Blue Robotics T200 thrusters. A Pixhawk autopilot on-

board handles controls and a Raspberry Pi manages the video 

stream. The two computers and the other hardware they need to 

operate are mounted in a waterproof acrylic enclosure. Two of 

the T200 thrusters are used to control the depth of the AUV 

while the remaining four thrusters allow for holonomic 

movement in the horizontal plane. The onboard camera 

assembly provides clear high-definition video to Minion in low-

light conditions with the added capability of a servo-based 

tilting mechanism. The Blue Robotics Newton subsea gripper 

is mounted to the AUV to provide the ability to obtain the ring. 

Anchor is powered by a Blue Robotics 4s Li-ion battery that is 

comprised of 16 Samsung 30Q 18650 cells.  The thrusters, 

lights, camera tilt, and gripper are all directly controlled by the 

Pixhawk autopilot running the Ardusub firmware.  

Integration of the BlueROV2 system with Minion was made 

simple with the open-source nature of the Ardusub project. 

Minion controls Anchor by sending a Mavlink message that is 

intended to contain joystick information. Minion is capable of 

relaying these joystick messages directly from the ground 

station computer to Anchor for remote manual control. When 

attempting the ring retrieval task, Minion processes the 

incoming video stream and adjusts the joystick values in the 

Mavlink message. The video is streamed from Anchor to 

Minion using GStreamer. 

 

A. Deployment 

1) Requirements 

1) The system shall deploy and recover Anchor from 

Minion to the water.  

 

2) When Anchor is in the water, the system shall direct 

the tether to the center of the boat on the y-axis.  

 

The intended deployment location from Requirement 2 is 

shown in Fig 2. The intent of Requirement 2 is to minimize the 

likelihood of the AUV hitting Minion’s pontoons during 

retrieval.  

 

 

Fig 2. Anchor at the Y-Axis Center of Minion 

 

3) When completely retrieved, Anchor shall sit on the 

MAST (Minion Autonomous Systems Tray) to the port 

of Atlas (Minion’s Computer System).  

 



ERAU Team Minion 2 of 6 

 

Requirement 3 specifies that the AUV deployment system 

shall attach to Minion in the previously empty spot on the 

MAST. This is the empty area at the bottom right of Fig 3. 

 

 

Fig 3. The MAST with an Open Payload Bay 

 

4) The system shall be able to retrieve Anchor when 40 m 

of tether is unspooled in less than 60 seconds.  

 

5) The system shall be able to contain 50 m of spooled 

tether. 

 

6) The system shall be compatible with 20-60V systems. 

 

Requirement 6 ensures that Minion may continue to operate 

at either 25 V or 50 V nominal. 

 

2) Winch Mechanism 

a) Spool and Tether 

The winch mechanism essentially consists of a geared motor 

and a spool with a tether. The tether is a BlueRobotics Fathom 

Slim, a two-wire cable with internal Kevlar strands for strength. 

This allows it to serve as both the data and physical connections 

to Anchor. The tether has a minimum bend diameter of 1 inch, 

a working strength of 80 lbf, and a breaking strength of 350 lbf. 

This meets the working load of 50 lbf discussed in the Motor 

and Gearbox section. 

To ensure the tether is always contained, regardless of how 

much slack is in the line as it is spooled up, the spool is 

significantly oversized. If the tether was perfectly wrapped the 

tether could hold 173 m of cable, but it is only required to hold 

50 m. From here, the tether is spooled through a pulley to a 

guiding eyelet, discussed below.  

b) Motor and Gearbox 

The motor and gearbox were selected based on the voltage 

and time requirements. To determine the torque needed to meet 

time requirements, a constant retrieval velocity was assumed. 

The force on the tether was simplified to the weight of Anchor 

and the force of drag on Anchor. In reality, Anchor's speed 

would be constantly varying, even with a constant motor 

rotation per minute (rpm), due to the layers of tether on the 

spool changing the effective spool diameter. Therefore, torque 

to pull Anchor at constant speed was determined at the 

minimum and maximum pulley diameters and averaged.  

 Since both the motor and gearing ratio needed to be selected, 

an Excel tool was developed to quickly compare different 

motors and find the optimum gearing ratio. The tool requires 

the spool/tether specifications, and two points on the motor 

rpm/current/torque curve. For any given gearing ratio, it 

assumes the motor curve is linear, finds the motor rpm that 

matches the required torque, and finds the spool time at 

minimum and maximum pulley diameters based on that motor 

rpm and the gearing ratio. It also finds the linear speed to 

calculate drag on the tether. This drag can be iterated to get 

more precise results for a given gearing ratio. Finally, it finds 

the motor’s current draw at that torque to determine if it may be 

putting too much stress on Minion’s electrical system.  

A motor capable of 48 V nominal was desired, as it could 

operate at both of Minion’s voltages without the need for a 

voltage regulator. With these considerations and iterations of 

different motor and gearing combinations with the Excel tool, 

the AmpFlow A28-150-F48 was selected.  Its specifications are 

shown in Table I. 
 

Table I 

AMPFLOW A28 SPECIFICATIONS [1] 
 

Specification Value 

Max Torque (continuous) 7400 

Max Torque (stall) 141.6 lbf-in 

Supply Voltage (nominal) 48 VDC 
No Load Amps 2.5 A 

Kt (in-lbf/Amp) 0.544 

 

 At a gearing ratio of 38:1, the AmpFlow can retrieve Anchor 

in an average of about 37.6 seconds, giving it a factor of safety 

of 1.6 to the requirement. This was determined using the Excel 

tool and is verified in the following steps.  

 

1. The drag force of pulling the sub at 4 ft/s is about 26 

lbf, and the weight of the sub in air is 24 lbf with all 

ballast. Since the sub is positively buoyant in water 

and there is minimal drag in the air, the tether will 

never see both of these forces at the same time. 

Therefore the force on the tether will be assumed to be 

the average of the drag in water and weight in air, 25 

lbf, and doubled to 50 lbf for a factor of safety of 2.  

 

𝑇 = 𝐹𝑑 

𝑇 = (50 𝑙𝑏𝑓) ∗ (1.75 𝑖𝑛) 

𝑇 =  87.5 𝑙𝑏𝑓 ∗ 𝑖𝑛 

 

2. At a gearing ratio of 38:1, this torque is reduced to 2.3 

lbf-in at the motor shaft. The motor current draw and 

rpm may then be found with linear interpolation as 

follows.  
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Table II 

TORQUE-SPEED-CURRENT SPECIFICATIONS 

Torque (lbf-in) Speed (rpm) Current Draw (A) 

0 7400 2.5 

156.25 0 290 

 

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(𝑥 − 𝑥1) 

𝑦 − 7400 𝑟𝑝𝑚 =
0 − 7400 𝑟𝑝𝑚

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0) 

𝑦 = 7293 𝑟𝑝𝑚 

𝑦 − 7400 𝑟𝑝𝑚 =
0 − 7400 𝑟𝑝𝑚

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0) 

𝑦 = 𝟕𝟐𝟗𝟑 𝒓𝒑𝒎 

 

𝑦 − 2.5 𝐴 =
290 𝐴 − 2.5 𝐴

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0) 

𝑦 = 𝟔. 𝟔𝟓 𝑨 

 

3. Since the current draw of 6.65 A is acceptable, the 

spooling time can be calculated from the motor rpm of 

7293 rpm. The 38:1 gearing reduction means the spool 

rotates at 191.9 rpm. The amount of tether let out will 

be assumed to be 90% of the total tether length. Since 

we have 50 m (1968 in) of tether, 90% is 1758 in. In 

this case it is assumed that the spool constantly reels 

in at the minimum diameter. Therefore, the spool time 

is: 

 
1758 𝑖𝑛

𝜋 ∗ 3.5
𝑖𝑛

𝑟𝑒𝑣
∗ 191.9

𝑟𝑒𝑣
𝑚𝑖𝑛

∗
1 𝑚𝑖𝑛
60 𝑠

=  𝟒𝟗. 𝟗 𝒔 

  

Doing the process again for the maximum spool rpm, it is 

found that the motor draws 10.8 A, and spools in 25.37 seconds. 

This confirms the average spool time of 37.6 seconds.   

 Gearing is achieved with VexPro aluminum gears. These 

gears were selected due to their availability and off the shelf 

usability. Most off the shelf gears have plain bores that need to 

be broached to a drive pattern. These VexPro gears are sold with 

a 0.5 inch hex bore, reducing our manufacturing time. Since the 

gears are aluminum, they are also less prone to corrosion than 

steel gears. The gearbox has three reduction stages. The first 

reduction is 48:84, followed by 18:84 and another 18:84. This 

results in an overall reduction of 38.1:1.  

 To hold load while the motor is not powered, a brass ratchet 

and pawl are used. These are driven off the motor shaft to 

minimize the load they must hold. A waterproof servo 

disengages the pawl during deployment, and a torsional spring 

forces pawl engagement during retrieval and storage.  

 

3) Deployment Arm 

To prevent the submarine from hitting Minion’s pontoons or 

frame, the system pulls it from the middle of the platform, as 

shown in Fig 2. However, the empty payload bay on the MAST 

is on the port side. Therefore, a spring-loaded swing arm directs 

Anchor to the center during deployment and guides it to the port 

payload bay during retrieval. Fig 4 illustrates the motion of the 

deployment arm.  

 

 

 

Fig 4. Deployment Arm 

 

 The arm is passive and pulled to center by a constant force 

spring. The tether is fed through an eyelet at the base of the arm. 

When Anchor is lifted to the base of the arm, it catches on the 

eyelet, and the tether pulls against the spring to retract the arm.  

 The desired force from the constant force spring when the 

arm is deployed is enough to keep the tension in the tether from 

pulling the arm away from the center. Determining force from 

the tether on the arm begins with finding the force the tether 

exerts on the eyelet. Refer to Fig 5. 
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Fig 5. Tether Routing Visualization 

 

 Here, the tension in the tether is the weight of the sub, about 

24 lbf. The tether to the sub will be assumed to be vertical, and 

the tether angle between the pulley and the eyelet is 40 

degrees from horizontal. Therefore, the horizontal force trying 

to pull the eyelet away from center is: 

 

24 𝑙𝑏𝑓 ∗ cos(40°) =  18.38 𝑙𝑏𝑓 

 

This force acts as a moment on the deployment arm, which 

must be cancelled by the spring to prevent rotation 

 

 

Fig 6. Deployment Arm as Simple Beam 
 

F ∗ 4 in = 18.38 lbf ∗ 9.64 in 

Σ𝑀 = 0 

𝐹 = 44.3 𝑙𝑏𝑓 

  

 The most powerful constant force spring readily available 

has a loading force of 40.9 lbf and was chosen for the design. 

 

4) Structural Analysis 

a) Deployment Arm 

Maximum loading on the deployment arm occurs when the 

tether and spring are simultaneously pulling on the arm, but the 

arm is not moving. Maximum force from the spring occurs 

when the arm is in the deployed position, as the angle between 

the spring and the arm is nearly 90 degrees (see Fig 4). Since 

the chosen constant force spring creates 40.9 lbf, that load is 

applied to the arm at a conservative angle of 90 degrees. This 

moment is equal to the perpendicular component of the force 

from the tether. To approximate the load from the tether, the 

bearing hole for the eyelet was set as a fixed support. The 

bearing hole for the arm pivot was set as a cylindrical support 

with free tangential movement. Refer to Fig 6 and Fig 7. 

 

 

Fig 7. Static Loading of Deployment Arm 

 

This loading results in very minimal deflection for the arm, 

and a maximum stress of 2,375 psi, giving a factor of safety of 

16.8 to 6061 Aluminum’s yield strength of 40,000 psi. [2] 

 

 

 

Fig 8. Deflection and Equivalent Stress of Deployment Arm 

 

b) Pawl Shaft 

When Anchor is in the payload bay, it is held up by a ratchet 

and pawl on the motor output shaft. This pawl rests on a shaft 

that spans the gearbox as shown in Fig 8. 
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Fig 9.    Gearbox Showing Ratchet and Pawl 

 

The max force this shaft could ever see occurs at the breaking 

point of the tether. The tether’s breaking force is 350 lbf. [3] 

Assuming the tether is at the maximum diameter of the main 

spool, this is multiplied by a 3.5-inch moment arm for 1,225 in-

lbf of torque at the main spool. This is reduced by 38 times due 

to the gearbox reduction, creating 32.2 in-lbf at the motor shaft. 

The pawl shaft is offset about 1.5 inches from the motor shaft, 

so this torque is divided by that moment arm, resulting in 21.5 

lbf on the pawl. This loading was added to a simple FEA model 

as shown in Fig 10. 

 

 

Fig 10. Simple Beam Loading of Pawl Shaft 

 

 This loading does not yield the shaft, creating a max stress of 

14,417 psi, a factor of safety of 4.18 to 302 stainless steel’s 

yield strength of 60,200 psi. [4] This is very minimal deflection 

in the shaft. Refer to Fig 12.  

 

 

Fig 11. Equivalent Stress in Pawl Shaft 

 

 

Fig 12. Deflection in Pawl Shaft 

 

B. Vision 

The submarine utilizes a low-light, 1080p camera with a 110° 

horizontal field of view to capture images. The camera stream 

is then sent from Anchor to Minion for processing. The stream 

is retrieved from the sub in the same manner as vision data is 

sent from Minion to the ground station, as described in 

Appendix K.  

After the sub has been deployed, the submarine’s vision 

module will begin detecting rings in the camera frame. This is 

accomplished using a Faster R-CNN Inception V2 [5] network. 

A further description of this network’s structure can be found 

in Appendix K. This network was trained on an image set of 

2400 samples at various angles, distances, and lighting 

conditions. The results of this training were superb. In a 

validation set of 490 images, the retrained Faster R-CNN 

network achieved a mean intersection over union (mean IoU) 

score of 0.901. An additional detection validation criterion was 

set such that the proposed bounding box could take up no more 

than ¼ of the overall size of the image and that the detection 

confidence needed to be over 70%. Even with this additional 

bound, the network was capable of detecting the ring in over 

90% of the validation images. This was also able to be achieved 

while running at a framerate of ~10 FPS on a GTX 1080. This 

network was very robust to most conditions including distance 
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extremes, oblique angles, and lighting changes, with some 

positive detections shown in Fig 13. 

 

 
Fig 13. Positive detection of four rings in the same frame 

 

 

False positives were seen with the network confusing a 

yellow ring with the yellow tether from Anchor. This may be 

seen in Fig 14. However, this problem only surfaced when the 

tether was wrapped in a loop in front of the camera. This 

problem was solved with the addition of the spool tensioner. 

While the tether could end up in the camera frame while 

attempting the ring recovery task, it would be unable to wrap 

into a ring-like shape due to the constant tension kept on the 

tether. 

 

 
Fig 14. Incorrect detection due to the tether looping in a way that looks like a 

ring 

 

 After positive detection of a ring is obtained, the sub uses the 

rings position in the camera as feedback for a position 

controller. The area of the bounding box is utilized to estimate 

the distance from the sub to the ring. The aspect ratio is used to 

estimate the offset angle of the sub, in both the vertical and 

horizontal directions from the ring. If the ring drops out of 

frame, the sub is commanded to maintain the commands that 

were previously given. This is maintained until positive 

detection is regained or after several empty frames have 

elapsed.  If the system has had too many empty frames then the 

platform will being searching for the ring again.  

 

 

REFERENCES 

 

[1] "Three Inch High Performance Motors," AmpFlow, [Online]. Available: 

http://www.ampflow.com/three_inch_high_performance_motors.htm. 
[2] MatWeb, "Aluminum 6061-T6; 6061-T651," [Online]. Available: 

http://www.matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b

9b54bd7b69e4124d8f1d20a.  
[3] BlueRobotics, "Fathom Slim Tether Specifications," [Online]. Available: 

http://docs.bluerobotics.com/fathom-slim/#specifications. 

[4] MatWeb, "303 Stainless Steel," [Online]. Available: 
http://matweb.com/search/DataSheet.aspx?MatGUID=4041fb2dafde405

49e59f4018b7571b8.  

[5] Ren, S., He, K., Girshick, R. and Sun, J. (2017). “Faster R-CNN: Towards 
Real-Time Object Detection with Region Proposal Networks,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 39(6), 

pp.1137-1149. 



ERAU Team Minion 1 of 3 

 

Appendix C: Bodyguard II Turret  
 

Grady C. Delp, Juan L. Halleran, David J. Thompson  

 

I. INTRODUCTION 

For the 2018 RobotX challenge Team Minion has completely 

redesigned the Bodyguard racquetball turret from the 2016 

RobotX Challenge. Taking the undesirable behavior and 

maintenance requirements of the previous design and 

eliminating them in the updated version, this new design uses 

counterrotating flywheels to propel the racquetball to the target 

and is able to pan and tilt independently from the rest of the 

boat. The system has an onboard Jetson TK1 for vision 

processing and active aiming adjustment, as well as an isolated 

power system, which makes the subsystem capable of operating 

independently from the boat, save two easily pluggable 

connections to the boat’s computer network and E-Stop circuit. 

II. HARDWARE 

Even when only considering the hardware components of the 

system, Bodyguard II serves as a vast improvement over the 

Bodyguard turret from 2016. This can be seen through 

numerous aspects of the design and manufacturing strategy, the 

selection of components, and the overall abilities of the system. 

 

A. Design Strategy 

Bodyguard II serves as a departure from its predecessor in 

nearly every way, with a render displayed in Fig 1. Bodyguard 

I utilized a compressed-air cannon to fire racquetballs, with a 

relatively tight tolerance on a gravity-fed reloading mechanism, 

and brushless gimbal motors for stabilization and aiming.  

 

 
Fig 1. Bodyguard II Racquetball Turret 

 

The compressed-air cannon has been replaced with sets of 

counter-rotating wheels, through which racquetballs are fed by 

a HiTec D646WP waterproof servo. This eliminates many of 

the previous internal complaints of the system, including that it 

required an auxiliary control box to regulate compressed air 

between multiple pressures, and that it required a cumbersome 

method to recharge the compressed air tanks when on-site at the 

competition. By contrast, the counter-rotating wheels are 

powered electrically, and the on-board power system even 

makes it independent from the ASV power supply. This reduces 

the number of connections required when mounting Bodyguard 

II to the payload tray of the ASV to one. While the counter-

rotating wheels do not have a barrel through which the ball 

would achieve increased accuracy, like a compressed-air 

cannon would, it is the experience of several of our team 

members, who have built similar mechanisms in prior robotics 

competitions, that they perform on-par with compressed-air 

methods of firing. 

The brushless gimbal motors used to stabilize and aim the 

2016 iteration of Bodyguard have been replaced with servo-

controlled four-bar linkages. The major unexpected downside 

of the gimbal motors, that caused Bodyguard I to underperform, 

was that the system would need to be almost exactly balanced 

around the center of rotation to operate competently. As 

implemented, there was a large unbalanced load placed on the 

gimbal by the tubing connected the auxiliary control box with 

the turret, which would require more torque to maneuver than 

the gimbal motors can provide. 

To mitigate the issues that were seen with the previous 

gravity-feed mechanism, the hopper that stores racquetballs 

prior to firing is looser and allows them to fall more freely. The 

hopper is illustrated with a cutaway view in Fig 2. 

 

 

 

 



ERAU Team Minion 2 of 3 

 

 
Fig 2. Cutaway view showing operation of Bodyguard II 

 

In the initial design, Bodyguard II was designed to use the 

same Volz DA-30 servo motors utilized by the azimuth 

assembly on the 2018 propulsion system. This was to allow 

better synergy within the Minion ecosystem: one type of servo 

would allow interchangeability of the components and 

decreased quantities of spares. However, due to the long lead 

times that came with those components, they were swapped 

with a high-torque model of servo by HiTec, the D845WP. This 

required the design of 3D printed adapters to affix them to the 

predesigned mounting holes. 

These servos do not necessarily provide the necessary torque 

to drive the turret directly through its ranges of motion. 

However, by synthesizing four-bar linkages to adapt the 180-

degree stroke of the servo to the 60 degrees of stroke in the 

azimuth direction, or the 20 degrees of stroke in the altitude 

direction, the servos possess a mechanical advantage over the 

turret.  

The angle of 60 degrees of azimuth control is to 

accommodate one of the design requirements for Bodyguard II. 

When designing this turret, it was determined that the ASV 

would be able to maintain a heading hold within 30 degrees of 

the desired angle. The center of the 60-degree stroke lies 30 

degrees offset from forward, off the port bow of the vessel. 

With this angle, and the designed location of the turret, the 

racquetballs fired from the turret would have to veer 15 degrees 

off of the firing plane to strike the forward sensor array, which 

may cause physical damage to the sensors. This amount of 

curve was deemed unlikely to occur over the 25cm that stretch 

between the firing position and the forward sensor array. 

The electrical system was designed to be robust, but capable. 

On-board computer vision is accomplished using a Jetson TK1 

SOC development board, with video capture coming from a 

Microsoft LifeCam. This computer was chosen due to the 

availability, and the camera was chosen due to the team’s 

experience in making water-resistant housings for this model in 

the past. Off-the-shelf motor controllers and inexpensive 24V 

DC brushed motors are used for spinning the counter-rotating 

wheels.  

B. Construction 

Bodyguard II was designed to be largely constructed of three 

categories of components: 

• commercially available off-the-shelf components 

• 3D-printed components that can be produced in-house 

• Laser-cut 1/8” aluminum plate 

The small remainder of the components are simple 

geometries and hole-patterns that can be cut or drilled by hand, 

or pieces of bar-stock that can be cut to length by hand. 

All 3D printed components were manufactured in ABS by an 

Ultimaker 2+. ABS was chosen primarily due to its ability to 

withstand weathering in the outdoors.  

C. Electrical Design 

Bodyguard II was designed to be electrically independent of 

the ASV’s power systems. This was to reduce the cost required 

to source components that would be capable of powering the 

turret, including the motor controllers, relays, and voltage 

regulators for the servo and on-board computer and controller 

systems. Based on the battery configuration, the Minion ASV 

may operate between 24-30 and 48-60 volts. Typically, we 

specify regulators that can handle both of these ranges without 

issue, but for the high stall currents that the motors selected may 

draw, specifying relays and motor controllers that could handle 

this wide input voltage range proved to be an expensive 

endeavor. Due to this, power is supplied independently from the 

ASV’s other power systems via a 6S lithium-polymer battery, 

which typically supplies voltages between 22.2 and 25.2V. Due 

to the ability to limit power draw from the motors, and the fact 

that the turret will only be searching for the Detect and Deliver 

target when triggered to do so by Minion, idle power draw will 

be minimized, and having the small independent power supply 

is not considered to be an issue. 

Power supplied to the motor controllers first passes through 

a set of relays that are controlled in parallel, with one relay 

operating each of the two motor controllers. The relays’ coils 

are driven by a low-voltage signal that is in parallel with a safety 

control on the Bodyguard control board and is in series with a 

parallel line of the E-Stop circuit on the Minion ASV. This 

configuration allows the Minion ASV to continue to operate if 

the turret suffers a fault but prohibits the turret from functioning 

if the boat enters an emergency-stop state. It also requires the 

boat be in an active state, or else power will not be supplied to 

the motor controllers. This is similar to how the primary motor 

controllers for the ASV’s thrusters are supplied power. 

The HiTec D845WP servos are driven by an mBed LPC1768 

microcontroller, integrated into a PCB similar to what drives 

the servos for the propulsion azimuth servos.  

All of the electronics are housed within a watertight Pelican 

1170 case. Team Minion regularly uses Pelican cases for 

creating watertight electronics housings, and this is a fitting 

application for that style of enclosure. 
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III. SOFTWARE 

The software of the turret is all on an onboard Nvidia Jetson 

TK1 where it uses a camera to sense the target and then 

commands the servos to place the target in the center of the 

camera view. To calculate the elevation, angle a Minion Core 

message is sent to the perception module to find the distance to 

the target using the onboard boat LIDAR. 

A. Vison 

The turret system uses a Microsoft LifeCam to collect images 

and pass them to a Jetson TK1 that is running OpenCV. A 

sample image from a mockup target is shown in Fig 3. The 

vision uses collects images when the boat aligned with the 

target and will threshold and greyscale the images. It then uses 

a trained Histogram of Gradients (HOG) to find the location of 

the square in the frame. Since we are asking the boat LIDAR 

for distance the vision system is solely dedicated to the x-angle 

of the turret. 

 
Fig 3. Testing mockup 

B. Controls 

The control software to align the turret to the target is 

dependent on the angle found by the vision and the distance 

given by the boats LIDAR. The distance is directly plugged into 

the y-angle of the turret because that distance value is corrected 

for boat pitch and roll in the Perception module. This will keep 

the turret elevation in the correct position to compensate for 

varying distances. The pixel error found on the vision side is 

then used to move the x-angle of the turret center on the target. 

Since the turret is driven by servos all error values can be 

directly plugged into the servos since they have an internal 

position controller. 
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Appendix D: Propulsion  
 

Nate D. Bloom  

 

I. INTRODUCTION 

Following the 2016 RobotX Competition, Minion’s 
propulsion system was re-evaluated, finding three key 
weaknesses. First, the RDP (rim-driven propeller) thrusters 
were nearing their end of life. Second, Minion’s 
maneuverability was inadequate. Third, deploying and 
retrieving Minion required team members to manually raise or 
lower the RDP thrusters. The propulsion system was redesigned 
to address these weaknesses. 

The overall layout of the new propulsion system is similar to 
the old propulsion system. There are two “motor pods,” one at 
the aft of each pontoon. The layout of each pod is shown in Fig 
1. Each motor pod has one azimuthing Copenhagen Subsea VM 
RDP Thruster. This thruster is the newest iteration of the 
Torque-Jet thrusters on the previous system. Azimuthing is 
accomplished with Volz DA-30 Servos. These servos produce 
enough torque at high rotational speeds and are IP67 rated with 
additional testing for saltwater spray. Beaching is accomplished 
with a Linak LA-36 linear actuator, a component the team has 
prior experience with in hydrophone deployment.  

 

 

Fig 1. Azimuth and Beaching Enabled Propulsion System 
 

II. REQUIREMENTS 

Requirements for the updated propulsion system were based 
on the strengths and weaknesses of the 2014-2016 propulsion 
system. The requirements and justifications are as follows. 

 
1) The system shall attach to the WAM-V boat using the 

attachment points detailed in the “RobotX Guide WAM-V 
Propulsion Examples” paper’s section on “Other 
Alternatives.” [1] 

 
Since the WAM-V does not include a propulsion system, there 
is a pivot at the aft of each pontoon. These pivots serve as the 
mounting point for custom propulsion systems and allow these 
systems to pitch relative to the WAM-V pontoons. This 
pitching motion helps to ensure that the propulsion motor 
remains submerged. The motion is illustrated in Fig 2. 
 

 

Fig 2. Propulsion Pitch Relative to WAM-V  
 
2) The system shall be positively buoyant. 

 
Requirements 1 and 2 together ensure that Minion fulfills the 
2018 Maritime RobotX Challenge Rule 3.1.2. [2] The WAM-V 
requires additional buoyancy aft of the pontoon, or it risks 
capsizing.  

 
3) The system shall be compatible with the Torque-Jet RDP 

thrusters, as well as suitable replacement thrusters.  
 
As mentioned in the introduction to this appendix, the Torque-
Jet RDP thrusters were to be replaced. However, the team 
wished to ensure that the propulsion system could run if there 
were delays in acquiring the new thrusters, or if one or both new 
thrusters were to be damaged.  
 
4) The system shall be able to deploy the topmost point of the 

thrusters to a minimum depth of 4 inches below the bottom 
of the WAM-V pontoons.  

 
This depth requirement helps to ensure that the thrusters always 
remain submerged. 
 
5) The system shall be able to deploy the centerline of the 

thrusters to a minimum of 24 inches aft of the mounting 
points.  
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The intent of Requirement 5 is to ensure a sufficient moment 
arm from the thruster to Minion’s CG. This moment arm is key 
to yaw acceleration. 
 
6) The length of Minion including the system shall not exceed 

16 feet.  
 
Florida maritime law requires that vessels larger than 16 feet 
require a floatation device for each person on board, plus an 
additional floatation device [3]. This would require that Minion 
always have a personal floatation device despite being 
unmanned. To avoid complications with this regulation, 16 feet 
was accepted as Minion’s maximum length.   
 
7) The system shall be able to pan the thrusters +/- 85 degrees 

from parallel with the WAM-V pontoons.  
 
170 total degrees of rotation with thrusters that can turn in 
forward or reverse means that thrust can be applied in nearly 
any direction from a top looking down view. While a range of 
motion of +/- 90 degrees would be more advantageous, limiting 
this requirement to 85 degrees improves the availability of off 
the shelf actuators that meet the required specifications.  
 
8) The system shall be able to retract the thrusters from the 

water such that the bottommost point of the thruster is 
above the bottom of the WAM-V pontoons. 

 
Requirement 8 protects the thrusters when trailering Minion or 
landing Minion on a beach. This prevents the thrusters from 
striking the ground or the trailer in these scenarios.  
 
9) The system shall be compatible with 20-60V systems. 
 

Requirement 9 ensures that Minion may continue to operate 
at either 25V or 50V nominal. 
  
10) The system shall be able to operate continuously in the 

marine environment.  
 

The marine environment is especially harsh on mechanical 
systems. Actuators need to be waterproof, and all materials 
need to be exceptionally corrosion resistant.  

III. UPDATED THRUSTERS 

For 2018, team Minion elected to continue with RDP 
thrusters. RDP thrusters have numerous advantages over 
electric trolling motors. First, the removal of a central shaft 
improves efficiency and reduces the likelihood of tangling with 
seaweed, anchor lines, and other debris. RDP thrusters are also 
inherently covered in a shroud and typically produce little 
noise. This minimizes their potential impact on marine wildlife, 
which is particularly important to the team since dolphins 
and/or manatees occasionally approach the ASV. 

The dated Torque-Jet thrusters Minion used in 2016 were 
replaced with Copenhagen Subsea VM asymmetric thrusters. 
These thrusters are based on a similar design but are thoroughly 
updated. Improvements include inlet and outlet shrouds, revised 
propeller profiles, and revised internals. Due to these 

improvements, the Copenhagen Subsea thrusters offer 
improved efficiency, durability, and thrust capability compared 
to the Torque-Jets.  

IV. BEARING MATERIAL SELECTION 

Since all bearings in the propulsion system need to function 
both in and out of a saltwater environment, all bearing surfaces 
are static bushings. Bearings with moving pieces are susceptible 
to salt buildup over time, and underwater bearings do not 
function well out of water.  

Multiple bushing materials were selected, and specific 
bushings were chosen from these selected materials based on 
the availability and cost of each.  

The selected materials are Igus Iglide T-500, Iglide H-370, 
and Iglide J. Their applicable properties are shown in Table 1. 

 

TABLE 1 

IGUS BUSHING MATERIAL PROPERTIES [4] [5] [6] 
 

Specification Iglide T-500 Iglide H-370 Iglide J 
Water Absorption (% 

Weight) 
0.5 < 0.1 1.3% 

Permissible Static 
Surface Pressure (psi) 

21,760 10,880 5,075 

Effective Coefficient 
of Friction 

0.09 - 0.27 0.07 - 0.17 0.06 – 0.18 

 

V. AZIMUTHING 

 Geometry 

As specified in the requirements, the thruster must sit 4 
inches below the nominal waterline. However, there are few 
high torque electric motors that are made to be used 
continuously underwater. Therefore, the azimuthing actuator 
must sit above water and some drive system must connect the 
azimuthing actuator to the thruster. To maximize efficiency, a 
direct drive was chosen. An exploded view of the drive shaft is 
shown in Fig 3. 

Furthermore, the thruster must be retractable from the water 
for beaching. To simplify the direct drive system, the thruster 
and azimuthing assembly function as a single piece that can be 
raised and lowered for beaching.   

 

 

Fig 3. Azimuth Direct Drive Exploded View 
 

To route the thruster cable, the direct drive is achieved with 
a hollow drive shaft. Adapters at the top and bottom of the shaft 
couple the actuator to the thruster. The drive shaft is supported 
by bearings at the top and bottom of the shaft to minimize radial 
force on the actuator. A section view of the top and bottom 
azimuth bearing assemblies is shown in Fig 4.  
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Fig 4. Azimuth Bearing Assemblies 
 

The pieces shown in Fig 3 and Fig 4 are as follows: 
 The orange tube is the hollow drive shaft.  
 The black pieces are the thruster and azimuthing 

actuator. 
 The green pieces are bushings. 
 The red pieces support the bushings. 
 The yellow pieces prevents the drive assembly from 

moving axially.  
 The purple pieces couple the thruster and actuator 

to the driveshaft 
 

 Structural Analysis 

To find the torque requirements for the actuator, the worst-
case scenario must be considered. For azimuthing, that occurs 
when there is a maximum force of friction on the bushings. This 
maximum force of friction most likely results from the 
thruster’s maximum load. To find the friction, the force 
reactions at the bearings during maximum thrust are found. 
These are multiplied by the bushing’s static coefficient of 
friction and the radius of the shaft to be converted to the 
frictional torque opposing azimuthing. This frictional torque is 
what the azimuthing actuator must overcome. The torque was 
found using two methods to verify results: hand calculations 
modeling the system as a simply supported beam and an FEA 
model.  

1) Method 1: Simply Supported Beam 

 

Fig 5. Azimuth Modeled as Simply Supported Beam 
 

Σ𝐹௫ = 0 
B = 20 lb 

 
Σ𝑀 = 0 

(100)(6.125) = 𝐶(15.44) 
C = 39.7 lb 

 
Σ𝐹௬ = 0 

100 + 39.7 = 𝐴 → 𝐴 = 139.7 𝑙𝑏 
 

Σ𝑁 = 20 + 39.7 + 139.7 = 199.4 𝑙𝑏 
𝐹௙ = 𝜇𝑁 = 0.1 ∗ 199.4 = 19.94 𝑙𝑏 

𝜏 = 𝐹𝑟 = 65.8 𝑙𝑏 ∗ 1.1 𝑖𝑛 = 𝟐𝟏. 𝟗 𝒊𝒏 ∗ 𝒍𝒃𝒇 
 
2) Method 2: FEA Reactions 

For this FEA, a full thruster load of 100 lbf was applied to 
the azimuth tube model as shown in Fig 6. The red arrow 
indicates the force, which was applied at the distance of the 
motor centerline to the motor attachment plate. The 3 Igus 
bushings were constrained and monitored for their reaction 
forces.  

 

 

Fig 6. Azimuth FEA Load 
 

This load case resulted in a net 180 lbf reacting from the 
bearing surfaces. With the 0.1 coefficient of friction mentioned 
above, a normal force of 18 lbf is present at the outer diameter 
of the bearings. To overcome this, the thruster must produce 
enough torque to overcome the normal force and the moment 
arm of the shaft radius (1.1 in). Therefore, the actuator must 
produce 19.8 in-lbf of torque. 

 
3) Evaluating the Methods 

Since the methods have very close results, a nominal 
operating torque of 22 in-lbf was used.  
 

 Actuator 

The selected actuator is the Volz DA-30 servo, shown in Fig 
7. A summary of the applicable features of this actuator are in 
Table 2.  
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Fig 7. Volz DA 30 [7] 

TABLE 2 

VOLZ DA 30 APPLICABLE SPECIFICATIONS [7] 
 

Specification Value 
Max Torque (continuous) 70.8 lbf-in 

Max Torque (stall) 141.6 lbf-in 
Supply Voltage Range 24 – 32 VDC 

Max Travel Angle ±85° = 170° total travel 
Environmental Rating IP67 
Salt Water Resistance >100 hrs salt water spray 

 
The environmental rating and supply voltage clearly meet the 

requirements, and the built-in position sensing, limited travel 
angle, and rated salt water resistance are massively 
advantageous features.  
 The Volz also meets the torque requirements, with a factor of 
safety of 3.2 for continuous operation and 6.4 if stalled. While 
this may appear excessive at a glance, there are many factors 
which could increase the resisting friction including drag, 
imperfect alignment, and the surface finish of the driveshaft.  

VI. CHASSIS 

 Design 

Construction of the propulsion system was largely driven by 
the methods easily available to our team. Embry-Riddle has 
CNC mills and lathes, but very limited capability in welding 
thin aluminum or bending sheet metal. Therefore, CNC 
machining was the primary method of manufacture for parts to 
minimize outsourcing and associated costs. Most parts are 
anodized 6061 or 5052 aluminum to prevent corrosion. Where 
higher strength material is required, 316 stainless steel is 
typically used. Parts are joined using aluminum rivets or 316 
stainless steel bolts.  

The main frame of the propulsion system is an assembly of 
gusseted 1 x 1 x .125’’ square 6061 aluminum tube. This 
construction was chosen to allow easy mounting of the 
beaching and azimuth systems. It was also designed to allow 
any number of construction methods to the pod skin. The 
chassis is intended to take the greatest part of all loads, to 
minimize the stress on the skin assembly.  

 

 

Fig 8. Primary Load Bearing Structure 
 

 Structural Analysis 

1) Chassis 
As stated, the motor pod chassis is designed to take the loads 

of the system, independent of the skin structure. FEA was run 
under two full thrust loading cases, assuming full thrust reverse 
and full thrust sideways. Gravity was also included, and 
buoyant forces were added where the pod skin meets the 
chassis. The model and loads are shown in 
Fig 9.  
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Fig 9. Model and Loads on Propulsion System Chassis 
 
The sideways loading resulted in a max stress of about 25 ksi, 

in the bottom pin where the Linak attaches. These stresses are 
well under 316 Stainless Steel’s yield strength of 34.8 ksi. [8] 
The 78.6 ksi stress is a false concentration at an interference 
where the azimuthing tubing meets the upper arm assembly. 
Results are shown in Fig 10 and Fig 11. 

 

Fig 10. Full Sideways Thrust Chassis Stress 
 

The full reverse thrust load case resulted in max stresses in 
the 15-20 ksi range where the Linak mounting plates meet the 
chassis. These stresses are well under 6061-T6’s yield stress of 
40 ksi. [9] 
 

 

Fig 11. Full Reverse Thrust Chassis Stress 
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2) Azimuth Structure 
 

The azimuthing portion of the system was independently 
evaluated under full forwards thrust and full reverse thrust to 
see the loading the Linak would experience.  

 

 

Fig 12. Full Forward Thrust (Left) and Full Reverse Thrust (Right) 
 

Under full forward thrust, the Linak sees about 100 lbf, or 
445 N of force. Under full reverse thrust, the Linak sees about 
150 lbf, or 667 N. This is significantly less than the Linak’s 
static holding force of 3400 N. This analysis also further proves 
the structural integrity of the azimuthing assembly as shown in 
Fig 13 and Fig 14. 

 

 

Fig 13. Forward Stresses (Left) and Reverse Stresses (Right) 

 

Fig 14. Forward Deflection (Left) and Reverse Deflection (Right) 
 

VII. BEACHING 

  

Fig 15. Motor Pod in Beached Configuration 
 

The beaching motion is accomplished with a Linak LA-36 
actuator. The Linak was selected due to an IP-66 dynamic and 
IP-69K static rating, and the team’s experience using a smaller 
Linak in very close proximity to the water. The selected LA-36 
also has 400mm of travel, end stop signals, a max actuation 
force of 2600N, and a static holding force of 3400N. [10] These 
forces are more than sufficient as proven in the azimuth 
structural analysis above.  
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 Skin 

 

Fig 16. Skin  
 

To contain the motor pod’s buoyancy and give visual 
continuity from the WAM-V’s pontoons, most of the motor 
pods are surrounded by a 16.25-inch diameter aluminum skin. 
Aluminum was chosen over fiberglass (which the previous 
propulsion system used) due to fiberglass’s tendency to crack 
and shatter on impacts. This skin is epoxied to the main chassis 
using 3M EC2216 Scotch-Weld Epoxy. Other fastening 
methods such as brackets with rivets were not chosen due to 
increased likelihood of leaks through additional holes.  

Buoyancy is accomplished using a closed cell expanding 
foam fill with Dow Froth-Pak. This ensures that in the case of 
any leaks, the pod will not fill with water.  
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Appendix E: Perception through Object Detection, 

Mapping and Classification 
 

David J. Thompson and Eric J. Coyle

I. INTRODUCTION 

Team Minion designed a perception module to perform 

the necessary functions of object detection, mapping and 

classification. Object detection proceeds through the use of 

four on-board LiDAR sensors whose returns are mapped to 

an occupancy grid for object extraction. The contours of each 

object are then represented by a single planar polygon. The 

Minion platform then maps objects by combining the object 

contours identified from the occupancy grid with those 

previously known to the system using Boolean polygon 

operations. Lastly, objects are classified using unique spatial 

and reflective properties through a priori training and a 

Multi-Variate Gaussian (MVG) classifier.  

The output of this module is used by three corresponding 

modules in operation on the Minion platform. The vision 

module uses object detections to associate object color with 

the objects, the path planning module utilizes the set of 

mapped objects in order to plan and navigate safely, and the 

MinionTask module uses the set of classified map objects as 

cues to complete the individual challenges. 

This appendix contains several excerpts from a pending 

publication with the Journal of Oceanic Engineering. All 

sections using this work are denoted as such. 

II. OBJECT DETECTION 

The following section is an excerpt from a pending 

publication with the Journal of Oceanic Engineering. 

A. Coordinate Transformation 

LiDAR returns, such as those on Velodyne LiDAR 

sensors, are natively provided in a local reference frame in 

spherical coordinates. The elevation angle is a constant, as it 

is related to the fixed mounting of each laser. The rotational 

angle is provided by an encoder built into the sensor, and the 

radius is the distance measured by time-of-flight. It should 

be noted that since water absorbs the laser light, only low 

intensity returns are obtained from the water’s surface. Thus, 

water is easily ignored using an intensity threshold on the 0-

255 intensity output given by the LiDAR sensors.  

When using multiple LiDAR sensors, it is necessary to 

convert their returns into a common reference frame for 

processing. A global frame not only permits the use of 

multiple sensors but makes mapping more straightforward 

and efficient by preventing the need to continuously compute 

point locations in a moving reference frame. To that end, a 

northing-easting-down (NED) frame will be used here. 

LiDAR returns are first converted from spherical coordinates 

to homogeneous coordinates using: 

 

𝑝𝑉𝐸𝐿 = [

𝑅 sin 𝜔 cos 𝛼
𝑅 sin 𝜔 sin 𝛼

𝑅 cos 𝜔
1

],         (1) 

 

where 𝑃𝑉𝐸𝐿  is a single LiDAR return in the Velodyne’s 

reference frame, R is the distance measurement reported by 

the sensor, α is the rotational azimuth angle reported by the 

sensor, and ω is the elevation angle of the laser. This 

transformation is illustrated below in Fig 1 as provided by 

the manufacturer [1]. 

 

 
Fig 1. Coordinate Frame used by Velodyne Sensors [1] 

 

Then, using the known mounting location and orientation 

of each LiDAR, the points are moved into a body Forward-

Right-Down (FRD) reference frame using: 

 

𝑝𝐹𝑅𝐷 = 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿𝑝𝑉𝐸𝐿,        (2) 

 

where 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿  is the homogeneous transform from the 

Velodyne LiDAR’s local frame into the local FRD reference 

frame of the vessel. This frame is represented on the platform 

in Fig 2Error! Reference source not found.. The FRD 

frame is centered between the Minion’s two battery bays, 

which are not shown in Fig 2. 

Similarly, the LiDAR returns are then moved into the 

NED global reference frame using the TORC PinPoint 

GPS/INS reported state of the vessel, i.e. the NED location 

and Euler angles. This is given by: 

 

 𝑝𝑁𝐸𝐷 = 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷𝑝𝐹𝑅𝐷,             (3) 
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where 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷  is the homogeneous transform from the local 

FRD frame to the global NED frame. 

 

 
Fig 2. Platform FRD frame. Top – Platform port-side profile. Bottom – 

Platform rear profile 

 

This approach is only valid for obtaining 𝑝𝑁𝐸𝐷  for a single 

LiDAR return. However, the acquisition rate of individual 

LiDAR returns is over 300kHz, while the vehicle state is 

updated from the GPS/INS at a rate of only 100Hz. Using 

only the most recent vehicle state to determine  𝑇𝑁𝐸𝐷
𝐹𝑅𝐷  could 

lead to significant errors in the calculation of 𝑝𝑁𝐸𝐷 , 

particularly if the vehicle is moving at a high linear or 

angular speed. Since the Velodyne sensors can return a GPS 

time stamp for each LiDAR return, 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷  is uniquely 

determined for each LiDAR return by linearly interpolating 

the vehicle state based on GPS time stamps. It should be 

noted that a full sweep of the scanning LiDAR (i.e. a single 

LiDAR scan) occurs at a rate of 10 Hz. To reduce the 

processing load, all points are retained in a memory until a 

full scan has been completed by each of the onboard 

Velodyne sensors and then fed into the object extraction and 

mapping algorithms. The resulting calibration is accurate to 

approximately 5cm, as shown in the example of Fig 3 where 

the returns from each sensor is represented by a different 

color.  

B. Object Extraction 

Object extraction is performed by first fitting raw LiDAR 

returns from a single scan of each sensor into a 3D occupancy 

grid structure. The occupancy grid is referenced to the global 

frame, but the grid range is limited to tunable area around the 

vessel. Here, the 𝑀𝑥𝑀𝑥𝑁 grid matrix has a size defined by: 

 

𝑀 = 1 + (𝑑/𝛿),                (4) 

and 

 𝑁 = 1 + (ℎ/𝛿),         (5) 

 

 

where the distance 𝑑 is the maximum range covered by the 

occupancy grid, 𝛿 is the resolution of each grid cell, ℎ is the 

height of the grid, and the vessel is located in the center of 

the grid at all times. The occupancy grid indices, denoted 

𝑝𝑖𝑑𝑥, of return 𝑝𝑁𝐸𝐷 , are computed by: 

 

 

 
Fig 3. Top: A sample of LiDAR returns from the port (blue), starboard 

(red), bow (white), and aft (green) Velodyne sensors. This plot shows 

how accurately the sensors are calibrated to the same NED frame. [2]     

Bottom: Satellite view of the same area.[3] Note: None of the 
vehicles or construction equipment were present when the LiDAR 

data was taken. 

 𝑝𝑖𝑑𝑥 = 𝑟𝑜𝑢𝑛𝑑 (
𝑝́𝑁𝐸𝐷−𝑞𝑁𝐸𝐷

𝛿
) +

[𝑀 𝑀 𝑁]𝑇

2
,                 (6) 

 

where 𝑝́𝑁𝐸𝐷 is a 3x1 vector comprised of the first three 

elements of 𝑝𝑁𝐸𝐷 , 𝑟𝑜𝑢𝑛𝑑(𝑥) rounds all elements of 𝑥, and 

𝑞𝑁𝐸𝐷 is the current NED location of the USV. This equation 

can easily be inverted to give NED location for any indices 

in the grid.  

 The approach thus far is limited to using LiDAR returns 

from the most recent LiDAR scan from each sensor. 

However, a single scan may not be sufficient to detect all or 

even most of the geometry of a maritime surface object due 

to gaps between the LiDAR lasers.  

To address this, a temporal decay of grid cells is used, 

which also allows object locations to slowly change over 

time. Similarly, the temporal decay alloys false positives 

from the LiDAR to be removed from the map after a period 

of time. While false positives are rare, certain conditions can 

increase the frequency of false positives, such as white caps 

on the water’s surface, as noted in [4], or increased 

particulates in the water. False positive LIDAR returns could 

then lead to detected objects in areas that could actually be 

traversed. This temporal decay is implemented by first 

tuning 𝜂𝑚𝑎𝑥, which is the maximum allowable age of a 

LiDAR return in milliseconds. When a LiDAR return is used 

to fill an occupancy grid cell, it is assigned a current age of 

𝜂 = 0. For each subsequent scan that is processed, any grid 

cell that is not updated by a newly received LiDAR return 

has its age incremented by the elapsed time since the 
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previous scan was received. Once the age of a grid cell meets 

the criteria 𝜂 > 𝜂𝑚𝑎𝑥, the cell is set to empty. The choice of 

𝜂𝑚𝑎𝑥 is a tuning parameter and for this sensor configuration 

was selected to be 𝜂𝑚𝑎𝑥 = 4000 ms.  

One popular application for LiDAR mapping is the use of 

Octomaps [5]. This method reduces the size of point clouds 

with an octree structure such that 3D maps may be retained. 

However, the retained information of Octomaps is most 

useful when the environment contains stationary objects. 

Even a shoreline changes location between visits as the tide 

may be at a different height. Indefinitely retaining 3D 

information for waterborne objects can be problematic as 

these objects tend to have variations in both position and 

orientation.  

Using a 3D representation of the entire environment is 

likely overly complex for solving the 2D path planning 

problem of most USVs. Realize that while the third 

dimension is useful as classification features (to give features 

such as height and surface area), it is rarely needed for path 

planning. This is because unlike a ground environment 

where there are plentiful overhead obstacles such as foliage, 

signs, lights, and overpasses, a maritime environment 

generally only has bridges that create overhead obstacles. A 

2D map will inherently use less memory than a 3D map, even 

when using specialized 3D structures such as octrees. Thus, 

the grid can be flattened to 2D for navigation purposes. To 

this end, the 3D occupancy grid is first flattened to 2D, 

resulting in a binary matrix. While object segmentation could 

then be performed by clustering algorithms such as 

Euclidean Clustering [6][5] or K-Means [7], these algorithms 

can be computationally intensive and may require the 

number of objects to be pre-determined. 

Here object extraction is performed using the pixel 

following method, from computer vision, which is fully 

described in [8]. Any holes in objects are ignored, so that 

only the outer object boundaries are retained. The 

coordinates of these contours are moved into the NED frame 

using the previously discussed operations in (6), resulting in 

a list of objects 𝐴 = {𝑎1, 𝑎2, ⋯ 𝑎𝑛}. Where each object 

𝑎1 = {𝑥1, 𝑥2, … 𝑥𝑛 , 𝑦1, 𝑦2, … 𝑦𝑛} is defined by a set of NED 

vertices, x is a northing coordinate and y is an easting 

coordinate. While this paper does not focus on classification 

of objects, it should be noted that any 2D or 3D occupancy 

grid cell within the bounds of 𝑎1 and 𝜂 > 0 can be used to 

compute spatial characteristics of the object such as size and 

surface area.   

The pixel following method is not necessary when using 

the 2D occupancy grid for path planning directly. However, 

the complexity in planning increases when using 

voxels/occupancy grids rather than polygons. This approach 

trades the unbounded problem of path planning using the 

voxels/occupancy grid for the bounded complexity of 

combining detected polygons with mapped polygons. This 

additionally opens up the system to methods that don’t utilize 

grid-based planning. 

C. Point Decimation 

While the list of objects 𝐴 has been created, it is beneficial 

to reduce the number of points that represent the polygon 𝑎1 

to improve path planning computations. To accomplish this, 

the Ramer-Douglas-Peucker point decimation algorithm is 

used. This algorithm uses an iterative method to reduce the 

number of points on a curve or polygon to find a similar 

polygon subject to a perpendicular distance constraint [9]. 

This distance is treated as a tunable value, but in general 

should be at least as large as the grid resolution 𝛿. Setting the 

value too high will result in a loss of object resolution to the 

point of distortion.  

 

III. MAPPING 

A. Mapping process 

The following section is an excerpt from a pending 

publication with the Journal of Oceanic Engineering. 

Recall that the list of polygon objects extracted from the 

occupancy grid is defined in the NED frame and denoted 𝐴 =
{𝑎1, 𝑎2, ⋯ 𝑎𝑛}. This set provides a detailed description 

of the local area around the vessel, but vessel operations are 

likely to require an extended map of the area for both path 

planning and tasking. Thus, it is desired to find a set of 

mapped polygon objects at time 𝑡𝑘, denoted 𝐵(𝑡𝑘). While it 

may seem logical to simply union 𝐴 with 𝐵(𝑡𝑘−1) to give 

𝐵(𝑡𝑘) = 𝐴 ∪ 𝐵(𝑡𝑘−1), this is impractical for several reasons. 

First, it is likely that part or all of some objects will be 

already represented in 𝐴 and 𝐵(𝑡𝑘). Second, the polygon 

boundaries of 𝐴 are more current and likely more accurate 

than those of 𝐵(𝑡𝑘−1) for most objects. Lastly, some objects 

may be present in 𝐵(𝑡𝑘−1) and not 𝐴 due to the range of the 

LiDAR sensors.  

To address this issue, a visibility horizon is defined in the 

FRD reference frame and denoted by a polygon boundary. 

The visibility horizon, denoted 𝑃𝐹𝑅𝐷, is said to contain the 

area around the vessel where there is sufficient LiDAR return 

density to trust the current information in 𝐴 over 𝐵(𝑡𝑘−1).  

The vertices of the visibility horizon can then be moved into 

the NED reference frame using the homogeneous transform 

𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 . This results in 

 

 𝑃𝑁𝐸𝐷 = 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷𝑃𝐹𝑅𝐷.            (8) 

 

The portion of each object 𝑎𝑗 ∈ 𝐴 that should be mapped 

is then defined by the intersection of 𝑎𝑗 and 𝑃𝑁𝐸𝐷 . This 

results in a new set 𝐴̃ defined by: 

 

         𝐴̃ = {𝑎̃1 𝑎̃2 ⋯ 𝑎̃𝑛} =
{𝑎1 ∩ 𝑃𝑁𝐸𝐷 , 𝑎2 ∩ 𝑃𝑁𝐸𝐷 , ⋯ 𝑎𝑛 ∩ 𝑃𝑁𝐸𝐷}.    (9) 

 

Similarly, 𝑃𝑁𝐸𝐷 should be removed from each polygon 

𝑏𝑖 ∈ 𝐵(𝑡𝑘−1) using a polygon subtraction. This results in: 
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    𝐵̃(𝑡𝑘−1) = {𝑏̃1 𝑏̃2 ⋯ 𝑏̃𝑚} =

              {𝑏1 − 𝑃𝑁𝐸𝐷 , 𝑏2 − 𝑃𝑁𝐸𝐷 , ⋯ 𝑏𝑚 − 𝑃𝑁𝐸𝐷}.  (10) 

 

The process to determine the current map 𝐵(𝑡𝑘) is then 

simplified to the polygon union of all objects 𝐴̃ with the 

objects in 𝐵̃(𝑡𝑘−1). This is defined by the following polygon 

union 

 𝐵(𝑡𝑘) = 𝐴̃ ∪ 𝐵̃(𝑡𝑘−1).       (11) 

 

1) Assigning Class to Mapped Objects 

While 𝐵(𝑡𝑘) creates a set of polygon objects, with a 

tunable number of vertices for path planning, the current 

formulation does not show how to determine the class of 

objects 𝑏𝑖 ∈ 𝐵(𝑡𝑘). To do this the class of any object 𝑏𝑖 ∈

𝐵(𝑡𝑘) and 𝑏𝑖 ∈ 𝐵̃(𝑡𝑘−1) should be the same at time 𝑡𝑘 and 

𝑡𝑘−1. Similarly, the class should be the same for any 𝑏𝑖 ∈
𝐵(𝑡𝑘) as 𝑎𝑗 if 𝑎𝑗 ∩ 𝑃𝑁𝐸𝐷 = 𝑏𝑖. The only remaining case is 

that 𝑏𝑖 ∈ 𝐵(𝑡𝑘) is the union of one or more objects from 𝐴̃ 

and 𝐵̃(𝑡𝑘−1). In this case the class of 𝑏𝑖 should be set to the 

most prevalent class among the polygons in 𝐴̃ that have a 

non-zero intersection with 𝑏𝑖 ∈ 𝐵(𝑡𝑘).  The result is that any 

polygon in the map 𝐵(𝑡𝑘) will have an associated class if it 

has ever been classified before, and that its class information 

can be re-evaluated only if new sensor data is sufficient to 

change its classification.  

 

B. Object IDs 

For each object in the map, Minion retains object 

information that includes the known extents of the object, the 

classification history, the class label, and an object ID that is 

unique to the object. When a new set of mapped objects are 

found, the extents of the newly discovered objects are 

compared to the previous set of mapped objects to determine 

if the object is new or had been previously identified. 

Mathematically this is implemented by assuming that object 

extents will not change from one map iteration to the next by 

more than 1m in distance. If matching extents are found, the 

classification history and object ID are passed from the 

previous iteration of the map onto the object from the current 

iteration. Object IDs are then used by the task tracker to 

ensure that Minion continues to interact with the same object 

throughout the execution of an individual task and for fusing 

vision data with perception. 

IV. OBJECT CLASSIFICATION 

A. Minion Classification 

Classification is performed on every object in the visibility 

horizon. This is accomplished by extracting a feature vector 

from the 3D and 2D occupancy grid cells. The feature vector 

F is defined as shown below: 

𝐹 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9, 𝐹10]   (12) 

where: 

𝐹1 − 𝑀𝑎𝑥 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹2 − 𝑀𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹3 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹4 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 

𝐹5 − 𝑀𝑎𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 

𝐹6 − 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑙𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑂𝑏𝑗𝑒𝑐𝑡 

𝐹7 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 

𝐹8 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝐴𝑟𝑒𝑎 

𝐹9 − 2𝐷 𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ 

𝐹10 − 2𝐷 𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ  

 

To classify these features the team considered the use of 

two classifiers: a support vector machine (SVM) classifier 

and a Multi-Variate Gaussian (MVG) distribution. While 

both of these classifiers are considered to have low real-time 

computational costs, SVM is typically more robust due to a 

variety of tuning parameters and the assumptions made by 

MVG. The research team did in fact find SVM to give better 

classification performance as evidenced by the table below:    

 
Table 1: Classification accuracies by class, mean classification, 

and misclassification rate 

Class SVM MVG 

Taylor Made Sur-Mark Can Buoy 99.1% 95.9% 

Competition Light Tower 99.8% 99.6% 

Competition Dock 100% 100% 

Competition Detect and Deliver 100% 100% 

Taylor Made A3 Black Buoy 98.4% 90.4% 

Taylor Made A7 Black Buoy 94.6% 83.7% 

Mean Classification 98.7% 94.9% 

Misclassification Rate 1.3% 5.1% 

 

Despite the better classification performance with SVM, 

the SVM implementation does not natively allow for objects 

which the system has not classified to be left as unknown. 

Placing a threshold on confidence and training for unknown 

objects are both possible solutions to this issue with SVM, 

but neither could be completed in time for competition. 

 Instead the MVG classifier, which is itself able to achieve 

a high accuracy for competition objects, is utilized and false 

positives are reduced by requiring a minimum confidence 

before trusting the predicted class label. Furthermore, the 

team utilizes a classification filter to prevent objects from 

switching class based on an infrequent misclassification or 

unknown label. This is implemented by tracking the 

classification history in the form of a counter on each 

possible class label. All objects are initially given the class 

label of “unknown.” Once the object has been classified a 

minimum number of times, and minimum percentage of its 

classification history is of the same object class, then the 

class label is updated. Once the object label is switched from 

“unknown”, the system does not allow re-classification of 

the object. Since identifying objects of a specific class is a 

common cue used by the tasking software, MinionTask, this 

prevents the loss of pertinent cues to task completion.   
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B. Dock Bay Identification 

While Minion Classification is responsible for detecting 

course elements including TaylorMade Buoys, Polyform 

Buoys, the Light Tower, and the Detect and Deliver Target, 

the identification of Docks and Docking Bays creates a 

different challenge. This is due to the size of the dock often 

exceeding the limits of the visibility horizon, and even if the 

dock is detected via Minion Classification additional 

processing is required to identify the location of the Docking 

Bay.  

For this reason, team Minion has developed an algorithm 

to search mapped objects for potential Docking Bays. The 

principles of this algorithm are to look for a concave object 

that can fit the regulation sized docking bay within its 

contents while ensuring the approach to the docking bay is 

clear of obstacles. As such, for each mapped objected (which 

is again represented by a polygon in the map), the algorithm 

follows the series of steps below: 

 

 
Fig 4. Pseudo-Code for detecting a docking bay 

where 𝑤 is the width of a docking bay, 𝑙 is the length of a 

docking bay, 𝐷𝐵 is the set of all known docking bays, and 

𝑟𝑜𝑡𝑧(𝐵𝐸, 𝛼) rotates the polygon 𝐵𝐸 by angle 𝛼 about the 𝑧 

axis.  

 The team did not have the resources to build or transport a 

competition sized dock to our test site. Instead, docks at a 

local marina were used to test the algorithm. A sample result 

from testing at the marina is shown in Fig 5. As shown, after 

tuning 𝑤 and 𝑙 for this test location, the algorithm was able 

to detect docking bays. In a 20 minute driving session, all 

docking bays were discovered that met the tuned width and 

length criteria, with only three false positive results. It should 

be noted that the 3 false positive results were from large, 

partially mapped objects. However, no objects this large will 

occur on the competition course and these false positives 

were eventually ignored by Minion once the full dock object 

had been mapped. Furthermore, the orientation of the 

docking bays was detected to within +/- 15 degrees.    

 

 
 

 
Fig 5. On top, the satellite view of the Halifax Harbor Marina. On 

the bottom is a plot of the objects (yellow) and docking bays 

(blue Minion outlines) detected by Minion. The current 

location of Minion is shown with a cyan line, while the 

visibility horizon is plotted in a dashed cyan line.  
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Appendix F – Design and Implementation of an 

Ultra-Short Baseline Array for Acoustic 

Localization 
 

Stephen P. Cronin, Nicholas D. Moline 

 

I. INTRODUCTION 

The RobotX competition requires the AMS to detect and 

localize underwater pingers at specific frequencies in order 

to complete the acoustic transit tasks. Minion uses four 

Teledyne TC-4013 hydrophones in an ultra-short baseline 

array to detect the acoustic wave fronts. 

The process by which the wave front is converted into a 

source location is known as multilateration. At a high level, 

this approach looks at the time difference of arrival of the 

source to multiple sensors in an array. As the geometry of the 

array is known, this can be used to determine the positional 

offsets of the source to the array. 

 

II. ALGORITHM OVERVIEW 

The process by which a sound pulse is separated from the 

signal being propagated through the environment to the 

desired location information is a multi-step endeavor 

involving both analog and digital signal processing. At a high 

level, the sound wave is converted to an electrical signal by 

an array of hydrophones. This signal is then filtered by 

analog components before being sampled and converted into 

a digital signal. The signal is then further processed with the 

goal of extracting the wavefront of the signal, the portion of 

the signal containing the sound transmitted in the shortest 

path to the sound source. This portion contains the 

information needed to extract the time difference of arrival 

and to calculate the location of the sound source. For the 

RobotX competition, this source is a periodic sound pulse at 

a rate of 0.5 Hz, with a possible frequency of 25-40 kHz at 

each kilohertz increment. 

 

III. LOCALIZATION THEORY 

A. Analog Signal Processing 

In the 2016 competition, during the find-the-pinger task, 

Minion had trouble simultaneously locating the pinger and 

keeping the boat stationary because of the extremely high 

level of motor noise which caused clipping on the analog to 

digital converter rendering the data useless. This was 

remedied with a 5-stage analog bandpass filter on the 

hydrophone signals before being digitally sampled. 

 

B. Digital Signal Processing 

The signal being sampled by the data acquisition device 

(DAQ) accepts a range of frequencies that are limited on the 

low end by the analog filter stage. To filter the target 

frequency out from the signal present, a bandpass 

Butterworth filter is employed. The Butterworth filter was 

selected for the flat response it provides within the passband. 

As the spacing between the frequencies, 1 kHz, is 

significantly greater than the frequency of the noise around 

the target, on the order of Hz, this provided the best response 

for the search frequency while still removing those not 

desired. To ensure that the frequencies outside of the band 

were properly removed, a filter order of 10 was used with a 

band of 150 Hz above and below the target frequency.  

 

C. Wavefront Detection 

To extract the sound signal at the wavefront, a 

spectrogram is taken of the raw signal. The goal of this is to 

determine the region of the signal that contains the full pulse 

itself. As can be seen in Figure 1 and Figure 2, at the location 

of the pulse, a spike occurs in the spectrogram return at the 

frequency and subsequent harmonics. Extracting the region 

of signal corresponding to the spectrogram spike results in 

the pulse itself being extracted from the overall signal. Figure 

3 shows the pulse extracted ready for filtering to extract the 

wavefront.

 
Fig 1.  Raw waveform containing pulse (at t = 0.11s). 

Time (s) 
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Fig 2. Spectrogram of waveform with pulse. 

 
To extract the signal, a bandpass is first applied to the 

pulse to remove all spurious frequencies. It should be noted 

that although the application of a bandpass will produce a 

phase shift on the data, it will be consistent across all 

channels, meaning that the end goal of computing the 

difference of phase will be unaffected.  

 

Applying the bandpass to the pulse results in the signals 

shown in Figure 4. As can be seen, we the combination of 

the phase shift and removing of spurious data has left the 

initial presence of the pulse arriving at the array. The final 

step in the process is to reduce these signals down to as close 

to the initial arrival as possible. 

 

 
Fig 4. Signal pulse after bandpass application. 

 To extract the initial rising edge of the signal, the absolute 

value of the filtered region is taken and then a moving 

average filter is applied to the signal. This serves to capture 

the behavior of the signal. An approximation of the second 

derivative is applied to this signal. When the signal first 

begins to experience a change in slope, the location is 

recorded. A fixed length segment is then pulled out of the 

signal from that location onwards. Figure 5 shows the result 

of this extraction process, taking place at a time of 

approximately 0.00325s (at the red line) in Figure 4. 

 
Fig 5. Signals at the wavefront. 

D. Phase Calculation 

With the wavefront extracted from the signal, the phase of 

each channel of the signal can be computed. Phase is utilized 

over the time of arrival as it allows for the calculation of the 

difference of arrival at any point during the wavefront as 

opposed to at the instant of arrival, which is significantly 

harder to detect. More specifically, the phase difference of 

the signal can be calculated anywhere within the clean 

portion of the arriving signal, whereas using timing requires 

one instant of the signal, one that may not actually be exactly 

captured as the sampling rate of the DAQ is not infinite. 

To compute the phase of the wavefront of each channel, 

begin by taking the FFT of the signal. From this filter the bin 

corresponding to the frequency in question is of interest. As 

indicated before when discussing the bandpass filter applied, 

the order of this filter must be high enough to suppress 

frequencies near the signal that can be of similar magnitudes. 

As Nyquist-Shannon states, for the sampling rate of the 

hardware, 500 kSamples/s, and the size of the wavefront 

detected, 80 samples, the bin size of the FFT can be 

computed.  

An FFT on 80 samples yields half that many bins: 

 
80 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2
= 40 𝑏𝑖𝑛𝑠 

 

Applying Nyquist-Shannon to the sampling rate can 

resolve up to 250 kHz. With this the frequency resolution of 

each bin is computed: 

 
250 𝑘𝐻𝑧

40 𝑏𝑖𝑛𝑠
=

6250 𝐻𝑧

𝑏𝑖𝑛
 

 

This large amount of frequency per bin is what 

necessitates the higher order filter to reduce the chance of 

other frequencies not of interest impacting the bin of interest. 

t = 0.11s 

Fig 3. Pulse extracted from raw signal 
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It should be noted that decimating the data will not help in 

this case, as it produces both a reduction in the number of 

samples and the maximum frequency resolvable, yielding the 

same frequency per bin. 

The bin of interest is the bin corresponding to the 

frequency being produced by the sound source. From this 

bin, compute the frequency of the signal as a means to 

validate removal of the spurious frequencies from the bin.    

 

E. Ultra-Short Baseline Array 

Looking at the mathematics of localization, the fewest 

sensors that can be used to locate a sound source in 3 

dimensions is 4 sensors. The following mathematics shows 

how to convert the time difference of arrive to location. 

 

Assume: 4 hydrophones at (x0,y0,z0), (x1,y1,z1), (x2,y2,z2), 

(x3,y3,z3) and Source at (x,y,z) 

 

The distance from the source to the hydrophone can be 

described by Euclidean distance, where: 

 

𝐷𝑛 = √(𝑥 − 𝑥𝑛)2 + (𝑦 − 𝑦𝑛)2 + (𝑧 − 𝑧𝑛)2        ( 1 )

  

 

For hydrophone 0: 

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0 

For hydrophone 1: 

√(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝐷1 

For hydrophone 2: 

√(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝐷2 

For hydrophone 3: 

√(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝐷3 

 

The time difference of arrival and phase difference of 

arrival are directly related by a constant speed of sound 

throughout the water. Therefore, the distances can be related 

through differences in phase, a more accurate calculation 

than time. 

 

𝛥𝑑1 = 𝐷0 −  𝐷1  and     𝛥𝑑1 =
(𝛷0− 𝛷1)

2𝜋
𝜆        ( 2 ) 

 

Since the phase difference can be measured, all 𝛥𝑑’s are 

known: 

𝐷0 − 𝛥𝑑1 =  𝐷1 

 

Therefore: 

For hydrophone 0: 

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0 

For hydrophone 1: 

√(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝐷0 − 𝛥𝑑1 

For hydrophone 2: 

√(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝐷0 − 𝛥𝑑2 

For hydrophone 3: 

√(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝐷0 − 𝛥𝑑3 

Squaring each side: 

For hydrophone 0: 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0
2 

For hydrophone 1: 

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑1 + 𝛥𝑑1

2
 

For hydrophone 2: 

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑2 + 𝛥𝑑2

2
 

For hydrophone 3: 

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑3 + 𝛥𝑑3

2
 

 

At this point, the location is represented as 4 equations and 

4 unknowns, (x, y, z, D0). To solve for the location, a 

numerical solution must be employed as the terms are not 

linearly separable.  

 

IV. HARDWARE DESIGN 

The hardware of the acoustic localization system consists 

of three main components, the ultra-short baseline array, 

filtering circuits, and the DAQ.  

 

A. Ultra-Short Baseline Array 

The type of array employed is an ultra-short baseline 

array. This allows for some assumptions to be made about 

the behavior of the array.  

Sizing the array is based on the shortest wavelength the 

array would process. For the purposes of this competition, 

this occurs at 40 kHz. The wavelength at this frequency is: 

 
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1480 𝑚/𝑠

40000 𝐻𝑧
= 0.037 𝑚 

 

Half this wavelength is used to determine the maximum 

distance the sensors are spaced from one another to prevent 

there being multiple locations where the same delta phase 

can be produced. In practice, a factor of spacing is employed 

to account for factors such as differences in the speed of 

sound as well as frequency shifts. A distance of 1.8 cm was 

used as the spacing between the sensors. The sensors 

themselves are physically less than half of this spacing with 

a diameter of 9.25 mm, making this array possible.  

 

B. Hardware Filtering 

A hardware filter to removes the 15 kHz motor noise 

before the signals are sampled. The design consists of a low 

pass Butterworth filter with a cutoff frequency of 50kHz 

followed by a high pass Butterworth filter with a cutoff 

frequency of 20kHz. The gain of the system was designed to 

be +20dB. The goal of this gain was to align the output of the 

circuit with the inputs of the DAQ, which accepts a voltage 

of -10 to 10 volts.  

 

C. Digital to Analog Conversion 

Sampling of the signals is done with a four-channel digital 
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to analog device. These signals are sampled at 500 

kSamples/s/channel. This sampling rate puts the resulting 

signals well above the Nyquist criteria for resolving the 

frequencies in question. Sampling on each channel is also 

synchronized, meaning that measurements happen at the 

same time. This is useful in extracting the wavefront of the 

signal and ensures that the FFT bins are referring to the same 

portion of time between sensors. 

 

D. PODS Board 

One of the goals of the platform was to reuse technology 

whenever possible. To this end, the same circuit board used 

to raise and lower the motors for beaching was used to lower 

the hydrophone arm.  

 

E. Sensor Guard 

As the sensors themselves are relatively fragile, with some 

of them even experiencing damage during the 2016 

competition due to a collision with the dock bay, a guard was 

constructed to handle accidental contact instead of the 

sensors themselves. A guard was designed with the ability to 

prevent damage to our sensors at the full range of operating 

speeds experienced and at all likely collision angles. 

Validation of the guard was conducted using finite element 

analysis (FEA). 

 

V. DESIGN CONSIDERATIONS 

A. Multipath 

As with any system involving signals being transmitted 

through and environment, multipath is one of the primary 

sources impacting the phase measurement. Looking at the 

physical system, the closest source of reflection to the array 

describes how long of a usable wavefront will be present. 

The equation below relates the distance of the shortest 

reflection path  to the number of DAQ samples the wavefront 

will have sampled. For this system, a distance of at least one 

meter from any source of reflection was the target, resulting 

in approximately 350 samples, many full phases at the 

frequencies in question.  

 

𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑
∗ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒     ( 3 ) 

 

B. Digital Bandpass 

Filtering the data is a balance between the filter order, 

band size, and time to compute. From these features the best 

suited filter can be determined. It should be noted that these 

features are all inter-related in terms of impact but are treated 

separately as they are distinct from an algorithm perspective. 

Looking at band size, first consider the doppler shift, 

shown below, where c is the speed of sound in the medium, 

f is the observed frequency, fo is the emitted frequency, vr is 

the receiver speed, and vs is the source velocity. Note that for 

this purpose, the operating speeds are significantly less than 

the medium speed. In testing, the boat travels at a maximum 

of 3.5 m/s whereas the speed of sound is approximately 1480 

m/s. The other frequency shift that would widen the band is 

from the inconsistencies in the device producing the 

frequency. Applying doppler shift to the highest produced 

frequency, 40 kHz, this would result in a shift of 

approximately 95 Hz. To account for the fact that additional 

velocity components from water current which can be added, 

the band was sized at 150 Hz. 

 

𝑓 =  (
𝑐± 𝑣𝑟

𝑐± 𝑣𝑠
) 𝑓𝑜                  ( 4 ) 

Filter order effects the falloff of the frequencies outside of 

the band allowed. Based on the competition rules, there is a 

separation of at 2 kHz between channels. As discussed prior, 

this separation is less than the FFT bin width, necessitating a 

more aggressive filter to prevent other sound sources in the 

environment from impacting the frequency of interest. Based 

on experimental testing on the range of frequencies allowed, 

a filter order of 10 was found to provide the necessary falloff 

to prevent other frequencies from presenting an issue. 

 

C. Wavefront Detection 

The methodology described assumes that a wavefront is 

present in the collected data. This however, is not a guarantee 

and as such cases where there is not one present need to be 

rejected. Figure 6 shows a spectrogram return for this case. 

In this implementation, a check is performed on the average 

spectrogram return of the lowest bins, typically containing 

random noise sources, to the bin of interest. If the difference 

in return does not reach a threshold, there is considered to be 

no pulse present. This approach was deemed robust in this 

implementation as hardware filtering takes place in the 

filtering process, drastically reducing the presence of random 

noise in returns.  

 

D. Phase Calculation 

The signal to noise ratio (SNR) is one of the primary 

factors in accurately determining the phase of the signal, and 

as such the location of the source. Various sources of noise 

can contribute; however the primary concern is in frequency 

sources in the same FFT bins as the target frequency. This 

can stem from environmental sources themselves or 

harmonics of sources, a 32 kHz harmonic of a 16 kHz motor 

controller for instance would be one of the available 

localization targets. Through testing, it was found that 

accurate phases could be computed at signal to noise ratios 

of 50 or more. Raw signals can possess more noise than this, 

however after a bandpass filter is applied to the signal noise 

levels are dramatically reduced with signal to noise ratios in 

Fig 6. Spectrogram without pulse present 
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the 100’s. Therefore, noise does not typically prevent the 

algorithm from functioning as intended.  

 

E. Numerical Method 

Each difference of phase that the array can experience 

correlates to one point uniquely in space within the 

hemisphere of the array governs. However, this claim is only 

true in a purely theoretical sense. When a signal is sampled 

into a finite resolution, 16 bits, and multiple algorithms each 

with errors is applied to these signals, the phases are no 

longer unique. As a result, the numerical algorithm can 

converge to multiple solutions. A property of how the errors 

equations converge is that solutions along the same vector 

are the most likely solution that the method will converge to. 

As such, these solutions have the same bearing to the source, 

and can be used for navigational purposes. Other spurious 

results are filtered through outlier analysis over multiple 

readings. 

VI. PERFORMANCE 

Experimentation on the performance of the algorithm took 

place in both field testing as well as simulation. This allowed 

for easy testing of large numbers of use cases along with 

accurate representations of multipath in environments, 

something difficult to model along with the impact that the 

system may have on the localization hardware.  

It should be noted that the data presented is not a 

comprehensive look at the performance of the system. 

Further testing to draw statistically significant conclusions is 

needed. As such, test cases relevant to the competition will 

be evaluated rather than the generalized performance. 

The results presented took place in the university pool. 

This was used as it is a controlled environment that allowed 

for ease in producing repeatable results.  

To test the relevant cases to the competition the 

assumption was made that the boat would be near the vicinity 

of the gate and be able to face hold a heading. Table I shows 

the results of testing at various bearings to the pinger. This 

was selected as the results to present as from a measurement 

perspective it was easier to produce accurately measure. In 

the competition this is sufficient to be able to navigate the 

gates. As can be seen, the deviation of error was relatively 

low, achieving results lower than the accuracy target of ±5 

degrees discussed in the main paper. Certain cases have 

higher standard deviation, but at this time it a conclusion as 

to the cause of this is unknown. Moving forward more testing 

in the same test cases and other frequencies and bearings will 

be conducted to form a better picture of the behavior of the 

system as a whole. 

Table I 

EXPERIMENTAL RESULTS PINGER BEARING 

Case 

(deg) 

Frequency 

(kHz) 

Mean 

(deg) 

Standard 

Deviation 

(deg) 

Samples 

45  40 45.34 7.85 7 

0 40 -0.62 3.93 17 

0 35 0.25 4.62 13 

80  35 79.29 3.20 12 

-90  35 -90.90 5.94 8 
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Appendix G: Minion Core Inter-process 
Communications Library 

 
Timothy A. Zuercher, Patrick N. Currier 

 

I. INTRODUCTION 

Team Minion has historically used National Instruments 
LabVIEW as a basis for the autonomy software package. 
Although somewhat unusual in the robotics community, 
LabVIEW is natively parallelizable, is designed to interact 
with hardware, is capable of calling libraries written in other 
languages, offers excellent debugging tools, and is easily 
accessible to students who are not extremely skilled 
programmers.  

The Minion code base is highly modularized in order to 
spread the responsibility for programming across the team. 
To solve the problem of inter-process communications, the 
team developed the Minion Core communications library for 
LabVIEW. This library emphasizes ease of use while still 
maintaining robustness to component configuration and 
communication interference. 

II. MINION CORE 

Minion Core is designed as a lightweight, master-less, 
auto-configuring, UDP-based communication structure 
featuring support for acknowledgement and sequential 
messages.  

A. Interface Design  

The primary design goal for Minion Core was to produce 
a library that was extremely easy for students to deploy and 
use. Specific interface design goals included: 

1. Simple and automated message generation 
2. Minimal code components  
3. Minimal LabVIEW data wires 
4. Automatic network configuration 
5. Support for parallel loops 
6. Deployment in pre-compiled form 

An example of a complete program capable of sending and 
receiving Minion Core messages is shown in Fig 1.  

 
Fig 1: Example of complete Minion Core program 

Minion Core is distributed as a packed library (the 
LabVIEW equivalent of a dynamic linked library or a shared 
object). Fig 1 shows all of the features of the Minion Core 
interface that are contained in the library. In the top right is 
the MINION CORE block. This block contains all of the 
underlying code that manages message transfer. To use 
Minion Core, a user must simply drop this block on to the 
base diagram and create a Core Settings control that contains 
basic network information. In most cases, default values are 
used, but this control allows for separate Minion Core 
networks.  

Messages are sent and received using auto-generated 
polymorphic blocks. To send a message, the SEND MSG 
block is dropped into the diagram. This block auto-detects 
the correct message to send based on the data type wired. In 
some cases, a user may want to override this setting and can 
do so using the case selector (set to New Path in this 
example). Once the data is entered into this block, it is passed 
to the MINION CORE block using a LabVIEW notifier, 
enters a send loop, and is automatically sent to all known 
destinations for the message ID. On the first call of the send 
block for a particular message, the MINON CORE block 
sends out multicast ping messages to attempt to find a 
destination component for the message. All returned 
components are considered valid destinations until the 
component’s heartbeat drops from the network. 

Receiving a message works similarly using the 
polymorphic RECV MSG block. When first called, this 
block triggers a multicast ping message to find a component 
send the requested message. Once a message has been 
received, the RECV MSG block will return data in the 
correct data type for the message. A separate indicator 
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reports if new data has been obtained or if the block has 
timed out. The RECV MSG block is implemented as 
blocking code, but the timeout can be set to zero if required. 
In the event that no new message has been received, the 
block will return the last received data. 

Messages are configured using a Message Manager that is 
contained within the packed library, Fig 2. This component 
allows a user to define all of the relevant messages by 
creating a LabVIEW cluster containing the data type, 
specifying an ID, and setting default options for timeout, 
acknowledgement, and sequence enforcement. Once these 
options are specified for each message, the Generate 
Messages button triggers automatic generation of the SEND 
MSG and RECV MSG blocks. Individual VIs are generated 
for each message based on a template and then bundled into 
the polymorphic blocks. Regeneration of messages affects all 
components within the project, but messages remain 
backwards compatible unless data types or IDs are changed. 

 

 
Fig 2: Minion Core Message Manager interface 

The final component of the interface design is the STOP 
blocks that allow for control of multiple parallel loops. This 
is often a challenging problem in LabVIEW, but is handled 
in Minion Core via a SEND STOP block (stop sign shaped 
block) that triggers a global stop notifier. This notifier is the 
read by the QUERY STOP block and used to signal 
additional loops to stop execution.  

B. Communications Design 

The Minion Core communications architecture was 
designed with several goals: 

1. Low overhead 
2. Master-less, auto-configuring 
3. Robust to low-bandwidth links 
4. Robust to intermittent links 

To address these design objectives, Minion Core 
communications are based around a UDP multi-cast auto-
configuration and single-cast message sending.  

UDP was selected to reduce overhead relative to TCP, 
which requires retransmission of data to confirm receipt. 
Minion Core adds only a 17-byte header and standard UDP 
header to each message. Messages are allowed in sizes up to 

65519 bytes of data. Multi-part messages are currently not 
supported. The potential weaknesses of UDP are addressed 
through Minion Core features, except for security. 
MinionCore is not inherently secure and requires the network 
to be secured at OSI layer 1. 

At startup, each Minion Core component opens an 
available single-cast UDP port and registers a set of sent and 
received messages from an array of critical messages 
connected to the MINION CORE block. Additional 
messages are registered as the SEND MSG and RECV MSG 
blocks are called in the user code.  

The Minion Core auto-detect module attempts to find 
sources and destinations for each message by sending out 
multi-cast UDP pings containing its network port and arrays 
of message IDs that it is seeking. Other Minion Core 
components listening on the same multi-cast address reply 
with ping messages.  

The component parses these messages and sets up single-
cast UDP connections via a heartbeat message. The 
components each register a new source or destination for the 
relevant message and continue to exchange single-cast 
heartbeat messages at a user-defined interval. If the heartbeat 
is not received for a user-specified amount of time, the 
connection is considered lost and the relevant message 
source or destination is de-registered, triggering additional 
multi-cast pings if no other sources or destinations are 
registered. 

This auto-detect functionality allows for components to be 
easily moved between computers for testing purposes. 
Components can be run on developer laptops for debugging 
with no reconfiguration or additional overhead.  

Robustness to poor communications links is provided by 
the Minion Core acknowledgement functionality. By default, 
messages are transmitted over single-cast UDP with no 
guarantee of delivery. For messages that are sent rapidly and 
where only the latest data is relevant (such as vehicle state), 
this is a desired functionality to minimize bandwidth 
requirements. Data validity for all messages is checked using 
the UDP checksums. 

For messages that may only be sent once or that are 
critical, the user may choose to request an acknowledgement. 
When an acknowledgement is requested, the Minion Core 
code will send the message and then add its ID and 
destination to an acknowledgement queue. The receiving 
component will detect the requested acknowledgement and 
reply with an ACK message containing the header of the sent 
message. The acknowledgement queue will attempt 
retransmission of the message until either the ACK message 
is received or a user-specified timeout is reached. Either way, 
the user will receive a Boolean indicating the status of the 
acknowledgement.  

For messages that may be required to be received in a 
specific order, Minion Core also allows the specification of 
enforced sequence. If this option is selected, the receiving 
component will reject messages that violate the monotically 
increasing sequence number for that message ID. Since 
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sequential messages are required to be acknowledged, this 
functionality will trigger a retransmit of the message from 
the sending component, ideally arriving after the lost 
sequential message (which has also not been acknowledged) 
is received.  

This method reduces bandwidth requirements by requiring 
only minimal ACK messages while allowing for multiple 
retransmission attempts in the case of intermittent 
connections. These types of connections are often 
encountered in long-range wireless environments, such as 
ship-to-shore. The Minion Core acknowledgement and 
sequential enforcement provides increased robustness to 
real-world communications not found in some other 
packages, such as ROS. 

Minion Core also logs all messages sent and received by a 
component. The disk space allocated to this log is 
automatically managed subject to user-specified file and 
total size limits. These messages can then be played back to 
simulate or replay events.  

C. Results 

Minion Core has proven highly successful in practice. 
Students can learn to use the package in only a few minutes 
of training. The auto-configuration functionality enables 
rapid debugging by allowing components to move 
seamlessly between computers and the acknowledgement 
functionality improves robustness to poor communication 
conditions experienced in field operations. 
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Appendix H: Electrical and Power Systems 
 

Jefferson S. Romney, Nicholas R. Middlebrooks 

 

I. INTRODUCTION 

The design of Minion’s electrical system has evolved 

since its first version in 2014. The design follows three main 

tenets. The firs t and most important philosophy is safety 

first. Safety takes priority over function in all cases. After 

safety, but closely related, redundancy is a goal of the 

electrical design. Although not every system has total 

redundancies, most systems critical to the minimal function 

of the vehicle have redundancies. The third major design 

guideline is distributed power regulation. This is a lesson 

learned from the first power system on Minion; where if 

multiple systems were tied to the same power source, when 

one goes down, they all go down, where now if one system 

goes down the others can still run. Every subsystem regulates 

power for itself and there is no central power distribution. 

This follows the principle of redundancy in that no one 

regulator failure can disable the whole boat. This can be seen 

in Fig 1 where each system gets direct battery power. 

 

 
Fig 1. Main Power Distribution on Minion 

II. SAFETY 

A. E-Stop system 

The most important safety system on the boat is the E-Stop 

system. Minion’s e-stop system is designed for utmost 

reliability and redundancy. It allows the boat to be e-stopped 

both remotely and with on-board physical buttons, all 

without software intervention. It also includes a low-level 

software watchdog to monitor the system and allow for 

software-controlled e-stopping as well. 

 

1) On-Board Button system 

Minion is equipped with 4 physical e-stop buttons; one at 

each corner of the boat is located low on the arches for ease 

of access when on the water. These normally closed buttons 

operate in series as an input to the estop circuit. Fig 2 shows 

the circuit of the 4 buttons. 

 

 
Fig 2. E-Stop Button Loop Circuit 

2) R/C Hardware E-Stop 

The primary remote e-stop is operated using a dedicated 

channel on the remote-control system. The signal is received 

as a standard RC PWM signal and is split to both the safety 

system micro-controller and a specialized flip-flop circuit to 

threshold the pulse width, shown in Fig 3. The signal path to 

the microcontroller allows software to monitor the signal 

without interfering with its e-stop functionality. 
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Fig 3. RC Hardware E-Stop Flip-Flop Circuit 

3) Backup External E-Stop Solution 

A consideration that was included in the design of the e-

stop system was the ability to integrate an external 

independent wireless e-stop system such as a TORC 

SafeStop. This is done via a simple active high input. 

4) Software Oversight 

To monitor the hardware e-stop circuit and enable software 

activation of the e-stop, a microcontroller monitors the 

overall e-stop state and the RC signals, and is allocated an 

input to the e-stop system. With these connections the 

microcontroller software provides RC out-of-range 

detection, protects against quick oscillations of the signal, 

and communicates with the higher-level software autonomy 

systems. 

5) Hardware OR-ing Combination  

Each of the inputs to the estop system: buttons, RC, 

external e-stop, and software control are OR-ed using a 

system of MOSFETs. This circuit allows any one of the 

inputs to put the boat into a safe state ensuring that no 

software can interrupt the assertion of e-stop. The schematic 

of this circuit is shown in Fig 4. 

 
Fig 4. E-Stop Control OR-ing Circuit 

6) Dedicated Relay Coil Power Regulators 

The output of the MOSFET circuit enables or disables two 

individual isolated power supplies that each control one of 

the e-stop relays.  

B. Indicators 

During the 2016 competition, it was difficult for the light 

tower indicator to be seen from the shore. To address this 

issue, a new light indication system was developed using 

multiple LED panels.  

These LED panels are NeoPixel brand LED matrix boards 

being controlled from an auxiliary microcontroller attached 

to the control/safety board on Minion. A NeoPixel is an 

addressable RGB LED, and Minion is equipped with 5 

panels of these totaling 1024 pixels, providing an order of 

magnitude increase in indicator brightness over the previous 

tower which improves the visibility at nearly all angles. Each 

panel can draw between 12-25W of power for the LEDs, 

compared to the .75W draw of the old light tower. While this 

provides a simple way to display the E-Stop, R/C, and 

Autonomous modes of Minion, the light panel array can also 

be used to display other information that 5 simple lights 

could not. Instead of just showing light colors, the light panel 

can show colored words to let other vessels know what each 

light mode means  

C. Smart Batteries 

There are four Torqeedo Power 26-104 batteries in use on 

Minion are marine-grade, high-performance, smart lithium-

NiMnCoO2 (LiNMC) batteries. Each battery has an energy 

rating of 2.6 kWh at 25.9V nominal, and are configured on 

Minion as two batteries connected in series and then 

connected in parallel, for a total energy rating of 10.7 kWh 

at 51.8V nominal while running. In this configuration, 

Minion has a continuous runtime of 6-8 hours. The batteries 

are ideal for use in a marine environment due to their robust 

integrated battery management system that protects the 

batteries against overcharging, over depletion, shorts, 

overheating, and polarity reversal. The batteries are also IP67 

rated. 

D. Isolation 

Because of the high power-draw of the thrusters, a spike 

in thruster speed can cause significant fluctuation in the level 

of the battery ground. These fluctuations are very dangerous 

to other components on the boat. To combat this, each of the 

distributed regulators is isolated and communications 

between all the major systems are also isolated. This is 

achieved through isolating grounds; using isolated power 

supplies for stepping down voltage; and isolating data lines 

through magnetics, opto-electronics, and capacitive 

isolation. 

III. REDUNDANCY 

A. Datalinks 

To interface with the main autonomy system, a high-speed 
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5.8 GHz datalink is employed through the use of paired 

Ubiquity Rocket M5 radios to connect to the ground station 

and judges’ tablet. This datalink can be susceptible to 

interference and network faults. To ensure that manual 

control is always available, it is transmitted over a second, 

more reliable, lower-frequency datalink dedicated to RC 

control that can be run on either a 433 or 900 MHz frequency. 

This makes sure that if the connection monitoring the 

autonomy fails, the manual control link can act as a 

redundancy rather than failing with it. 

B. Degrees of Freedom 

With the addition of an azimuth degree of freedom on each 

thruster, some redundancy has been built into the control 

system. With as little as one thruster and one azimuthing 

actuator, the boat can be fully controllable in forward or 

backward motion. To support this redundancy, each 

azimuthing servo has an independent isolated drive circuit 

and power regulator. If any single actuator or thruster fails, 

Minion can still be driven in all but fully holonomic modes. 

For more information see Appendix I. 

C. Independent Computer Power supply 

Inside the Atlas control box are two separate computers 

that act as the computational brain for the Minion platform. 

Each computer has a copy of the runtime software, so in the 

unlikely case that one computer is disabled, the other 

computer could shoulder the load to keep basic autonomy 

functional. To complete this redundancy, each computer has 

an independent custom DC/DC ATX power supply. 

D. Uniform Platform for Actuator Interface 

To control the additional actuators, including the 

hydrophone boom actuator, the Submarine deployment 

system actuators, the racquetball turret, and the motor pod 

azimuth and retraction actuators, a new circuit board was 

designed to meet the needs of all these subsystems. This 

unified design allowed the same circuit board to be used in 

all these applications. The resulting interchangeability 

allows for reduced development time, simple replacement, 

and fewer unique spares needed to keep on hand. 

E. Thruster Controllers 

Since the old Torque-Jet thrusters and the new 

Copenhagen VM thrusters are both compatible with similar 

motor controllers, the custom controller designed in-house 

and the new Piktronik controller are freely interchangeable.  

IV. CHANGES 

A. New Thrusters 

1) No longer prototype thrusters 

The Minion platform for both the 2014 and 2016 

competition used Torque-Jet Rim Driven Propeller (RDP) 

thrusters. Those were some of the first generation of small-

scale RDP thrusters available on the market, and as such 

reached the end of their operational life during late 2017. 

Torque-Jet’s technology has since been purchased by 

Copenhagen Subsea A/S, who then further developed and 

refined, and the product of these improvements has 

succeeded its predecessor as the propulsion unit used on 

Minion. Copenhagen Subsea’s VM thruster was selected to 

replace the old thrusters. 

Like the previous RDP thrusters, the new VM Thrusters 

are 12-pair permanent magnet brushless DC RDPs, making 

them easy drop-in replacements. The new VM thrusters carry 

many advantages over the older Torque-Jets thrusters, 

including: optimized blade design for increased 

hydrodynamic efficiency, more efficient cooling for higher 

sustained load, improved serviceability and maintainability, 

and increased thrust. 

2) Asymmetric Thrust 

The new VM Thrusters are fitted with special nozzles and 

propellers to give asymmetric thrust for greater thrust in the 

forward direction, as most of Minion’s movement, especially 

with azimuthing control, is with the thrusters spinning in the 

forward direction. The asymmetric nozzles can be seen in Fig 

5. 

 
Fig 5. Copenhagen VM Thruster with Asymmetric Nozzles 

3) 3D Printed Propellers can be Easily Replaced 

The Torque-Jet RDP propellers were injection molded in 

very dense and brittle plastic making them heavy, expensive 

to produce, and susceptible to chipping. The VM Thrusters 

mitigated these problems by using 3D printed propellers 

made out of Nylon PA12, allowing for Copenhagen Subsea 

A/S to quickly iterate and optimize the propeller design to 

produce maximum thrust with minimal weight, making the 

propeller easier to accelerate for better response. The 

flexibility of the Nylon PA12 prevents chipping of the edges 

of the blades which can prolong the life of the propeller. A 

major design improvement is replaceable propellers so that 

if one of the propeller blades does break, it can be quickly 

replaced with backup propellers that are on hand. In addition 

to these improvements, the Nylon PA12 retains a high degree 

of resistance to moisture absorption a good chemical 

tolerance. [1] 
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B. New Thruster Controllers 

1) Failure of Old Motor Controllers and Use of New 

COTS Controller 

The new VM Thrusters and the old Torque-Jets are both 

sensor-less brushless DC thrusters that use the same 3-phase 

interface, so it was very easy have them interface into 

Minion’s existing motor controllers that had been custom-

built in-house for the Torque-Jets. However, due to 

complications with the existing motor controller relating to 

higher-voltage operations, the Piktronik SAC1-90A motor 

controllers recommended by Copenhagen Subsea A/S 

proved to be the most favorable choice for primary thruster 

control. The advantages of the COTS motor controller are 

that it is a proven product that can be easily sourced for 

replacements, and the bundled SACTERM software for 

motor interfacing/troubleshooting. The advantages of the 

custom motor control solution include customizability and 

increased feedback which are important for research 

purposes, therefore the compatibility with these is 

maintained as a backup solution. 

The SAC1-90A controllers also include many features 

built into the custom motor controllers such as thermal 

monitoring and protection of the controller, current 

measurement and torque and speed estimation. The included 

SACTERM interface software allows for easy bench testing 

and troubleshooting of the SAC1-90A controllers when 

connected to the VM thrusters, as seen in Fig 6. 

 
Fig 6. SACTERM interface software displaying VM Thruster config data 

2) New Software Interface Over CAN Bus 

The Piktronik SAC1-90A controller, in contrast to the 

older motor controller that was controlled using a simple 

PWM signal, uses a CAN Bus for control and data feedback. 

To interface with this, a CAN transceiver was added to the 

control/safety board which provides motor control signals. 

Both motor controllers are plugged into this CAN bus and 

each is given its own address range.  

C. Pods 

1) Pods Control for Thruster retraction and Azimuthing 

Since the new thruster pod design has auxiliary actuators 

for control of azimuthing and thruster retraction, a new 

microcontroller board was needed for the low-level interface 

and control. The retraction actuator is the Linak LA-36, and 

the azimuth actuator is a Volz DA-30 servo. This led to the 

development of the Pods board to regulate power, control the 

actuators, process actuator feedback, and communicate with 

the safety/control board via an opto-isolated UART 

connection. 

The Linak LA-36 is a 24V brushed motor linear actuator 

with built-in end-stop switches. The Pods board supplies the 

24V power from an on-board converter and controls the 

Linak through a standard H-Bridge driver circuit. 

The Volz DA-30 servos are high-torque servos rated for 

use in salt water, powered through 24V and controlled over 

an optocoupled or standard TTL-level PWM interface. The 

Volz servo draws power from the same 24V regulator as the 

Linak while being directly driven from the Pods board over 

PWM. For greater noise immunity over the long cable run 

near switching motor phase wires, it uses the optocoupled 

interface with approximately 10mA of current in the on state. 

The actual position of the servo is reported back via a single-

ended analog signal.   

D. Hydrophone Filter 

In the 2016 competition, during the find-the-pinger task, 

Minion had trouble simultaneously locating the pinger and 

keeping the boat stationary because of the extremely high 

level of thruster noise which caused clipping on the analog 

to digital converter rendering the data useless. This was 

remedied applying a 5-stage analog high-pass filter to the 

hydrophone signals before being sampled by the ADC. For 

more information on the hydrophones and the filter, see 

Appendix F. 

V. CONCLUSION 

The electrical system, while it is the backbone of the 

Minion platform, is only there to support the platform while 

it completes its various tasks. To be that support, the 

electrical system was updated with respect to its main tenets 

to be safer, more reliable, and having a distributed power 

delivery system in order to work with the various new 

systems added to Minion this competition. It is safer by 

preventing shorts due to the improved signal and power 

isolation and more visible using higher powered indicator 

lights. It is more reliable through increased redundancy with 

backup datalinks, motor controls, and power; a unified 

platform for actuator control; and interchangeable control 

systems for the new thrusters and actuators. It works with 

more subsystems by interfacing with brand new motor 

controllers, thrusters, actuators, servos, and sensors; all while 

making sure they have their own independent power 

supplies. While from the outside it may seem that the 

electrical system hasn’t changed, it has sustained many 

substantial under the hood upgrades to keep Minion at peak 

efficiency.  

 



ERAU Team Minion 5 of 5 

 

REFERENCES 

[1] M. de Wargney, “Nylon PA11, Nylon PA12 & Multijet Fusion 

PA12 in 8 questions,” 3D Printing Blog: Tutorials, News, Trends and 

Resources | Sculpteo, 23-Nov-2017. [Online]. Available: 

https://www.sculpteo.com/blog/2017/09/06/differences-pa11-pa12-

multijetfusionpa12/. [Accessed: 16-Oct-2018]. 

 

 

 

 



ERAU Team Minion 1 of 9 

 

Appendix I: Intelligent Autonomous Mission 

Planning and Execution 
 

James J. Hendrickson, Patrick N. Currier  
 

I. INTRODUCTION 

The MinionTask module is responsible for identifying 

which tasks can be completed, executing the tasks, and 

managing the operating mode of the vessel. Both 

competition and research objectives for the Minion ASV 

require a robust and reliable system to autonomously 

determine the operating mode of the robot based on 

information streaming in from onboard systems and off-

board systems.  

The MinionTask module differs from most competition 

approaches in that it utilizes this information to dynamically 

launch task modules to execute the required tasks as the 

course elements are discovered. The following sections will 

first go into detail how the MinionTask module is structured, 

then analyze the task development, and finally analyze the 

results of the simulation and in-water testing. 

II. GENERAL STRUCTURE 

MinionTask implements a multi-modal mission planner with 

intelligent tasking. User-specified configurable objectives 

and geo-fencing information initialize operations for a given 

task scheme, and the module then searches the defined area 

and acts on information as task elements are discovered. The 

tasking code is implemented as an independently compiled 

library that is launched asynchronously as start conditions 

are met. An overall progress tracker monitors the mission 

state, and launches or terminates behaviors to ensure 

continued mission progress by either accomplishing goals or 

timing out. The structure of this can be seen in Fig 1.  

 

 
Fig 1. General module run-time structure. 

 

A. Mission Configuration 

Configuration files for the MinionTask module come in 

two forms. The first contains the search configuration that 

sets up the search pattern, the geo-fence, and the priority 

search nodes based on the GPS points of interest for each 

task that are provided by the technical directors. The latter 

elements are particularly important as it allows MinionTask 

to prioritize searching areas of the field of known interest 

before searching the remaining nodes based on their 

coverage by the perception modules.  

The other configuration file is the task configuration. This 

XML file contains all the information needed to configure 

each mission. Each configuration file can define any number 

of allowable tasks and contains the task setup parameters and 

the path information to the dynamic task functions.  

When a new task configuration is loaded, it is stored into 

the MinionCore Task Database. For the 2016 competition, 

this database only allowed a single set of task configurations 

to be loaded into the database, as shown in Fig 2.  

Unfortunately, if two or more platforms, for instance the 

ASV and a UUV, were running the same instance of 

MinionTask, they would both receive the same task list 

despite having very different operational objectives.  

This vehicle deployment issue was solved by restructuring 

the database to include a sub-heading before the “task 

configuration” stage whereby the platform could be dictated 

and accessed by name, as shown in Fig 3. This allows not 

only for each independent platform on the network to run its 

own tasks, but also allows for any other platform specific 

information to be accessed from the database. The revised 

structure allows multi-vehicle operation from a single 

instance of MinionTask. 

 

 
Fig 2. Minion task database for the 2016 competition 
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Fig 3. Minion task database for multiple platform configuration. 

 

B. Search Mode 

Upon mission start, the module is assumed to have no 

information of the competition course beyond the search 

configuration file. Every mission begins by entering a search 

mode to discover the task elements until a task is ready to be 

launched.  

While the module attempts to find the required start 

conditions for a task, it will sweep through the field 

following a lawn mower search pattern in an attempt to find 

all of the course elements. If there are priority nodes 

available, then these points would be visited first based on 

each priority node’s Euclidian distance from the boat. As 

new objects are discovered, new priority nodes are 

dynamically placed to ensure that the search explores areas 

near course elements. MinionTask will remain in search 

mode until a new task is launched and will return to search 

mode after the completion of the task. Once the search area 

has been exhaustively explored, MinionTask will return to 

idle. 

 

C. Mission Structure 

After a task configuration file has been loaded, the module 

calls three separate files for each task: initialize, ready check, 

and main. An example of how these files are called for each 

task that is loaded can be seen in Fig 3. 

The initialize function for each task is responsible for 

converting the configuration data into the proper data type. 

For example, in the Navigation challenge, critical 

configuration elements that are configured include the 

tolerance on the start gate buoy spacing, if it is expected that 

color information about the buoys will be available or not, 

and the task timeout. This structure is also readily changed 

to allow for configuration elements to be added or removed 

rapidly during testing. 

The ready check function for each task is responsible for 

checking the perceived field elements to see if any of the 

objects in the perception object list meet the requirements 

needed to start a given task. For example, in the Navigation 

challenge, the ready check is looking for two tall buoys with 

reflectors that are within 10 meters, plus or minus the 

tolerance specification that was loaded by the initialization 

function. Once the start conditions for a task have been 

satisfied, the ready check sends back a flag to the main 

module to declare the task ready as well as an expected task 

completion time, transition waypoint, and expected score. 

The task engine attempts to optimize the overall score by 

selecting ready tasks based on their projected scores. 

Specifically, the expected score for each task is divided by 

the sum of the travel time to the transition point and the 

expected completion time to create a points-per-second 

value. This value can take into account information linkages 

between tasks and probability of completion if this 

information is encoded in the ready check. The engine also 

requires a minimum points-per-second value that decreases 

as overall mission time elapses. The task with the highest 

points-per-second value is selected, the vessel begins driving 

to the transition point, and its main function is activated. 

The main function for each task utilizes behavior 

primitives to accomplish the components of a task after the 

platform has moved into position to begin the task. The logic 

for individual tasks is discussed in Section III. Inside each 

main function, there is also a continuous check of the task 

conditions for validity. In the event that an object used for 

the task that is running is reclassified, the module will stop 

running the task, but will not report that the task has been 

completed. This will allow for the ready check for that task 

to be run again and to trigger the start for the task if the 

required start conditions are met again.  

Once a task main has either exited or timed out, 

MinionTask will return to search mode. Once all tasks have 

been completed, MinionTask will return to idle and await 

operator commands. 

III. TASK STRUCTURE 

A.  Navigation and Control Demonstration 

The demonstration of navigation and control challenge 

logic begins with the ready check for the challenge. The 

ready check function contains the following checks: 

1. Check the object list for two buoys that are within 

10 meters of each other, plus or minus a tunable 

threshold. 

2. Check if these buoys have color classifications. 

a. If one of the buoys is classified as either 

red or green, plot a waypoint that is in the 

center of the two buoys with a heading that 

is that keeps the red buoy to the port side 

of the ASV. 

b. Else, assume that it is on the start gate side 

of the navigation challenge, plot it’s 

starting waypoint between the two buoys, 

assume the buoy that is furthest left of the 
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ASV is the “red” buoy, and plot the 

resulting heading. 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. Clear the start gate by placing a waypoint that is 5 

meters forward of the center of the start gate. 

2. After this point is achieved, plot a waypoint 40 

meters in the same bearing used to cross through the 

start gates. 

3. Begin transitioning to the end point and search for 

the end gates as the ASV transitions to that point: 

a. The end gates must meet the same 

requirement as the start gate of having two 

buoys that are within 10 meters of each 

other, plus or minus a tunable threshold. 

b. The center of the end gate buoys must also 

be within a tunable distance (typically 35 

meters) of the center of the start gates. 

4. If the ASV does detect the end gates, then plot a 

waypoint that is 5 meters past the center of the end 

gates. 

5. If the end gates are not found using the same criteria 

as the start gates, then a further check is preformed: 

a. Minion then looks if there is at least one 

object that is more than 10 meters away 

from the center of the start gates and is 

classified as a tall buoy with a reflector. 

b. If there is at least one object that is 

classified as a tall buoy with reflector and 

another object; classified as a tall buoy 

with reflector, a tall buoy, or an unknown 

object, that is within 10 meters plus or 

minus the threshold, then those two 

objects are assumed to be the end gates. 

6. If there is a single tall buoy with reflector that has 

been classified, is within 15 meters, and at least 5 

meters away from the ASV, Minion will enter into 

what is known as the skewed gate case: 

a. This case assumes that the end gates are 

offset to the left or right of the 

perpendicular bisector of the start gates. 

b. If this case is entered, then the ASV plots 

an intermediate point either to the right of 

the detected buoy if it is on the right-hand 

side of the perpendicular bisector, or vice-

versa for the left side. 

7. As the ASV transits to this new point, it continues 

looking for the end gate in the same manner as 

before: 

a. If the end gates are detected, then the ASV 

plots the remaining waypoint as was 

described previously. 

b. If it fails to detect the end gate before 

reaching the new end point, then the ASV 

assumes that it has successfully crossed 

through the end gates and merely failed to 

classify the other buoy. 

c. If the end gate is not detected in this case, 

then the final predicted score for 

accomplishing this task is reduced. 

8. If the ASV instead made it to the original end point 

without detecting the end gates: 

a. Minion assumes it passed through the end 

gates along the way. 

b. The final predicted score for this task is 

reduced to a greater extent than the failure 

state in the skew case. 

9. This task concludes by reporting back the expected 

score and that the task has been completed. 

 

B. Scan the Code 

The scan the code challenge logic begins with the ready 

check for the challenge. The ready check function contains 

the following checks: 

1. Check the object list for detection of the light tower 

by perception. 

2. Set a waypoint that is 20 meters away from the 

tower, facing the tower: 

a. The bearing of this waypoint with respect 

to the tower is governed by the 

configuration file 

b. Typically set to be either north or south to 

keep the sun from being directly in front or 

behind the camera 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. Move to a waypoint that is 5 meters from the tower: 

a. The heading of the boat at this point is set 

such that either the port or the starboard 

camera has the tower fully in frame. 

b. The side that the boat will point at the 

tower is set in the configuration file. 

2. After this point has been achieved, the boat is 

commanded to heading hold at that waypoint. 

3. The Vision module is signaled to begin scanning the 

sequence. The processes for determining the 

sequence can be found in Appendix K. 

4. The platform will wait for either vision to return a 

sequence or for a configurable amount of time 

(usually 2 minutes) to elapse. 

5. If the sequence was returned, a check is performed 

on the result that was sent from Vision. 

6. If the sequence contains no repeated values or 

unknowns, then this sequence is used. 

7. If the data contains any unknowns in the sequence: 

a.  The module will replace the unknowns 

with a randomly generated result of red, 

blue, or green (making sure to not repeat 

the same color for two consecutive 

values). 

b. Then the task function will reduce the 

expected score for the task based on the 

number of sequence elements that were 

replaced. 
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8. If no sequence is returned or the timeout elapses: 

a. The module will report back a randomly 

generated sequence that has no 

consecutively repeated values. 

b. The expected score for the task will be set 

to the minimum value. 

9. This task concludes by reporting back the sequence, 

the expected score, and that the task has been 

completed. 

 

C. Entrance and Exit Gates 

The entrance and exit gates challenge logic begins with the 

ready check for the challenge. The ready check function 

contains the following checks: 

1. The ASV searches for 4 buoys that meet the 

following criteria: 

a. 4 buoys are checked to see if they fall 

within line that is no more than 40 meters 

long, plus or minus a configurable 

threshold and within a tunable distance 

from the line of best fit. 

b. If these conditions are met, then the center 

point is used as a reference for the start 

waypoint, which is set a configurable 

distance (typically 15 meters) back from 

the start gate. 

2. If 4 buoys cannot be found that meet those criteria, 

then the ASV attempts to see if 3 buoys meet the 

following criteria: 

a. The same check is followed as before, 

except the three buoys must now make a 

line that is no more than 30 meters long, 

plus or minus a configurable threshold, 

within the configurable distance from the 

line of best fit and has one of the end buoys 

classified as a tall buoy with reflector. 

b. The two tall buoys that are not a tall buoy 

with reflector are used as the reference for 

the start waypoint, which is again set back 

the configurable distance from the center 

point of those buoys. 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. At the starting waypoint, the ASV is first 

commanded to heading hold at the same heading as 

the transition point. 

2. MinionTask then communicates to the 

Hydrophones module to begin lowering the 

hydrophone arm and then to start listening for the 

pinger. 

3. MinionTask will wait for either the Hydrophone 

module to return the pinger location or for a 

configurable amount of time (usually 1 minute) to 

elapse. 

4. If the Hydrophone module does return the point 

where the reading was captured and the NED 

bearing of the pinger from the reading point, then a 

check on this information is performed to determine 

which gate to select. 

5. To select a gate, the system compares the NED 

bearing of the pinger at the reading point to the 

NED bearings of each pair of buoys that makes up 

the gates with respect to the reading NED location: 

a. If the pinger bearing falls within any of 

those ranges, then the boat selects that gate 

as the one to go through, reports the gate 

chosen, and sets a waypoint at the 

midpoint of the line between the respective 

buoys. 

b. If the bearing reported does not lie within 

the buoy range of the outer most buoys, 

plus a configurable threshold, then the 

module will guess a gate to go through, 

reports the selected gate, reduces the score 

for this task, and sets the waypoint to that 

gate. 

6. If the timeout occurs, then the module makes a 

guess on which gate the pinger is in, reduces the 

expected score for this task, and sets a transition 

point to be at the center of the selected gate. 

7. Before transitioning to the center of the selected 

gate, Minion Task signals the Hydrophone module 

to raise the hydrophone arm and waits for this action 

to complete. 

8. After the hydrophone arm is raised, the ASV 

transitions to the center point of the selected gate. 

9. After the ASV has made it to the center point of 

whichever gate was selected, an intermediate 

waypoint is projected forward 15 meters from the 

center of the start gate. 

10. After the ASV has achieved this waypoint, it sets an 

end waypoint that is 40 meters from the center of 

the start gate and begins driving towards this 

waypoint. 

11. During this transit, the ASV checks for any objects 

that are within a cone that is mirrored about the 

perpendicular bisector to the start gate: 

a. The angular coverage and length of the 

cone are configurable tuning parameters. 

b. The coverage parameters are typically set 

to be 90° and 50 meters, respectively. 

12. If any tall buoy without reflector that is the correct 

color to be circled is in the cone: 

a. The ASV immediately proceeds to circle 

that buoy in the direction based on the 

configuration file. 

b. Circling of a buoy is done by projecting a 

configurable number of waypoints 

(currently 4 waypoints) in succession in 

either a counter-clockwise or a clockwise 

pattern that is a configurable distance from 

the center point of the object to be circled 

(currently 5 meters in radius). 
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13. If two buoys are detected within the cone, but no 

color information is available, then the module 

refers to configuration file: 

a. A parameter is given for what the left most 

buoy in the cone’s color should be. 

b. Based on this possible color information, 

the ASV then decides which buoy to circle 

based on the proposed color information 

and circles it. 

c. The module then reduces the expected 

score for this task. 

14. If only one tall buoy without reflector is detected in 

the cone by the time the ASV reaches the projected 

end point: 

a. The ASV will proceed to circle that buoy 

in the correct direction.  

b. The module will reduce the expected score 

for this task further. 

c. This is done to ensure that the platform 

will at least have chance at circling the 

correct buoy, even in the event of a failure 

of the perception and vision modules to 

properly detect and classify buoys. 

15. If the ASV reaches the projected end point without 

detecting any buoys within the cone: 

a. No buoys will be attempted to be circled. 

b. The module will reduce the expected score 

for the task to account for the fact that no 

buoy was circled. 

16. This task concludes by reporting back the gate 

number traveled through, the expected score, and 

that the task has been completed. 

 

D. Obstacle Avoidance and Totem Circling 

The obstacle avoidance and totem circling challenge logic 

begins with the ready check for the challenge. The ready 

check function contains the following checks: 

1. Check for three tall buoys without reflectors that are 

in an L-shaped configuration: 

a. This includes checking that any two buoys 

are within a configurable distance 

(typically 40 meters). 

b. This also includes checking that the ‘L’ is 

formed by three buoys that are 90° plus or 

minus a configurable threshold (typically 

20°). 

2. A transition waypoint is set 10 meters away from 

the buoy that is nearest to the ASV at that time and 

projected back 180° from where the opposite corner 

of buoy is or would be (if unidentified). 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. A waypoint is set that is 10 meters past the buoy that 

is opposite the buoy the ASV is currently closest to. 

2. As the ASV transitions to this point, it: 

a. Scans for tall buoys without reflectors that 

are within the area formed by the three 

buoys that define the obstacle field. 

b. Moves to avoid obstacles as they appear. 

Re-planning of the path as new objects 

appear can be found in Appendix L. 

3. If a tall buoy with reflector is classified in the 

obstacle field are and has a color class associated 

with it, the ASV will do one of the following 

actions: 

a. If the buoy color is one that is supposed to 

be circled, then the ASV will proceed to 

circle that buoy. 

b. Otherwise, the ASV will ignore that buoy. 

4. If the ASV detects a tall buoy without a reflector, 

but it does not have a color classification associated 

with it: 

a. The ASV will move to point either its port 

or starboard camera (a configurable 

selection) at the buoy while facing the 

buoy from north or south, whichever is 

closer, to give the best chance at giving 

classifying the color. 

b. If the color is classified, then the ASV will 

perform the checks and routines based on 

its color. 

5. If the ASV get to the end point and there are any tall 

buoys with reflectors that are within the obstacle 

field: 

a. The ASV will circle the buoys in a random 

order. 

b. The module will also reduce the expected 

points for this task. 

6. If the ASV gets to the end point and the are no tall 

buoys with reflectors in the obstacle field, then the 

ASV will reduce the expected score to account for 

the fact that no totems were circled. 

7. This task concludes by reporting back expected 

score and that the task has been completed. 

  

E. Underwater Ring Recovery 

The underwater ring recovery challenge logic begins with 

the ready check for the challenge. The ready check function 

contains the following checks: 

1. Check the object list for detection of a tall buoy with 

reflector that also has been classified with the ring 

buoy color. 

2. Set a waypoint that is 20 meters away from the 

tower, facing the tower: 

a. The bearing of this waypoint with respect 

to the tower is governed by the 

configuration file. 

b. Typically set to be either north or south to 

keep the sun from being directly in front or 

behind the submarine’s camera. 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 
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1. Move to a waypoint that is 5 meters from the ring 

buoy. 

2. After this point has been achieved, the boat is 

commanded to station keep at that waypoint. 

3. The Submarine module is signaled to deploy the 

submarine. The methodology for retrieving the ring 

once the sub has been deployed can be found in 

Appendix B. 

4. The ASV will wait for either the sub to report that a 

ring has been recovered or for a configurable 

amount of time (usually 2 minutes) to elapse. 

5. If the submarine reports that the ring has been 

recovered, then the maximum expected points for 

the task awarded. 

6. If the ring was not recovered, due to the timeout 

elapsing, the following checks will be done: 

a. If a ring was detected, then the module will 

reduce the expected points for this task to 

indicate that no ring was recovered. 

b. If no ring was detected, then the module 

will reduce the expected score for this task 

to account for no ring being detected or 

recovered. 

7. Before completing the task, Minion Task will signal 

the Submarine module to recover the submarine and 

the ASV will wait to finish the task until the 

submarine has been reported as being recovered. 

8. This task concludes by reporting back the expected 

score and that the task has been completed. 

 

F. Identify Symbols and Dock 

The identify symbols and dock challenge logic begins with 

the ready check for the challenge. The ready check function 

contains the following checks: 

1. Check the object list for a dock bay detection. 

2. The ASV then sets a transition waypoint that is 20 

meters out from the dock bay, facing into the bay. 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. The ASV sets a waypoint a configurable distance 

(typically 10 meters) from the entrance to the dock 

bay and pointing such that the port or starboard 

camera (configurable) to have the dock sign fully in 

frame. 

2. The ASV is commanded to hold heading at the 

previous heading and waypoint. 

3. Minion Task signals the Vision Module to begin 

scanning the dock symbol. The methodology for 

determining the dock symbol can be found in 

Appendix K.  

4. The platform will wait for either Vision to return the 

dock symbol or for a configurable amount of time 

(usually 1 minutes) to elapse. 

5. If the symbol was returned and is the correct symbol 

to deliver dock at, then the ASV prepares to dock at 

that bay. 

6. If the returned symbol is not the one to be docked at 

or the timeout elapses: 

a. If the other docking bay has been detected, 

then a waypoint that is 20 meters from the 

bay and pointing towards the bay will be 

set. 

b. If the second docking bay has not been 

detected, then an intermediate waypoint 

will be set 180° from the current docking 

bay to a point that would be approximately 

20 meters from where the bay would be 

expected. 

7. If the ASV has the second bay detected, then it runs 

through steps 1-4 again. 

8. If the symbol was returned and is the correct symbol 

to deliver dock at, then the ASV prepares to dock at 

that bay. 

9. If the returned symbol is not the one to be docked at 

or the timeout elapses: 

a. Assume that you are at the correct docking 

bay to save time in transiting again. 

b. Prepare to dock at this bay. 

c. Reduce the expected score for this task. 

10. If the second bay is not detected by the time the 

ASV reaches the expected second bay location: 

a. Assume the first bay was the one to dock 

at. 

b. Prepare to dock there. 

c. Reduce the expected score for this task 

further to reflect the even lower chance of 

being in the correct bay. 

11. To dock in a bay, the ASV will use one of the 

following modes, which is configurable: 

a. The ASV will set a waypoint within the 

dock bay and send a specific message to 

path planner, telling it that this waypoint 

should be driven to in docking mode. More 

information on this mode can be found in 

Appendix L. 

b. The ASV will enter ramming mode, 

whereby the platform will drive forward 

for a specified period of time, ignoring all 

obstacles perceived to be in the way of the 

ASV’s transit. 

12. After docking, the ASV will reverse out of the bay 

This task concludes by reporting back the expected 

score and that the task has been completed. 

 

G. Detect and Deliver 

The detect and deliver task begins at the triggering of the 

ready check. The ready check contains the following criteria: 

1. Detect and deliver sign is in the object list. 

The ASV then transitions to the starting waypoint before 

entering the main function. For the main task function, the 

ASV performs the following actions: 

1. Move to a waypoint that is 5 meters from the tower. 
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a. The heading of the boat at this point is set 

such that either the port or the starboard 

camera has the tower fully in frame. 

b. The side that the boat will point at the 

tower is set in the configuration file. 

2. After this point has been achieved, the boat is 

commanded to heading hold at that waypoint. 

3. The Vision module is signaled to begin scanning the 

sign. The processes for determining the sign can be 

found in Appendix K. 

4. The platform will wait for either vision to return a 

sequence or for a configurable amount of time 

(usually 1 minutes) to elapse. 

5. If a symbol was returned, a check is performed on 

the result that was sent from Vision. 

6. If the symbol is incorrect: 

a. A waypoint is plotted to the other side of 

the tower. 

b. Steps 2-5 are repeated. 

7. If an incorrect sign is returned or the timeout 

elapses: 

a. The expected score for the task will be set 

to the minimum value. 

8. If a correct sign is found: 

a. The module signals to the Turret module 

to begin searching for the target and to 

deliver the racket balls when ready.  The 

methodology for doing so is found in 

Appendix C. 

b. Tasking waits for either the configurable 

timeout (usually 2 minutes) or a signal that 

the task has been completed. 

9. If the Turret module responded with success: 

a. The expected score is increased. 

IV. EXPERIMENTAL RESULTS 

The need for reliable mission execution lead to extensive 

testing of both the MinionTask module and the tasks it would 

run. This was initially performed in our simulation suite (see 

Appendix J for details) and on the water. The use of the 

simulator allowed for behavior primitives as well as full 

tasks build ups to be tested and debugged before they ever 

saw the water. It also allowed for edge case testing and 

mission information testing to see the impact of unexpected 

conditions on the task completion accuracy. Once on the 

water, the system was tested in practice where information 

such as timeout ranges and noise characteristics could be 

observed and then corrected for to give better completion 

accuracy. 

A. Simulation 

Testing for each task began in the simulator. Here all task 

behavior primitives, such as circling buoys, finding specific 

objects, looking for gates, etc. were tested to ensure high 

repeatability and reliability of these behaviors. Following 

this testing, the missions themselves were tested in the 

simulator to debug logic errors, to test edge cases, and to 

determine reliability when data was unavailable (like vision 

or hydrophones). Additionally, four tasks that were outlined 

above were able to be tested in MinionSim. The tasks that 

were tested in the simulator were the Navigation and Control 

Demonstration, Scan the Code, Start and End Gates, and 

Obstacle Avoidance and Totem Circling tasks. The 

following will detail the results of the simulation testing as 

well as the test cases that were used for each task. 

Table I 

RESULTS OF SIMULATED MISSION TESTING 

Mission  Testing Hours 

Demonstration of Navigation and Control 20 

Scan the Code  20 

Entrance and Exit Gates 10 
Obstacle Field and Totem Circling 8 

 

The navigation task was the most heavily tested task in the 

simulator. Since it is the entry key to all testing that will need 

to be done on the course, it was critical that this challenge 

would be able to be robustly and reliably completed. In the 

simulator, the team was able to test several edge cases such 

as the gates being severely out of spec compared to the listed 

dimensions in the task outline. This included gates that were 

upwards of 40+ meters apart and in skewed configurations. 

Testing in the simulator also allowed testing of the 

platform’s ability to complete this challenge both with and 

without color classification information being applied to the 

buoys. Due to this extensive testing throughout the logic 

development phase, this task was proven to be highly 

reliable. The demonstration of navigation and control task 

was able to accumulate approximately 20 hours of simulation 

testing. 

Testing of the scan the code challenge was fairly limited 

in MinionSim. Without the ability to simulate the sequence 

in a way that would allow the vision module to be tested, 

simulation was limited to checking the movement routines of 

the platform throughout the task. However, this did allow for 

approximately 20 hours of behavior and waypoint logic 

testing to occur in simulation. 

Similar to the Scan the Code task, limitations in 

MinionSim prevented the team from simulating pinger data, 

which would be used to determine the start gate to cross 

through. As a result, the platform would randomly guess and 

then transit through one of the three gates before completing 

the rest of the task.  

Although the pinger could not be simulated, MinionSim 

was more than capable of testing of edge cases and of 

situations that would be out of spec for competition 

requirements. Some of the edge cases tested included 

unevenly spaced gates, gates with the start buoys positioned 

above and below the line of fit, and elongated start gates. The 

robustness of the module was also tested by simulating 

objects with incorrect or missing classifications as well as 

missing color identifications.  

While testing this task, the circling of a specified totem 

was also tested, which allowed for behavior validation for 

the circling that would be done for the totem task. This also 

included testing the behaviors of the platform when only one 

buoy was detected in the region where a totem would be 
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expected for circling. In total, this task received around 10 

hours of simulator testing.  

Simulation testing also showed a clear correlation between 

the amount of sensor data available and the successful 

completion rates of a given task. For the Navigation 

challenge, the availability of color data from vision to 

supplement the perception classes drastically increases the 

successful completion rate. Without this information 

available, the module is highly susceptible to incorrectly 

performing the task. Errors in execution include going 

through the task backwards (i.e. going in through the end 

gate and leaving through the start gate) or going in sideways. 

The latter is an edge case that only occurs when the spacing 

between the start and end gates is close to that of the spacing 

between the tall buoys (including the tolerance). The first 

problem is solved when color information is available 

because the orientation of the red and green buoys is constant 

for the start and end gate. The edge case of going through 

sideways is also solved with color information since it would 

not be able to be selected as a start gate since it would be a 

red-red or green-green pair. Due to a limitation in the 

simulation suite, the only element of the Scan the Code 

mission that could be completed was having the boat go 

through the motions of attempting to read the sequence from 

the tower. It did, however, allow for robustness testing of the 

failed return case whereby vision did not return a valid 

sequence. In the event of a bad sequence, the system was 

supposed to return a sequence that it generated on the spot, 

which it did every time. 

B. In-Water Testing 

As was to be expected, in-water testing revealed logic 

bugs and edge cases that were not initially considered when 

testing each of the tasks. During the time that was available 

for testing each challenge, four of the five tasks were 

attempted on the water. These included the Demonstration of 

Navigation and Control, Scan the Code, Entrance and Exit 

Gates, and Docking challenges. Through all of this testing, 

an impressive 13 hours of in-water tasks testing was 

achieved. 

Table II 

RESULTS OF IN WATER MISSION TESTING 

Mission  Testing Hours 

Demonstration of Navigation and Control 5 

Scan the Code  5 
Entrance and Exit Gates 2 

Docking 1 

 

1) Demonstration of Navigation and Control 

In water testing of the navigation gates challenge showed 

that a number of edge cases needed to be accounted for in the 

task logic. The first of these edge cases discovered was when 

the start gates were skewed. This was solved by adding a 

check in the logic for possible skewed gate conditions. 

However, after this fix was implemented, it was found 

through in-water testing that it causes the boat to plot 

waypoints away from the end gate location in an attempt to 

correct for what it thought was a skewed gate when only one 

of the end gate buoys had been classified. This problem was 

then solved by making the skewed gate case toggleable in the 

configuration file. Real world testing also showed that, due 

to potentially slow classification times, there was a need for 

this task to be able to find both the start and end gates with 

limited, and in some cases incorrect, classification 

information from Vision and Perception. After all of these 

changes were made, the navigation gates challenge was 

again attempted in the water. In total, the demonstration of 

navigation and control challenge received 5 hours of 

successful in-water testing. 

2) Scan the Code 

Testing of the scan the code challenge in real world 

conditions proved to be highly successful. This testing 

showed that scan angles which allowed the sun to appear in 

front of or behind the ASV hindered the sequence accuracy. 

The configuration files were changed to allow the platform 

to approach the tower at more ideal angles. Testing of this 

task also showed that the ideal scanning distance to get fast, 

reliable sequence returns was anywhere from 10-15 meters 

from the light tower, which was also edited in the 

configuration file. Testing of this task proved to be extremely 

successful with approximately 5 hours of successful in-water 

testing. 

3) Entrance and Exit Gates 

The acoustic gates task in-water testing revealed that the 

details about the ASV’s real-world handling characteristics, 

primarily the turning radius of the ASV, that were not 

accurately modeled in the simulation environment. As a 

result, it was determined that the circling radius for the end 

buoys was too tight, so this parameter was added into the 

configuration file so it could be tuned. It was also discovered 

that the intermittent that would be generated after the ASV 

crossed through the gate, but before it went to search for the 

buoy to circle, was too close to the gate buoys. This would 

cause the ASV to make large, circular paths that would often 

put the ASV back through one or more gates while 

attempting to achieve the intermittent waypoint. This was 

then corrected in the acoustic gate task code by making the 

parameter for how far out the waypoint was placed past the 

gates tunable and further out. Unfortunately, the only 

element of this task that was unable to be tested on the water 

was the gate detection via the hydrophones. However, even 

without this element, the ASV was able to successfully detect 

the gates, navigate through a randomly selected gate, find the 

required buoy to circle, and circle that buoy in the correct 

direction. As such, there was nearly 2 successful hours of in-

water testing. 

4) Docking 

 The docking challenge was one that was only able to be 

simulated on the water through hardware-in-the-loop 

simulation of the dock. However, this did allow the logic for 

this challenge to be refined and tested. Through the in-water 

testing that was done, it was determined that the object 

growth that was done by the path-planner in order to ensure 

the ASV did not ram into obstacles prevented the ASV from 

being able to successfully complete the docking challenge. 
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Thus, it was noted that there needed to be a mode in the path 

planner that would ignore obstacles in the way and simply 

drive to a point. It was also noted that a fall back option that 

would be able to directly command the controls module, 

regardless of obstacles in the path, would need to be 

developed or revived. This resulted in the re-emergence of 

the ramming speed primitive, which overrides the path 

planner and sends direct messages to the controls module. 

Both additions would allow the ASV to successfully 

complete the docking challenge. Unfortunately, this resulted 

in only around an hour of in-water testing for the docking 

challenge. 

V. CONCLUSION 

Through testing both in simulation and in-water has 

allowed the tasking behaviors to be not only refined, but also 

made more robust. Through these countless hours of testing, 

many logic bugs, edge cases, and timeouts were able to be 

accounted for in each mission’s structure. Additionally, by 

allowing each task to be dynamically launched as the 

required start conditions were met, the system was set to be 

far more robust to emerging data that streamed in than a 

traditional scripted mission framework would be. Together, 

this allows the Minion Task module to successfully complete 

both research and competition challenges with ease. 
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Appendix J: MinionSim Simulation Suite 
 

Grady Delp 

 

I. INTRODUCTION 

During the 2016 Maritime RobotX Challenge, Team Minion 

recognized its need for a software utility that would enable the 

team to thoroughly tests its higher-level autonomy software, 

without direct access to the Minion ASV. A preliminary version 

of such a software module was developed over the course of the 

competition week, albeit a version that was very limited in 

scope and ability. Due to the utility and usefulness that the 

rudimentary version of the software provided, it was 

determined that a more featureful implementation of the same 

concept would take priority among new additions to the Minion 

ASV software stack. 

II. DEVELOPMENT STRATEGY 

MinionSim was developed with the role of aiding the 

development of the other various software modules, including 

but not limited to the path planner and mission planner. For 

development, the authors for the other software modules were 

considered as the customers for the MinionSim product, and 

were polled for how they thought a bespoke simulation engine 

for the Minion ASV should be implemented. 

While other options for creating a simulation environment 

for the Minion ASV were considered, including making use of 

the publicly available RobotX Gazebo simulation, it was 

decided that effort may be better utilized in creating a purpose-

built simulator for Team Minion. This was chosen over 

developing a method to interface the Gazebo ROS environment 

with the  otherwise LabVIEW-developed MinionCore 

messaging system. 

The early consensus among team members is that MinionSim 

should operate as a virtual source for the types of MinionCore 

messages the sensors on the Minion ASV generate. These 

messages include examples such as the State message, 

containing position, heading, and velocity information, and the 

ObjectList message, containing all objects discovered by the 

LiDAR Perception module. By generating the same messages 

that other modules are expecting to receive from the State and 

Perception modules, MinionSim would effectively act as a 

virtual manifestation of the physical ASV. The other modules, 

MinionTask, Path Planner, and Controls, would then behave as 

if they were being run on water or in a staged competition 

scenario. 

It was determined that the path of development for 

MinionSim would seek to fulfill all necessary functionality, and 

then move on to providing quality-of-life and user-experience 

improvements. This would serve two purposes: first, function 

would be prioritized over form, ensuring undue development 

time and resources were not exhausted on an aesthetically 

pleasing but ill-performing module. Second, it would ensure 

that any problems encountered during development could be 

addressed as core functionality issues, rather than as unintended 

side-effects of what may have been believed to be cosmetic 

tweaks. This prioritization was made on the part of the 

developers who had experienced ill effects from not making 

such a prioritization in the past. 

To accelerate development, code-reuse was encouraged 

when possible. For example, previous work had been done to 

issue controls messages to the ASV’s thrusters utilizing a USB 

gamepad plugged into a PC at the ground monitoring station. 

This was used to simulate the remote-control functionality of 

the ASV in the virtual environment. Other examples include the 

use of subroutines that reorder points into the format of the 

ObjectList message, and blocks of code used for loading XML 

files from predetermined or user-chosen filepaths. 

III. SOFTWARE ARCHITECTURE 

The software architecture of the MinionSim Simulation Suite 

contains two separate modules that are both necessary for 

operation. The first of these modules is MapMaker, and the 

second is the simulation engine, MinonSim.  

A. MapMaker 

MapMaker is used to create the maps that serve as 

configurations of objects and obstacles that get loaded into the 

environment of the virtual ASV. In the MapMaker, users are 

able to select a position on a grid, select the type of object that 

they wish to place there, and add it into the environment. The 

MapMaker user interface (UI) is shown in Fig 1. 

 

 
Fig 1: The default display for MapMaker. 

Objects are placed into a list that is saved in memory, and 

only committed to disk when the entirety of the map is saved. 

This allows the user to modify or delete objects that may have 

been mistakenly placed or configured. Parameters that may be 

configured include the object’s heading, color, and a 

randomization radius, which is used when loading the maps into 

MinionSim. When exporting the objects from MapMaker, they 

are stored to disk as an XML file containing all the parameters 

previously mentioned, as well as Northing and Easting position, 

in meters. 

The objects themselves are also created using MapMaker, 
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using a “Object Class” called “Point”. Creating an object in this 

manner is compliant with the way that the Perception module 

handles objects, which is as a list of boundary points. The 

boundary points must be created sequentially, to create objects 

that are not self-intersecting. In the current implementation, this 

responsibility lies on the user. Objects are also exported as 

XML files only containing the center location of the object, the 

list of bounding points, and the integer that assigns it to an 

ObjectClass, which is standardized across all modules in the 

Minion software stack. 

A more recent development that was added to the MapMaker 

module is the ability to generate an entire RobotX Challenge 

course with a single button. This interface is shown in Fig 2. 

Several parameters are available for configuring these courses, 

including turning specific tasks on and off, the size parameters 

for tasks that have dimensional parameters (Navigation Gates, 

Pinger Gates), what object configuration files to use for each 

task, and the overall course size to place the objects within. 

Each task is randomly placed sequentially, with subsequent 

tasks ensuring that they are placed outside of the bounds of a 

previously placed task. To avoid scenarios with a small course, 

many tasks, and oversized keep-out zones, these checks can 

only run a preconfigured number of times, with the user being 

notified of violations of the keep-out zones. 

 

 
Fig 2: The Course Creation panel built into MapMaker. 

B. MinionSim 

MinionSim, shown in Fig 3, serves as the simulation engine 

that performs the majority of the functions of the MinionSim 

Simulation Suite. This software module is itself programmed in 

a modular fashion, with each submodule running in parallel and 

handling the processing and generation of different data. This 

data is shared among the submodules where necessary and is 

distributed to the other software modules operating in the 

Minion software stack via the appropriate MinionCore 

messages. 

 
Fig 3: MinionSim Simulation Engine 

1) State 

The State MinionCore message was the first message to be 

developed as part of the MinionSim module. The purpose of the 

State message is to broadcast to all other modules the boat’s 

current pose. While this typically includes three-dimensional 

elements of the vehicle, including pitch and roll, and height 

above sea level, the majority of customer modules disregard 

this information as provided by the ASV’s GPS and IMU. As 

such, MinionSim treats the vehicle as a two-dimensional object 

operating on a two-dimensional plane. This served to reduce the 

computational load. 

The modules that performs generation of the synthetic State 

message operate at a 100Hz refresh rate, similar to the update 

rate from the physical ASV’s State module. The positional 

information is generated by integrating the previous position 

with the current velocity to determine what the new position of 

the ASV should be. Similarly, the velocity is generated by 

integrating the previous velocity and the current acceleration, to 

determine the new velocity of the vehicle. Cartesian (XY) and 

angular values for position and velocity are both handled 

similarly in this manner. 

The acceleration of the vehicle is determined by summing the 

forces and moments acting on the vehicle, including thrust and 

drag, and an overall external force which can be considered a 

combination of wind and current. The thrust values also take 

the azimuth angle of the thrusters into account. The external 

force parameter is treated as a user-configured constant, to see 

how the vessel would operate in a high-wind or high-current 

situation.  

2) Perception 

Several MinonCore messages are associated with the broad 

term ‘perception,” including the LiDAR object detection and 

classification module, and the vision used to detect object color. 

For programming simplicity, these are largely handled in the 

same way in MinionSim. 

When a map file is loaded into MinionSim, the series of 

points associated with each object is loaded into memory. 

Sequentially, each set of points is run through a point-in-

polygon algorithm, with the polygon being a seven-sided figure 
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that is configured to be the furthest bounds that the ASV can 

reliably and confidently detect and classify objects. The 

polygon is translated and rotated to always match the position 

and orientation of the virtual ASV.  

Objects that fall outside of the polygon are ignored and held 

in memory to be checked against the polygon in the next 

iteration as the virtual ASV continues to transit the world. 

Objects that lie on the edge of the polygon continue to be 

checked, but the vertices of the shapes that lie within the 

polygon are forwarded to the next portion of this submodule. 

Objects that lie fully within the perception polygon are removed 

from the list of objects to repeatedly check and are also 

forwarded to the next portion of the submodule. 

Following detection within the perception polygon, objects 

are assigned an unknown classification and color. If the object 

is new to the list of objects that have been fully within the 

perception polygon, they are also assigned the current 

timestamp. Once an amount of time, configurable by the user, 

has passed, the object is given its preassigned classification and 

color, which was assigned to the object during the map-making 

portion of the MinionSim workflow. This delay in classification 

is similar to what occurs within the Perception module, as a 

delay occurs before objects are classified, based on the time 

required to classify the object with a degree of confidence. This 

amount of time can be reconfigured based on how long the 

Perception module is typically taking to classify objects; if the 

Perception module is improved to be more robust and confident 

more quickly in the future, this delay can be decreased. 

Future developments of MinionSim intend to tie the addition 

of color to an object’s classification to the heading of the boat, 

as well as an independent range of color identification. This will 

make the simulator more realistic and will not allow the virtual 

ASV to detect color when the cameras are not facing towards 

the object. 

The randomization radius, applied to each object in 

MapMaker, comes into play in the section of MinionSim that 

loads objects into memory prior to checking them against the 

perception polygon. This serves to mildly adjust the parameters 

of the map each time the same file is loaded into MinionSim, 

similarly to how buoys on the water may slightly drift in 

relation to each other between autonomous runs of the ASV. 

Functionally, this requires the thresholds that object positions 

are tested against to be more robust than they might otherwise 

be. 

 

3) Hardware-in-the-Loop 

The hardware-in-the-loop function of MinionSim serves the 

specific purpose of being able to perform on-water tests with 

more course elements than may otherwise be possible to test 

with. This includes allowing the ASV’s control module to be 

tested on-water against multiple virtual docks without needing 

to deploy large numbers of floating platforms, testing heading- 

and position-hold functions when working with a stationary 

virtual object such as the light tower, or creating large virtual 

obstacle fields to test the robustness of the path-planning and 

obstacle-avoidance subsystems. Hardware-in-the-loop mode 

disables the synthesis of state and status messages, and reduces 

MinionSim to a perception ObjectList message broadcaster. 

Other information necessary to operate the simulator is received 

from the applicable sources rather than being generated by the 

simulation itself.  

 

4) Simulator Automation 

One feature of MinionSim that has not seen much use in 2018 

is the ability to trigger it to run automatically, with a specific 

MinionCore message that contains several parameters for 

operation. These include all the user-configurable parameters 

that can be set at run-time, as well as the map that should be 

loaded prior to running the simulator. The intention of this 

functionality is to permit unattended batch-testing of many 

simulations that could be analyzed for success rates and 

determine what parameters of other modules may require 

tweaking. However, the module necessary to run batch-testing 

that would trigger this functionality in the simulator was not 

finished during the 2018 competition cycle. This functionality 

will likely be revived in preparation for future RobotX 

competitions. 

 

5) On-Rails Path Following 

When testing the mission planning software, it was 

discovered that the virtual ASV did not behave exactly as the 

physical ASV did on-water. This is likely due to the 

simplifications that were made to the physics model that the 

virtual ASV operates on. Because of this, it was seen necessary 

to implement a no-error path-follower in MinionSim. This 

feature, togglable by the user on a per-run basis, causes the 

virtual ASV to follow the path generated by the path-planner on 

a node-by-node basis. This speed is also tunable, allowing 

testing of long-duration operations, such as search patterns, to 

be condensed, quickening the pace of development. 

IV. EXPERIMENTAL RESULTS 

Throughout the preparations for the 2018 RobotX Challenge, 

MinionSim has achieved strong positive feedback and high 

levels of use, proving it was a worthwhile addition to the 

Minion software stack.  

For the purposes of testing Mission Planner, it achieved close 

to 250 hours of testing. This resulted in the statistics and success 

rates listed in Appendix   

For the purposes of testing and debugging the path-planning 

and controls modules, MinionSim achieved close to 50 hours of 

testing. This resulted in higher confidence in the simulator, 

more robust path-planning algorithms, and more productive on-

water controls and path-planner testing. 
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Appendix K: Vision  
 

James B. Near III, David J. Thompson 

 

I. INTRODUCTION 

The 2018 vision module was desired to integrate deep 

learning in a manner that would allow users to rapidly deploy 

trained network models to the Minion platform, as well as 

other GPU-enabled Windows machines. This is due in part 

to the difficulties integrating deep learning into the 2016 

platform, particularly with providing a real-time pipeline for 

image capture and inference. The prior implementation was 

also only capable of running a single neural network and 

could not be easily deployed to other machines. The 2018 

implementation utilizes a number of networks for 

completing the scan the code, circle the totem, detect and 

deliver, and docking challenges.  

 

A. Design Strategy 

The Minion ASV was designed to support multi-modal 

approaches for object detection and classification. Minion 

uses the its array of LiDAR sensors for initial object 

detection. LiDAR is subject to low amounts of noise and has 

high position accuracy relative to the camera, making it a 

more reliable sensor for object detection. Furthermore, it is 

more computationally efficient to detect objects with the 

LiDAR than using a deep neural network.  

However, to support classification, it is necessary to add 

cameras to retrieve color and shape information. To enable 

the use of cameras as a secondary sensor, it is necessary to 

allow multiple neural networks to run simultaneously. For 

example, the LiDAR may detect a totem in the course, but 

must rely on the camera to determine the color to be red. One 

network may be assigned solely to determine color given a 

cropped image of an object. Similarly, a different neural 

network may be used to determine the shape and color of the 

docking bay signs. Lastly, in order to support a failure of the 

LiDAR sensors, it is desired to have a large object detection 

neural network for determining object position and 

classification.  

To that end, Team Minion has chosen to train several deep 

neural networks with the TensorFlow framework to enable 

object detection and classification. A neural network may be 

turned on or off depending on the current state of the vehicle 

in the course or the current failure mode of the LiDAR 

sensors. The following sections will explain the individual 

network or networks used to complete each of the tasks in 

the 2018 challenge. 

II. PROCESS 

A. Overview 

Vision was used on three main tasks: determining the 

sequence of a light tower, classifying different colored 

buoys, and classifying instructional signs on the dock. All 

benchmarked tasks in this section were achieved by using the 

software and hardware listed in Table I. 

 

Table I 

VISION HARDWARE AND SOFTWARE 

Software Hardware 

Cudnn 7.5.1 CPU Intel Xeon E5-2620v3 6-Core 

2.4Ghz  

TensorFlow 1.5 GPU Nvidia GTX 1080 

Cuda 8.0 RAM 32GB DDR4 ECC Memory 

Opencv 3.4.1 Camera FLIR Blackfly BFLY-PGE-

31S4C-C  

Visual Studio C++ 2015 Lens Theia Technologies ML410M  

B. Convolutional Neural Networks 

Convolutional neural networks (CNN) are a subset of 

neural networks that accept an input as an image and are used 

extensively in image recognition and classification. 

Conventional neural networks cannot handle the size of an 

image, as the weights start to increase exponentially as the 

image size increases. CNNs address this issue by using 

convolutions to reduce the size of the output layer. At the 

output layer, the size will have been reduced such that there 

is one node for each output class. This output layer may then 

be used to determine final class, most often by using the 

output node with the highest value. The basic approach is 

shown in Fig 1. 

 

 
Fig 1. CNN Architecture 

A convolutional neural network has many operations to 

consider. The first of these operations is creating a feature 

map through convolutions. This is controlled through the 

tunable parameters of depth, stride, and padding [1]. Once 

the feature maps are created, a Rectified Linear Unit (ReLU) 

is applied to the image. This applies an absolute value 
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function to all values. The next step after the ReLU is 

pooling. Pooling reduces the complexity of the model. 

Different methods and sizes of pooling can be used such as 

max, min and average pooling. The specific kind depends on 

the network [2].  

After the first convolution, ReLU, and pooling phase are 

completed, the task is run again on the previous layer. This 

can be once or many times. The exact number depends on 

the specific model. The final step is to run the final pooled 

results into an n number of fully connected layers that will 

then predict the class [3]. This architecture allows neural 

networks to run efficiently and accurately on images of many 

sizes with numerous features and complexity. 

For this project, the CNNs that were chosen were based 

upon the ability to retrain already tested networks. This was 

largely because creating specific networks for these tasks 

would provide little benefit for the time it would take to 

design and program the network. Since TensorFlow offers 

the ability to easily retrain and test neural networks, as well 

as provide a C-API for deployment it was chosen over other 

frameworks. 

Two different types of network training methods were 

chosen: one for object detection and one for object 

classification. These methods were selected based upon the 

number of networks available and the retraining ability. 

Object detection uses the TensorFlow Object Detection API 

[4], and object classification uses the TensorFlow Image 

Feature Extraction Module [5].   

C. Training Neural Networks 

Once the software used on Minion was determined, the 

training method had to be selected. The training method had 

to allow for different networks to be trained using the same 

data and preprocessing to enable comparing different 

networks against each other on the water. Because of this 

need, transfer learning was used for training. Transfer 

learning is slower than creating custom networks for a 

specific task but benefits from already being proven to work.  

The TensorFlow Object Detection API [4] was used to 

train detection networks. This method allowed for different 

networks to be trained and tested using the same data with 

just changes to a configuration file and a pretrained frozen 

inference graph. It took around 5-10 hours for a network to 

converge once training was started. For the classification 

networks, the TensorFlow Hub classification retainer 

method [5] was used. This method allowed for quick 

classification retraining in about 30 minutes on the system 

specified in Table II.  

 

Table II 

HARDWARE SPECIFICATIONS OF TRAINING SYSTEM 

CPU 2 Intel Xeon E5-2670v3 12-Core 2.3Ghz 

GPU Nvidia Quadro M6000 24GB 

RAM 128GB DDR4 ECC Memory 

 

D. Light Tower 

1) Task Description  

The light tower task involves accurately detecting and 

identifying the sequence of a changing light tower (greater 

than 90 percent accuracy on panel color) in real time (greater 

than or equal to 5 frames per second) using hardware and 

software available to Minion. Fig 2 shows the competition 

light tower below.  

 

 
Fig 2: Competition Light Tower 

The light tower can change between four different colors. 

These are black, blue, red, and green. The sequence is 

generated by displaying the black panel for 1 second, then 

three colored panels (green, red, or blue) for 1 second each, 

and finally, the black panel again for 1 second. The only 

caveat for the three middle colors is that a single color cannot 

be repeated consecutively but may be used multiple times in 

a sequence. For example, a sequence of Blue-Blue-Green is 

not allowed but Blue-Green-Blue is allowed. Due to these 

rules there are only 12 possible sequence combinations, as 

shown in Table III. 

 

Table III 

VALID LIGHT TOWER SEQUENCES 

Seq. Color 1 Color 2 Color 3 

1 Blue Green Blue 

2 Blue Green Red 

3 Blue Red Blue 

4 Blue Red Green 

5 Red Green Red 

6 Red Green Blue 

7 Red Blue Red 

8 Red Green Blue 

9 Green Red Green 

10 Green Red Blue 

11 Green Blue Red 

12 Green Blue Green 

 

From this task description, the below self-imposed 

requirements were derived: 

• The time to complete a single-color classification 

and loop through the sequence detector shall be no 
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more than 200ms.  

• The sequence detector shall be robust enough to not 

give a false positive in more than 1 percent of tests. 

• The sequence detector shall correctly identify the 

sequence more than 90 percent of the time in one 

attempt.  

• The sequence detector shall correctly identify the 

sequence more than 99 percent of the time in two 

attempts. 

• The sequence detector shall identify a sequence in a 

minute or less. 

 

2) Task Methodology 

To start the task, MinionTask and Perception are used to 

classify the light tower and position one of Minion’s cameras 

in frame of the light tower at a distance between 5 to 15 

meters. Once this has been accomplished, vision is activated 

to determine the sequence. This is accomplished in five main 

steps: 

1. Use the Inception V2 object detection neural 

network to identify and crop the light tower from 

the raw camera image. 

2. Use the Coco Mobilenet V1 object detection neural 

network to crop the light panel from the light tower 

image. 

3. Use the Inception V3 object classification neural 

network to determine the color of the light panel. 

4. Feed the color result into the sequence detector to 

determine the light tower sequence. 

5. If a sequence is not found in one minute, position 

the boat 180 degrees on the other side of the tower 

and try again. 

 

For step one, a full camera image (~2MP) is given as an 

input to detect the sequence. This step utilizes the Inception 

V2 object detection network to find the light tower in the 

frame and crop it out of the raw image. The Inception V2 

network was chosen, along with the other networks in this 

paper, based on an accuracy and speed tradeoff. This task 

was determined to be the most important because all other 

networks depended on this result being correct. Because of 

this dependency, a larger, more accurate network was chosen 

for increased accuracy. After testing the speed of different 

networks running on Minion, the Inception V2, Mobilenet 

V1, and the Faster RCNN Resent were the only networks that 

could keep the framerate above 5 FPS. The general results of 

these networks are shown in Table IV below using the same 

training data.  

 

Table IV 

LIGHT TOWER CROPPING NETWORK COMPARISON 

Network Speed [ms] Accuracy [%] 

Inception V2 100-150 100 

Coco Mobilenet V1 20-40 81.3 

Faster RCNN Resnet 120-185 99.2 

 

As can be seen from the table, the Mobilenet does not 

work reliably due to its small size. The inception V2 and the 

Faster RCNN Resnet both provide near perfect accuracy but 

the inception V2 is faster, thus it was chosen in this 

application. The region of interest (ROI) from the Inception 

V2 network is shown in Fig 3 below.   
 

 
Fig 3: ROI of Light Tower 

Once the tower was cropped, the second network could be 

initiated. This network could be smaller and lightweight 

compared to the Inception V2 because by this point, every 

image should be similar with the light panel in the same 

location, orientation, and size. The only difference between 

the different images is the background and the light panel 

color. Due to the similarities between these images the 

Mobilenet was tested again. The Mobilenet gave close to 100 

percent accuracy at a speed of 20-40ms per image, which is 

the fastest of all available networks. Therefore, the 

Mobilenet was chosen to further crop the light tower down 

to the light panel. The ROI from the Mobilenet is shown in 

Fig 4.  

 

 
Fig 4: ROI of Light Panel 

 

After the panel is cropped, the color is determined using a 

classification neural network as identified in step three. The 

same process for determining the detection network was used 

for the classification network. A comparison of networks 

was conducted. These results are displayed in Table V.  
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Table V 

PANEL COLOR CLASSIFICATION NETWORK COMPARISON 

Network Speed [ms] Accuracy [%] 

Inception V3 20-40 98.2 

Mobilenet (Full) 20-35 78.6 

Mobilenet (Half) 10-15 76.2 

Resnet V2 50-70 87.3 

 

It can be seen from Table V that the Inception V3 network 

offers the best combination of speed and accuracy and thus 

was chosen as the classification network for this task. This 

network feeds the color result into the sequence detector.  

Once the sequence detector receives a color from the 

Inception V3 network, it will attempt to vote on a sequence. 

The sequence detector works by using a moving mode over 

a range of the last 5 colors detected. The mode will vote for 

a color, which is appended to the color list matrix. This 

matrix is then run through template matching to detect if a 

valid sequence is present over each range of the last five 

colors. If a sequence is detected it will vote for that sequence 

as a possible correct sequence. If a sequence is voted as a 

possible candidate three times, then that sequence is reported 

as the correct sequence, and is sent to MinionTask.  

In the case where a sequence is not found, or a sequence 

is not voted for three times in the one-minute allotted time, 

then the boat will be repositioned 180 degrees from the 

current position. This is done because most of the time the 

boat cannot determine the sequence, it is due to the boat’s 

orientation relative to the sun’s light. If Minion cannot 

recognize the sequence on the second attempt, then 

MinionTask will move onto the next task and come back to 

the light tower task if time is left in the competition.  

 

III. RESULTS AND DISCUSSION  

The overall speed and accuracy of the combined networks 

are tabulated in Table VI.  

 

Table VI 

COMBINED SPEED AND ACCURACY OF LIGHT TOWER NETWORKS 

Network Purpose Type 
Speed 

[ms] 

Accuracy 

[%] 

Inception 

V2 
Crop Tower Detect 100-150 100 

Coco 

Mobilenet 

V2 

Crop Panel Detect 20-40 99.7 

Inception 

V3 
Identify color Classify 20-40 98.2 

Combined All Both 140-230 97.9 

 

These results meet the requirements for the accuracy and 

almost always meet the requirements for the speed. The only 

time that speed is not met at 5 FPS is when the boat is sharing 

its resources with other tasks at the same time as the neural 

networks are running. This causes a drop to 4.34 FPS at the 

lowest, but the sequence detector was still able to correctly 

identify the sequence due to the robust nature of the 

algorithm. Furthermore, to get a sequence wrong, a color 

must be classified wrong three out of the five times in the 

moving mode. The probability of this occurring is calculated 

using Formula 1. 

 

∑ (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑛

𝑘=𝑥        (1) 

 

The probability of a color being classified wrong at least 

three times in 5 as less than 1E-4 percent which almost 

guarantees that a single color will not be misclassified using 

the sequence detector. If this is extrapolated over the chance 

of a single sequence having a single-color wrong, there is still 

less than a 1E-2 percent chance this occurring. The sequence 

detector, along with the overall accuracy rate of the light 

tower detector code, can correctly detect a given sequence 

under the given requirements and constraints. The only 

caveat for this statistical analysis is when the light panel is 

being washed out by the sun. In this circumstance the 

classifier cannot reliably differentiate between green and 

blue.  

 The individual performance of the Mobilenet and 

Inception V2 network results are tabulated in Table VII.  

 

Table VII 

LIGHT TOWER AND PANEL DETECTION NETWORK RESULTS 

Network Speed [ms] 

Median 

Proposal 

Confidence  

Mean 

Proposal 

Confidence 

Actual 

Accuracy  

Light 

Tower 
100-150 100% 100 % 100% 

Light Panel 20-40 100% 99.70% 100% 

 

From this table, these two networks were nearly perfect in 

identifying the light tower and panel, respectively. This was 

true through all lighting and weather conditions.  

The results of the classification network are shown in 

Table VIII below as a confusion matrix.  

 

Table VIII 

LIGHT PANEL CLASSIFICATION NETWORK RESULTS 

 
 

This table shows that the classification network worked 

well in classifying all the colors except for the occasional 

switch of the blue and green under bad lighting conditions. 

Black Blue Red Green

Black 100.0%

Blue 96.4% 3.0%

Red 100.0%

Green 3.6% 97.0%

Test Class

Predicted 

Class
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These conditions are shown in Fig 5. 

 

      
Fig 5: Bad Lighting Condition Examples 

The image on the left shows an example of an image that 

is impossible to classify at all, as the entire panel is whited 

out by the sun’s reflection. The second image is barely 

discernable as blue. Other than these conditions, which 

MinionTask corrects for by repositioning Minion, the entire 

light tower sequence detector task performs at or above the 

given requirements. This implementation of the task shows a 

huge improvement over the 2016 implementation. During 

water testing, the sequence was identified right at over a 90% 

rate, while in 2016, the sequence was not correctly identified 

once.  

A. Object Classification  

The other use of vision for Minion was classifying the 

different colored buoys and the signs for docking. Both tasks 

were also completed using the Inception V3 classification 

network. These networks were retrained individually for the 

different tasks they were applied to.  

 

The requirements for both these tasks were: 

1. The object classification networks shall run at a 

speed of 10 frames per second or better.  

2. There shall be no more than 1 false positive in 100 

classifications attempts.  

3. A classification attempt shall be attempted every 

two second or less.  

 

For the buoys, the network was segmented into classifying 

the buoy as either red, green, blue, yellow, white, or black. 

For this task, only color was of importance, so the type of 

buoy did not matter and was not accounted for in the 

classification because the LiDAR is generally accurate 

enough to determine the difference between the gate buoys 

with retro-reflectors and the totem buoys. The data was used 

on any task that required knowing the buoy color.  

A confusion matrix is shown below in for the general 

performance of this network. For this task, if a color could 

not be assigned with over a 70 percent accuracy over a range 

of 10 images, the color would be returned as unknown. This 

was done because a false positive is almost always worse 

than having an unknown color, as other logic can be applied 

to determine the corrective action to take. Table IX shows a 

confusion matrix for the buoy color classification.  

 

Table IX 

CONFUSION MATRIX FOR BUOY COLOR CLASSIFICATION 

 
 

As can be seen from this testing data set, the classifier 

worked within the given requirements. This test was 

performed in an area where the sun did not wash out or dilute 

any colors. When the buoys are washed out, the accuracy 

drops into the 80 percent range. An exact number was not 

obtainable since all data from these cases was used for 

training, to increase the accuracy in this scenario.  

 

The second classification network that was trained was for 

the docking signs. This network was used to detect the shape 

and color of the different docking signs. The same process 

was used for this task as was for the buoys. The network 

identified the color (red, green, or blue) and the shape 

(cruciform, circle, or triangle) using the Inception V3 

network. Due to time limitations, there was no available data 

for testing this network. Furthermore, as a secondary option 

to LiDAR, an Inception V3 network was trained to crop 

down a raw image containing the dock sign in a similar 

manner in comparison to the scan the code challenge.  
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Red Green Blue Yellow White Black

Red 99.9%

Green 99.5%

Blue 0.2% 100.0%

Yellow 100.0%

White 0.1% 0.2% 100.0%

Black 0.2% 100.0%

Test Class

Predicted 

Class
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Appendix L: Controls and Autonomy Operations 
 

Marco A. Schoener, Timothy A. Zuercher 

 

I. INTRODUCTION 

In RobotX 2016, controls performance was a weakness that 
Team Minion elected to address for 2018. The development 
was split into two fronts. First, the team wanted to develop a 
strong dynamic model for the WAM-V platform that could be 
used to develop and test new controls methods, and to improve 
mission simulations. Second, the team wanted to develop a new 
control system that would provide a much greater degree of 
reliability and robustness. 

Previously, Minion was a differentially-steered vehicle due 
primarily to the available propulsion system. The new 
azimuthing capabilities brought a need for an actual solver to 
determine the thrust/angle solutions. A nonlinear equation 
optimizer system was developed to use the available motor 
configurations to find the closest solution to the thrust 
configuration settings. 

This appendix is organized into several sections. Section II 
discusses the approaches used for modeling and estimating 
vehicle parameters. Section III describes the approach to 
vehicle controls. Section IV presents results from using the 
control system insitu. Lastly, Section V provides a summary of 
the Appendix. 

II. BOAT ESTIMATION 

The first goal of the 2018 controls overhaul plan was to 
develop a robust model of the WAM-V’s dynamic 
performance. The generic model for the dynamics of a maritime 
platform is described in [1]. The team choose to implement a 
model using the dynamic equations from several sources [1] [2] 
[3] [4], combining the generic model from [1] with models for 
disturbances and actuators. A grey box estimation technique 
would then be applied using the model to estimate the model 
parameters [5]. After the parameters are determined, the model 
could be used for simulation, control, and planning. 

Table I 

MEASURABLE BOAT PARAMETERS 
Parameters Value 
Length, 𝑚 4.5 

Length on Water Line, m 4 
C.G. (x,y), 𝑚 (-0.01, 0.05) 

Mass, 𝑘𝑔 254.50 
Moment of Inertia, 𝑘𝑔𝑚ଶ 303.50 

Beam Length, 𝑚 2.00 

 

A. Frames 

For modeling and control there are two coordinates frames 
that are important. The first coordinate frame is the body-fixed 
frame. This right-handed cartesian frame in ℝଷ is aligned with 
the principal axes of inertia, generally resulting in the x-axis 

positive forward (bow), the y-axis positive to the right 
(starboard), and the z-axis positive downward (towards the 
water). This is also known as the Front-Right-Down (FRD) 
frame. Velocities, forces, and moments are usually represented 
using this body-fixed frame. 

The second frame is the inertial frame, which uses the NED 
frame representation. The NED frame is a transformation of the 
Earth Centered Earth Fixed (ECEF) frame, so the origin is on 
the surface of the earth and located nearby. NED is also a 
cartesian frame in ℝଷ with the x-axis positive toward north, the 
y-axis positive towards the east and the z-axis positive down. 
NED only approximates an inertial frame. The approximation 
gets worse the further from the origin you travel. The relatively 
small operating area of the vessel makes this approximation 
unnoticeable. The NED frame is used to represent the positions 
and velocities of a system. 

In a full six degree of freedom (6-DOF) model, a complete 
rotation matrix or quaternion would need to be used to 
transform between the FRD and NED frames. However, 
because the model will be simplified to a three degree of 
freedom (3-DOF) planar representation, only a singular rotation 
needs to be applied, Eqn. (1(4. 

    𝒗ሬሬ⃗ ௕ = (𝑢, 𝑣) (1) 
    𝒗ሬሬ⃗ ௡ = (𝑣ே , 𝑣ா) (2) 
    

𝑅௕
௡ =  ൥

cos(𝜑) − sin(𝜑) 0

sin(𝜑) cos(𝜑) 0
0 0 1

൩ (3) 

    𝒗ሬሬ⃗ ௡ = 𝑅௕
௡𝒗ሬሬ⃗ ௕ (4) 

 
In this rotation, 𝑢 and 𝑣 are surge (forward) and sway 
(sideways) velocities respectively; 𝑣ே and 𝑣ா  are velocity in the 
northing and easting directions respectively; and 𝜓 is the yaw 
(heading) angle of the vehicle, measured off true north. An 
example diagram showing these frames is in Fig 1. 
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B. Equations of Motion 

The general equations of motion are given in [1]. Using this 
general form, the following subsections break the model into 
four components: rigid-body motion, hydrodynamic motion, 
disturbances, and actuator forces. Each section describes that 
aspect of the model’s construction in detail and can be 
combined into a complete parameterized model of the vehicle. 
 
1) Rigid-Body Motion 

A 6 DOF model as given by [1] is shown in Eqn. (5(10. 
    𝑋 =  𝑚൫𝑢̇ − 𝑣𝑟 + 𝑤𝑞 − 𝑥஼ீ(𝑞ଶ + 𝑟ଶ)

+  𝑦஼ீ(𝑝𝑞 − 𝑟̇)

+ 𝑧஼ீ(𝑝𝑟 + 𝑞̇)൯ 
(5) 

    𝑌 =  𝑚൫𝑣̇ − 𝑤𝑝 + 𝑢𝑟 − 𝑦஼ீ(𝑟ଶ + 𝑝ଶ)

+  𝑧஼ீ(𝑞𝑟 − 𝑝̇)

+ 𝑥஼ீ(𝑞𝑝 + 𝑟̇)൯ 
(6) 

    𝑊 = 𝑚൫𝑤̇ − 𝑢𝑞 + 𝑣𝑝 − 𝑧஼ீ(𝑝ଶ + 𝑞ଶ)

+  𝑥஼ீ(𝑟𝑝 − 𝑞̇)

+ 𝑦஼ீ(𝑟𝑞 + 𝑝̇)൯ 
(7) 

    𝐾 = 𝐼௫௫𝑝̇ + ൫𝐼௭௭ − 𝐼௬௬൯𝑞𝑟 + (𝑟̇ + 𝑝𝑞)𝐼௫௭

+ (𝑟ଶ − 𝑞ଶ)𝐼௬௭

+ (𝑝𝑟 − 𝑞̇)𝐼௫௬

+          𝑚൫𝑦஼ீ(𝑤̇ − 𝑢𝑞

+ 𝑣𝑝)

− 𝑧஼ீ(𝑣̇ − 𝑤𝑝 + 𝑢𝑟)൯ 

(8) 

    𝑀 = 𝐼௬௬𝑞̇ + (𝐼௫௫ − 𝐼௭௭)𝑟𝑝 − (𝑝 + 𝑞𝑟)𝐼௫௬

+ (𝑝ଶ − 𝑟ଶ)𝐼௫௭

+ (𝑞𝑝 − 𝑟̇)𝐼௬௭

+          𝑚൫𝑧஼ீ(𝑢̇ − 𝑣𝑟

+ 𝑤𝑞)

− 𝑥஼ீ(𝑢̇ − 𝑢𝑞 + 𝑣𝑝)൯ 

(9) 

   

 𝑁 = 𝐼௭௭𝑟̇ + ൫𝐼௬௬ − 𝐼௫௫൯𝑝𝑞 − (𝑞̇ + 𝑟𝑝)𝐼௬௭

− (𝑞ଶ − 𝑝ଶ)𝐼௫௬

+ (𝑟𝑞 − 𝑝̇)𝐼௫௭

+          𝑚൫𝑥஼ீ(𝑣̇ − 𝑤𝑝

+ 𝑢𝑟)

− 𝑦஼ீ(𝑢̇ − 𝑣𝑟 + 𝑤𝑞)൯ 

(10) 

 

Where 𝑋, 𝑌, and 𝑊, are surge sway, and heave (vertical) 
forces respectively; 𝐾, 𝑀, and 𝑁 are roll, pitch, and yaw 
moments respectively; 𝑤 is the vertical speed (heave) and 𝑝, 𝑞, 
and 𝑟 are the roll, pitch, and yaw rates respectively; 𝑚 is the 
mass in kg and I is the mass moment of inertia. 

As in [1], this can be represented in a vector form as 
    𝑀ோ஻ 𝑣̇⃗ + 𝐶ோ஻(𝑣⃗)𝑣⃗ = 𝜏  (11) 
 

where 𝑀 is the mass matrix, 𝐶 is the Coriolis matrix, 𝜏 is the 
actuator forces and moments, and 𝜈 is the state vector in the 
FRD frame. 

To simplify this initial set of equations three assumptions are 
applied: 

 The roll, pitch, and heave states are neglected. This 
results in a horizontal plane model. Wave motion is 
not properly captured with this assumption. 

 The x and y center of gravity do not necessarily sit 
at the boat’s center of origin (C.O.) 

 A coupling exists between the surge and yaw states 
Applying these assumptions leads to the following form of 
the model: 

    𝑣⃗ ≔ (𝑢, 𝑣, 𝑟) (12) 
    𝜏 = (𝑋, 𝑌, 𝑁) (13) 
    

𝑀ோ஻ = ൥

𝑚 0 −𝑚𝑦஼ீ

0 𝑚 𝑚𝑥஼ீ

−𝑚𝑦஼ீ 𝑚𝑥஼ீ 𝐼𝑧𝑧
൩ 

(14) 

   

𝐶ோ஻ =  ቎

0 0 −𝑚(𝑥஼ீ𝑟 + 𝑣)

0 0 −𝑚(𝑦஼ீ𝑟 − 𝑢)

𝑚(𝑥஼ீ𝑟 + 𝑣) 𝑚(𝑦஼ீ𝑟 − 𝑢) 0

቏ 
(15) 

 
2) Hydrodynamic Motion 

The addition of hydrodynamic terms into the equations 
allows the description of the rigid-body motion to include the 
effects of interacting with the water. These effects are described 
as added mass terms in both the mass and Coriolis matrices as 
well as a drag matrix. Eqn. (16 is the new 3-DOF vectorized 
equations of motion. The additional parameters are the added 
mass coefficients and the drag coefficients. These coefficients 
are nonlinear and can vary based on velocity. This model 
assumes that they are constants. 

    𝑀𝑣̇⃗ + 𝐶(𝑣⃗)𝑣⃗ + 𝐷(𝑣⃗)𝑣⃗ = 𝜏  (16) 
 

𝑀, the mass matrix, is an inertia tensor that includes both the 
rigid-body, 𝑀ோ஻, and added mass matrix, 𝑀஺ெ. 

    𝑀 = 𝑀ோ஻ + 𝑀஺ெ (17) 
    

𝑀஺ெ = ൥

𝑋௨̇ 0 0
0 𝑌௩̇ 𝑌௥̇

0 𝑁௩̇ 𝑁௥̇

൩ (18) 

 

Fig 1. Diagram of FRD frame on a marine vessel. Retrieved from [1] 
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𝐶, the Coriolis matrix, is a tensor that describes the Coriolis 
effects in the EOM. 

    𝐶(𝑣) = 𝐶ோ஻ + 𝐶஺ெ (19) 
   

𝐶஺ெ =   

⎣
⎢
⎢
⎢
⎡ 0 0 𝑌௩̇𝑣 + 𝑟

(𝑌௥̇ + 𝑁௩̇)

2
0 0 −𝑋௨̇

−𝑌௩̇𝑣 − 𝑟
(𝑌௥̇ + 𝑁௩̇)

2
𝑋௨̇ 0 ⎦

⎥
⎥
⎥
⎤

 (20) 

 
The drag matrix D approximates the hydrodynamic drag the 
vessel experiences. The drag model is constructed of a set of 
linear terms, D_L, and nonlinear terms, D_NL. This results in a 
second order drag model cross-coupling surge to yaw and sway 
to yaw. This drag model assumes that sway motion does not 
affect surge motion. 

    𝐷(𝑣) = 𝐷௅ + 𝐷ே௅ (21) 
    

𝐷௅ =  ൥

𝑋௨ 0 𝑋௥

0 𝑌௩ 𝑌௥

𝑋௥ 𝑁௩ 𝑁௥

൩ (22) 

    
𝐷ே௅ = ቎

𝑋௨௨|𝑢| 0 𝑋௥௨|𝑢|

0 𝑌௩௩|𝑣| + 𝑌௩௥|𝑟| 𝑌௥௥|𝑟| + 𝑌௥௩|𝑣|

𝑋௥௥|𝑢| 𝑁௩௩|𝑣| + 𝑁௩௥|𝑟| 𝑁௥௥|𝑟| + 𝑁௥௩|𝑣|
቏ (23) 

 
3) Disturbances 

Disturbances affect the vessels motion through water and 
ultimately its controllability. There are three disturbances that 
are of potential concern: currents, wind, and waves. The full 3-
DOF equation of motion, including disturbances, is given by 

    𝑀𝑣̇⃗ + 𝐶(𝑣⃗)𝑣⃗ + 𝐷(𝑣⃗)𝑣⃗ = 𝜏 + 𝜏ௗ  (24) 

a) Current 

Current can create extra drag on the vessel that either hinders 
its motion (against the current) or boosts it (with the current). 
Both situations can be detrimental to controllability. This can 
be accounted for in the model by considering current to be 
uniform in the water. This assumption means that there is a 
relative velocity between the NED frame and a frame aligned 
with the NED frame but traveling with the current. This relative 
velocity effects the hydrodynamic terms of Eqn. (24. And can 
be modeled as seen in Eqn. (25-(26 . 

    𝜈௥ = 𝑣⃗ − 𝑣⃗௖௨௥௥௘௡௧  (25) 
   

𝑀ோ஻ 𝑣̇⃗ + 𝐶ோ஻(𝑣⃗)𝑣⃗ + 𝑀஺ெ𝑣⃗௥
̇ + 𝐶ோ஻(𝑣⃗௥)𝑣⃗௥ +

𝐷(𝑣⃗௥)𝑣⃗௥ = 𝜏 + 𝜏ௗ  

(26) 

b) Wind 

Wind disturbances affect vessels with larger surface areas 
by adding a drag term. This can be estimated by calculating 
the relative velocity of the wind with respect the vehicle and 
using the resulting velocity to calculate aerodynamic drag. 
This drag can be added as a term in 𝜏ௗ.  

c) Waves 

Waves were not considered as a disturbance for this model. 
For a 3-DOF model, waves can be accounted for using several 
different methods. Commonly an adaptive notch filter is used 

to remove the wave disturbance from the sensor signals which 
allows the system to operate as if waves are nonexistent. 

 
4) Actuator Forces 

The output of thrusters is often characterized as either a linear 
relation to the throttle percentage or a general curve based on 
power input to the system. These methods give a base estimates 
for where the vessel should be but do not take into account the 
flow or physical propeller properties. Several alternative 
methods were explored to address this weakness. 

a) Linear Regression 

The simplest method of motor modelling is to have a known 
relationship of input to output. A commonly used method is a 
linear regression between the input throttle and the output 
forces/speeds. 

The force is either based on datasheets from the thruster’s 
specifications or related to command versus force from 
different throttles. The relationship can be determined by surge 
drag tests where the throttle command is related to the force 
which then relates to the vehicle’s speed. This assumption is 
valid under the thrust equals drag assumption and sets a basis 
for modelling under controlled, simple cases. 

The issues from this model is that it does not handle the 
dynamics due to flow effects from the propellers. The cross-
correlation between states of motion are not directly gathered 
accurately, but the model can approximate gross characteristics 
of the propulsion system. 

b) Open-Water Motor Model 

A commonly used model for general marine vessel is the 
open-water motor model. This model generates the thrust and 
torque of a thruster using a coefficient known as the advance 
ratio (𝐽଴). This model is used for keeping a minimum speed to 
the water with respect to control surfaces [2] and encompasses 
the regions of motion where the thrust is related to its direction 
of travel as shown in Eqn. (27(29. 

    𝐽଴ =
𝑣௔

𝑛𝑑
 

 
(27) 

    𝑇 = 𝜌𝑑ସ𝑘்(𝐽଴)𝑛ଶ 

 (28) 

    𝑄 = 𝜌𝑑ହ𝑘ொ(𝐽଴)𝑛ଶ (29) 
 

where: 𝑣௔ (vessel’s advance speed), 𝑛 (propeller rotational 
speed), d (propeller diameter), 𝑘 (coefficient in relation to 
thrust/torque), 𝜌 (density of water), 𝑇 (Thrust), and 𝑄 (Torque). 

 



ERAU Team Minion 4 of 9 
 

The issue with this model is that it is not suited for operations 
around maneuvers that require fast turns or sudden changes of 
motion. To gather that sort of data, more regions (or quadrants) 
of operation need to be available (Figure Fig 2). 

c) Four-Quadrant Motor Model 

This motor model has been around since at least the 1950s to 
1960s. This model takes into consideration the four regions (or 
quadrants) of motion for thruster or motor. 

The quadrants operate similarly to a DC motor. Quadrant 1 
defines forward speed (advance) versus positive torque 
(rotation). The motor is attempting to accelerate through this 
configuration. Quadrant 3 performs the same operation, but 
with both operations moving negatively, thus accelerating 
backwards while remaining in reverse. The other two regions 
handle braking and changes in direction. Quadrant 2 is moving 
at a forward speed while resisting that motion using the motor, 
similar to a car braking. Quadrant 4 is then reversing with the 
intention of moving to a stop or forward. These extra modes 
define what the thrusters are actually doing in cases of quick 
turn, station-keeping, and any other sudden motion. 

The equations of motion for the four-quadrant model still 
defines the thruster thrust and torque based on coefficients. The 
added information that separates these models is the advance 
angle (𝛽) value that defines which quadrant is being operated 

in. The two speeds considered are the advance velocity and the 
propeller velocity. 

    
𝑇 = ൬

1

2
൰ 𝜌𝑐்(𝛽)൫𝑣௔

ଶ + 𝑣௣
ଶ൯𝜋 ൬

𝐷

2
൰

ଶ

 (30) 

    
𝑄 = − ൬

1

2
൰ 𝜌𝑐ொ(𝛽)൫𝑣௔

ଶ + 𝑣௣
ଶ൯𝜋 ൬

𝐷

2
൰

ଶ

𝐷 (31) 

    𝛽 = 𝑎𝑡𝑎𝑛2(𝑣௔ , 𝑣௣) (32) 
    𝑣௣ = 0.7𝜋𝑛𝑑 (33) 
    𝑣௔ = 0.5 ൬𝑢 ± ൬

𝐵

2
൰ 𝑟൰ (34) 

 
The model was approximated to represent more idealized 

curves for more ideal cases in use of optimization of motor 
coefficient solutions. Healey [2] shifted the frames from the 
thrust and torque models to the lift (L) and drag (D) frame of 
the propeller. Since the torque is tangential to the thrust, the 
same can be said about the lift and drag and it transforms the 
equation in the following Eqns. (35)-(36). 

 
    

𝐿 = ൬
1

2
൰ 𝜌൫𝑣௔

ଶ + 𝑣௣
ଶ൯ ൬

𝑑

2
൰

ଶ

ቌ𝑐்(𝛽) cos(𝛽)

+ ቌ
𝑑

0.7 ቀ
𝑑
2

ቁ
ቍ 𝑐ொ(𝛽) sin(𝛽)ቍ 

(35) 

    
𝐷 =  ൬

1

2
൰ 𝜌൫𝑣௔

ଶ + 𝑣௣
ଶ൯ ൬

𝑑

2
൰

ଶ

ቌ−𝑐்(𝛽) sin(𝛽)

+ ቌ
𝑑

0.7 ቀ
𝑑
2

ቁ
ቍ 𝑐ொ(𝛽) sin(𝛽)ቍ 

(36) 

 
The lift and drag coefficients are transformed into the angle 

of attack (𝛼) frame to determine maximum coefficients (Eqns. 
(37)-(39)). Finding the maxima of the thrust—torque 
coefficient in relation to the lift-drag coefficients (Eqn. (40)-
(41) defines the original coefficients in terms of the lift—drag 
frame. 

    𝑐௅
ு(𝛼) = 𝑐௅

௠௔௫ sin(2𝛼) (37) 
    

𝑐஽
ு(𝛼) =

𝑐஽
௠௔௫(1 − cos(2𝛼))

2
 (38) 

    𝛼 = 𝜑 − 𝛽 (39) 
    𝑐்

ு(𝛽) = 𝑐௅
ு cos(𝛽) − 𝑐஽

ு sin(𝛽) (40) 
    

𝑐ொ
ு(𝛽) = −

0.7

2
(𝑐௅

ு(𝛽) − 𝑐஽
ு cos(𝛽)) (41) 

 
where: 𝛼 (angle of attack) and 𝜑 (propeller pitch angle). 

 
This model gives simple, yet continuous sinusoidal functions 

to gather torque and thrust values. Given that the motor is 
instrumented, the torque can be solved for and ultimately the 
thrust can be solved for as well based on sensor readings and 
not on throttle commands. 

This model takes in more complexity of propeller physics, 
but takes some assumptions as ignoring induced vorticities and 
exact transformation on the induced angles rather than solely Fig 2. Open-water operation regions of motion [4]. 

Fig 3. Four-quadrant regions of motion for a thruster setup [4] 
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the physical propeller. The results give an answer for any 
maneuver based on propeller and water flow.  

 
5) System Identification 

To determine the parameters and desired motions of the 
USV, a standard set of maneuvers are performed. A set of 
marine standards [3] define the maneuvers and what physical 
quantities come of these tests. The tests are as follows: turning 
circle, zig-zag, and stopping. 

The turning circle test is used to determine the vessel’s 
turning radius at constant speed and steering angle.  

 
Fig 4. Turning circle test example [3]. 

The zigzag test is designed to test vessel course-keeping and 
heading overshoot. The vessel starts moving forward at a 
constant heading, then the rudder is diverted to an angle and 
remains there until the vessel crosses that angle difference. 
Once the vessel changes heading, the rudder is commanded to 
the same heading change on the opposite side of the initial 
heading. Repeating this maneuver catches the hydrodynamics 
between the surge and yaw motions. 

 

 
Fig 5. Zig-zag maneuvering test [3]. 

The stopping test is the total time it takes the vessel to stop 
dead in its track. The vessel moves at a constant speed forward 
and then suddenly commands a stopping speed to halt all 
motion. This is helpful with a known motor model, but similar 
results can be retrieved by moving at a constant forward speed 
and letting the vessel drift to a stop. This can give the 2nd-order 

drag curves for the vessel and different speeds tests can 
determine the added mass coefficient for surge. 

 
Fig 6. Stopping maneuver test example [3]. 

Required tests for getting good estimates on drag and motor 
forces are bollard-pull and measured drag tests. The bollard-
pull tests tie the vessel stationary to a dock or fixed object with 
a force gauge in series with the holding line. The vessel begins 
thrusting at different commands and the force gauge returns the 
force exerted. Depending on levels of instrumentation can lead 
to more complex models. A measured drag test is letting the 
boat attached to a chase boat and letting the chase boat drag the 
vessel around. If the vessel can keep steady in the surge and 
sway directions, the forces read will be accurate to generate a 
drag model at steady speeds. 

III. PATH PLANNING 

A. Architecture 

The path planner’s architecture (Fig. 7) spans between 3 
modules: MinionTask, Path Planner, and Controls. MinionTask 
begins by generating a desired target for the Path Planner to 
follow. The target definition consists of an entire set of modes 
that span to more than just waypoint travelling. Current input 
modes are Stop, Waypoint, Path with Heading Hold, Station-
keep, Circle, Dock, Heading Hold, Point Hold, and Direct.  

All the input modes fit into 3 categories to describe overall 
autonomy control types: Path, Direct, and Stop. Path modes 
describe Minion driving a path with specific qualifiers and 
include Waypoint, Path with Heading Hold, Circle, and Dock. 
Direct modes describe a more direct command to Minion to 
perform specific tasks and include Station-keep, Heading Hold, 
Point-Hold and Direct. Stop mode demands that Minion stops 
all motor motion completely. 

The target is then received by the Path Planner and triggers 
the algorithms to find the best path to the target that avoids 
obstacles. The Path Planner has five states in order to ensure the 
target calculation finishes. The states are Stopped, Calculate, 
Recalulate, Update Path, and Done.  

Stop is the default state that tells Controls to stop all motion. 
The Calculate state attempts to find a viable path using a 
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constrained A* search before the user-defined timeout. If the 
path is found and valid, it is sent to Controls. If the Calculate 
fails, the Recalculate state occurs and reattempts the path given 
the previous path nodes and cost and attempts to change some 
path parameters to find the path more effectively.  

After either the Calculate or Recalculate states are found to 
be valid, the Update Path state queues up the path to send to 
Controls. After the Update Path leads the planner to be in the 
Done state which waits for a new target or any path error 
reported back to the planner from Controls.  

While a valid path exists, a separate thread is searching the 
path for any new obstacles that have intersected the path and 
triggers a replan accordingly. Each target mode has an inherent 
end mode case to distinguish the small differences in the modes. 
The end cases are Stop, Heading-Hold, and Station-keep and 
define the behavior when the end of the path is reached. 

After the path nodes and modes are sent to Controls, a path 
error message is sent back to the Path Planner. The path error 
defines if Minion is following the path as intended. Minion’s 
path-following algorithm in Path mode is defined as Minion not 
keeping up with the time-based path for a certain amount of 
time or exceeded a cross-track error threshold. If Minion is off 
path for a specified time, this message triggers Path Planner to 
Stop and trigger a replan of the last target available.  

 

 

IV. CONTROL SYSTEM 

The second phase of development for Minion’s controls team 
was the design and implementation of a new control system 
software stack. This involved redesigning both the Controls 
software module and the algorithms that are used inside the 
module. There were also a series of hardware modifications that 
modified the Minion’s capabilities and methods for control. 

In the 2016 configuration, Minion was a differentially driven 
vehicle [6]. The 2018 configuration expanded Minion’s 
capabilities by azimuthing the thrusters (see Appendix D). This 

enabled control over sway motion. In addition the thrusters 
were upgraded and the electrical system was migrated to 48V 
(see Appendix K). This greatly increased the achievable control 
forces and moments. 

The control system design for Minion consists of three levels: 
Trajectory, PID, and Control Allocation. The first level, 
trajectory control, is a leader follower type trajectory control 
system that operates in Minion’s NED frame. It takes inputs 
from the Path Planning modules and outputs targets for the level 
2 PID (Proportional-Integral-Derivative) system. Level 2, PID, 
is a parallel set of PID controllers that control surge, sway, yaw, 
and yaw rate and produce force and moment targets for the 
control allocator in Level 3. Level 3, Control Allocation, 
optimizes a cost function to distribute forces and moments to 
the various actuators. The optimizer is a nonlinear optimizer 
based on the sequential quadratic programming method. Level 
3 outputs desired thrust level and azimuth angles.  

A. Level 1: Trajectory Control 

The trajectory controller has been revamped from 2016 to use 
a time-based leader-follower control scheme. The control 
algorithm utilizes the NED coordinate frame allowing for 
global disturbance rejection.  

Paths are generated by the Path Planning module. These 
paths consist of a control type, a list of nodes, and an end type. 
There are three possible control types: Stop, Direct, Path. Stop 
and Direct control types cause the path controller to be skipped 
and the commands to be forwarded to the PID controller.  

In Path mode, the nodes are a list of position, heading, and 
speed commands at a path time 𝑡. This allows a NED frame 
trajectory consisting of 

    𝑆(𝑡) = [𝑁(𝑡), 𝐸(𝑡), 𝜓(𝑡)]ᇱ (42) 
 

and their derivatives to be constructed 
    

𝑆̇(𝑡) =
𝑑

𝑑𝑡
𝑆 (43) 

    𝑇௥(𝑡) = ൣ𝑆(𝑡), 𝑆̇(𝑡)൧ (44) 
.  

This trajectory is fed into the trajectory controller along with 
the current path time 𝑡௖. The current path time tacks how long 
we have been following the current trajectory, and subsequently 
where we should be on the trajectory. The controller is 
segmented into four sections: Setpoint generator, Feedforward, 
Proportional-Integral, Output. A diagram of the path control 
system can be seen in Figure 8 

 

 

Fig 7. Control and path planning stack. Objectives are transformed 
and communicated between MinionTask Path Planner, and 
Controls. 

Fig 8. Depiction of the processing done by the trajectory controller. The 
target trajectory and vehicle state are used to produce surge, sway and yaw 
targets by applying a PI controller and a feedforward controller. 
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The setpoint generator takes in the vehicles current state, 
the trajectory data, and the current path time to generate a set 
of targets and projected states. The targets and states are 
projected by a lead time 𝑡௟. 

    𝑡௙ = 𝑡௖ + 𝑡௟ (45) 
 

    𝑇𝑎𝑟𝑔𝑒𝑡@௧೎
= 𝑇௥(𝑡௖) (46) 

 
    𝑇𝑎𝑟𝑔𝑒𝑡@௧೑

= 𝑇௥൫𝑡௙൯ (47) 
 

The current state is projected forward by the lead time using 
forward Euler. 

    𝑆൫𝑡௙൯ = 𝑆(𝑡௖) + 𝑆̇𝑡௟ (48) 
 
Other methods of projection are possible including using the 
dynamic model to predict the future state. The forward Euler 
method is suitable for this case because the time projection is 
usually small (1 – 2 seconds) in comparison to the timescales of 
vehicle motion (5 – 10 seconds). An example of these setpoints 
and states can be seen in Figure 9. 
 

 
 

 
The feedforward section in Figure 10 performs a weighted 

average of the velocities and heading of the current and 
projected targets. The velocities and heading are fed forward in 
the controller as these are the targets that the PID’s in Level 2 
are trying to achieve. This reduces reliance on the integral term 
in the PI controller and produces an initial level for the output. 

The PI term can then modify this output appropriately, so the 
trajectory is tracked, 

    𝑇𝑎𝑟𝑔𝑒𝑡௙௙ = 𝑇𝑎𝑟𝑔𝑒𝑡@௧೑

+ (1 − 𝑤)𝑇𝑎𝑟𝑔𝑒𝑡@௧೎
 

(49) 

 
The PI section of the trajectory controller, Figure 11 

implements a PI controller on the error of the current trajectory 
target. 

    𝑒@௧೎
= 𝑇𝑎𝑟𝑔𝑒𝑡@௧೎

− 𝑆(𝑡௖) (50) 
    

𝑇𝑎𝑟𝑔𝑒𝑡௉ூ = 𝐾௜

𝑒@௧೎
+ 𝑒@௧೎ିଵ

2
∆𝑡 + 𝐾ଶ𝑒@௧೎

 
(51) 

 
The projected target error is including as an additional 

proportional term. 
    𝑇𝑎𝑟𝑔𝑒𝑡௉ோை௃ = 𝐾ଶ ቀ𝑒@௧೑

ቁ (52) 

 
The resulting targets are then 

    𝑇𝑎𝑟𝑔𝑒𝑡ௌ௎ெ = 𝑇𝑎𝑟𝑔𝑒𝑡௉ூ + 𝑇𝑎𝑟𝑔𝑒𝑡௉ோை௃

+ 𝑇𝑎𝑟𝑔𝑒𝑡௙௙ 
(53) 

 
 

 
This form allows for the controller to look forward to future 

control actions and start reacting to upcoming changes. The 
integral action allows the controller to reject disturbances such 
as wind and current. When combined with the output stage this 
often results in a tacking motion during high winds. 

The output section, Figure 12, converts the output of the 
controller into the desired targets for the PID level. Different 
conversions are necessary depending on end of path type and 
drive mode. There are three drive modes of concern: full 
(velocity), differential forward, differential reverse. The 
difference between modes is whether heading is coupled in the 
modes.  

In full mode, surge, sway, and yaw can be controlled pseudo 
independently. In differential mode yaw is not independent. 
Forward and reverse reflect yaw to follow the path in the correct 
direction.  

 
 

Fig 9. Current and future and targets. Future states and targets are 
generating by projecting forward by the lead time, t_l. 

Fig 10. Diagram of feed forward system. A weighted average between the 
current and future targets is performed. 

Fig 11. The PI control system for the trajectory controller. The error is 
calculated for both the current and projected targets. The integral is only 
calculated on the current target. 
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B. Level 2: PID Control 

The controllers are set in parallel for the surge, sway, and 
yaw rate states with the yaw controller feeding into the yaw rate 
setpoint. The surge and sway controllers produce the boat’s 
forces and the yaw rate controller produces the boat’s turning 
moment about the center of mass. 

The controllers have been modified to ensure safe and proper 
control during the tuning phase (Fig. 13). All of the controllers 
are input and output rate limited to maintain the boat’s 
acceleration rate and avoid jerky behaviors. The PID gains for 
each controller is gain-scheduled based on known states of 
operation to ensure the controllers are properly limited to 
handle the given states. And the controller’s integrals have anti-
windup when a fault occurs such as switching to RC mode or 
not reaching a valid solution for the particular state. 

The outputs of the surge, sway, and yaw rate controllers are 
directly fed into the optimizer to allocate control forces to the 
actuators.  

 

 

C. Level 3: Control Allocation 

The optimizer takes the target forces and a moment and 
attempts to find a setpoint for each of the four actuators that 
satisfies these forces and moments. The generic nature of the 
optimizer allows for arbitrary constraints to be met, such as 
maximum or minimum thrust values, maximum or minimum 

azimuthing angles, or actuator failure. This allows for a well-
defined actuator envelope (Fig. 14).  

 

 
This allows us to have different drive modes for different 

situations. There are currently a set of eight configured drive 
modes (Table II). 

Table II 

LIMP MODES AVAILABLE TO MINION. THESE ARE ALTERNATE CONFIGURATION 

OF ACTUATORS IN THE CASE OF AN ACTUATOR FAILURE. 

Limp Mode Actuators Forces/Moments 
Full Port Thr./Azi, Star. Thr./Azi. Fx, Fy, Mz 

Differential Port Thr., Star. Thr. Fx, Mz 
Left Limp Port Thr./Azi. Fx, Mz 

Right Limp Star. Thr./Azi. Fx, Mz 
Left Crutch Port Thr./Azi, Star Thr. Fx, Fy, Mz 

Right Crutch Star Thr./Azi., Port Thr. Fx, Fy, Mz 
Left Twerk Port Thr. Mz 

Right Twerk Star. Thr. Mz 

 
If the optimizer fails to find an exact solution it puts out a 

best fit solution based on weighting. Each of the objectives is 
weighted (surge, sway, yaw, change in value) the objectives 
with higher weights are given precedence in finding a best fit 
solution. If a best fit solution is found instead of an exact 
solution, then the integrators affected by that best fit are 
unwound. 

V. SUMMARY 

Minion has a completely redesigned control system. The 
desired result of parameter estimation was not accomplished, 
but he new control system is multi-tiered and has shown 
robustness in actual testing. In-water testing has shown that 
trajectories can be followed within 0.5 – 1.5m and station-
keeping is accurate to 1m. 

The result of in water testing shows that the problems 
experienced in 2016 were overcome and that the new system is 
capable of being successful in 2018. 

Fig 12. The output section of the trajectory controller converts the 
generated target velocities into the body frame. The output also detects 
different drive modes and the end of path condition and modifies the 
targets using this information. 

Fig 13. The level 2 PID system consists of a set of parallel PID controllers that 
control surge, sway, yaw, and yaw rate. 

 
Fig 14. The optimizer produces a best fit of the control allocation while 
remaining constrained to the achievable region. 
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