
ERAU Team Minion 1 of 11

Design of the Minion Research Platform for the
2018 Maritime RobotX Challenge

Jamie E. Barnes, Nate D. Bloom, Stephen P. Cronin, Grady C. Delp, Juan L. Halleran, Matthew R. Helms, James J.

Hendrickson, Nicholas R. Middlebrooks, Nicholas D. Moline, James B. Near III, Jefferson S. Romney, Marco A. Schoener,
Nicholas C. Schultz, David J. Thompson, Timothy A. Zuercher

Dr. Charles F. Reinholtz, Dr. Eric J. Coyle, Dr. Patrick N. Currier, Dr. Brian K. Butka, Dr. Christopher J. Hockley

Abstract— Embry-Riddle Aeronautical University (ERAU)
has made significant improvements to their fully autonomous
research platform, Minion. To complete mission tasks, Minion
uses sophisticated sensory and perception algorithms fusing
data from a suite consisting of four LiDARs, two wide-angle
cameras, and a high precision GPS/INS. This data feeds path
planning and decision-making algorithms that include neural
network visual detection and tracking, 3D Multi-Variate
Gaussian classification, and dynamic path planning.

Taking lessons learned from the 2014 and 2016
competitions, the Minion platform was developed emphasizing
refinement of existing systems. This allows it to meet the
objectives of the 2018 RobotX Challenge and the demands of
the team’s research and teaching interests. This emphasis on
refinement led to major improvements in controls, vision, and
propulsion. This also allowed easy integration of other mission
requirements, such as the racquetball turret and the
autonomous underwater vehicle (AUV) deployment system.

All of Minion’s systems are rated to survive operations in
adverse weather conditions, including high temperature, high
humidity, and heavy precipitation, and they have been tested
in these environments. In the course of development, Minion
was thoroughly tested using simulations, recorded data, and
over 100 hours of in-water testing. The result of this is an
advanced platform that is robust, reliable, and readily
upgradable.

I. INTRODUCTION

A. Background and Vehicle Overview

Embry-Riddle Aeronautical University’s (ERAU) Team
Minion includes students ranging from undergraduates to
Ph.D. candidates with backgrounds in Software, Electrical,
and Mechanical Engineering. The team draws from
experiences with many autonomous platforms, including
entries in the AUVSI Foundation’s RoboSub and RoboBoat
competitions, as well as the previous two Maritime RobotX
competitions.

From its inception in 2014, Team Minion has worked to
create a platform that is rugged, customizable, and easily
upgradable in order to meet mission requirements. All
components are designed to withstand harsh environmental
conditions including precipitation, humidity, and heat. In
2016, the Minion autonomous surface vessel (ASV)
showcased the MAST (Minion Autonomous Systems Tray),
which allowed mission-critical hardware to be suspended
under the deck, enabling greater modularity.

For the 2018 Challenge, Team Minion further worked to
improve the performance of the ASV by upgrading the
propulsion system to allow for holonomic maneuverability.
This allows Minion to sway (i.e., move sideways) to fully
control position and heading simultaneously. These
upgrades, along with software package updates, increased
testing time, and a combination of improved custom and
commercial-off-the-shelf (COTS) hardware complete a
system ready for competition.

B. Software Overview

Software onboard Minion is broken into individual
process modules that execute in parallel and communicate
asynchronously using a publisher-subscriber messaging
system. This enables modules to run at different rates and
be selectively activated and deactivated, improving overall
system efficiency. The competition software architecture is
shown in Fig 1.

Sensing is handled primarily by a combination of a
LiDAR-based Perception module, a camera-based Vision
module, and a GPS/IMU-based State module. These
modules leverage the strength of each sensing modality to
detect and classify objects to create a world map for the
autonomy modules.

The MinionTask mission tracker aggregates data from
various modules and determines the best current objective
to complete the mission. It communicates the objective to
the Path Planner which calculates the optimal path, which
the Controls module then executes. MinionTask also
communicates the objective to the sensory modules,
enabling and disabling processing algorithms based on the
current objective.

Additional modules enable Minion to localize underwater
acoustic targets with hydrophones, deploy and control an
autonomous underwater vehicle (Anchor), and interface
with a stand-alone racquetball turret (Bodyguard II). A
custom Ground Station operator control unit enables
efficient mission control over low-bandwidth datalinks.

The modules interact asynchronously through the
MinionCore inter-process communications suite. The
function of each module is discussed in Vehicle Design and
in the Appendices.

ERAU Team Minion 2 of 11

Fig 1. Minion ASV Software Architecture

II. DESIGN STRATEGY

Learning from the experiences of the 2016 competition,
several goals were created to refine the platform’s hardware
and software to deliver a more robust system that shaped
the redesign of the 2018 platform.

One key goal was the implementation of a simulation
environment. This simulation allowed integration of the
MinionTask, which drives the actions of the ASV, in a
virtual environment. While a version of MinionTask was
created for the 2016 competition, without the simulation
capabilities, it was not robust.

Robust controls were a requirement for 2018
competition. The 2016 competition revealed problems in
interfacing a controls system with a path planner and path
following system. For example, the prior implementation
did not have the ability to follow paths in reverse, posing
issues with the docking challenge. The 2018
implementation needed to address these issues while also
improving overall system robustness through failover
techniques. In case of motor or azimuthing servo failure,
the controls module was designed to adjust to the scenario
to retain positive control of the system.

The prior perception suite primarily relied on LiDAR
sensors for object detection and classification. For color and
shape-related tasks such as Scan the Code, the LiDAR
sensors provided the camera system with a bounding box to
consider for sequence detection. This created a heavy
reliance on the correct LiDAR classification of objects and
an accurate transformation between LiDAR and camera
sensors. In a maritime environment, the constant motion
requires the accuracy of the transformation be very high.
While one goal was to improve this transformation, another
was to use neural networks to allow the cameras to detect
the Scan the Code sequence from raw images.

A. Simulation Environment

For the purpose of testing mission and path-planning
software without access to the boat, a rudimentary
simulation environment was developed during the 2016
Maritime RobotX Challenge. This software was developed
using hard-coded maps and variables, but it proved its
usefulness and showed the utility of having a more robust
and versatile software package in developing autonomy for
the 2018 competition.

While a simulation environment running in Gazebo was
available for all RobotX teams to utilize, the RobotX
Gazebo model was released late in the competition cycle
and did not match the capabilities of Minion, including the
extensive perception suite and azimuth-capable thrusters.

MinionSim was developed through a series of
intermediary milestones, allowing it to become immediately
useable by the other modules in the software stack while
slowly increasing its usefulness in further developing the
other modules. Some of these milestones include producing
a synthetic state (position and pose), interpreting the
received control messages, sending objects the vessel
discovers in the virtual environment, and describing the
objects’ visual features in ways that are useful to the other
software modules.

The simulation software for the 2018 RobotX Challenge
includes a mapmaking module for generating fields of
virtual objects, and a simulation engine that interprets the
files exported from the map maker that contain the object
fields. Arbitrary maps can be created that contain
configurations of objects and tasks expected in 2018 in
order to test the ability of MinionTask. The simulation
engine generates and distributes synthetic versions of the
messages that other modules expect to receive from the
physical ASV, allowing those other modules to be tested
without needing the boat to be operating on the water.
Other functions, including a hardware-in-the-loop mode,

ERAU Team Minion 3 of 11

allow the simulation of virtual objects in the surroundings
of the physical boat, which can be used to test path-
planning and controls software.

B. MinionTask

Minion’s MinionTask provides a unique capability
designed to push the system towards the realm of true
autonomy. The MinionTask does not script missions;
instead the missions are designed through a series of tasks,
each of which has defined start conditions, point values,
and times to complete. The tasks also encode the object
classifications and rule requirements for each mission in a
common modular format that can be called by the mission
engine. Tasks exist as separate compiled code and can be
modified, added, or subtracted without modifying the
mission engine.

Minion begins each mission in a search state with no
knowledge of the course element locations and no
predetermined task order. The search area encompasses the
entire operating area and is searched in a pattern seeded by
priority locations. As objects are discovered, a ready check
function is run for each task to determine if the necessary
conditions for initiating the task have been met along with
an estimated execution time and point value. Tasks are
selected and dynamically launched by the mission engine in
real time to maximize the points scored per second of
operation time.

C. Controls

Minion’s 2018 control algorithms allow for robust
handling of the new azimuthing system and improves upon
2016’s path following algorithm. The control module is set
up in a system that cascades control from the mission
objective down to actuator allocation. This cascaded
system, in combination with a new nonlinear optimizer,
provides a far more robust control system with multiple
advantages to the 2016 design. The most significant
advantage is the ability to introduce failure, or “limp”
modes. These modes enable the platform to operate on a
reduced set of actuators and still accomplish the mission
objectives. For example, if the port azimuthing were to fail,
the system could account for full operation of the starboard
actuators and operation of the port actuator at an arbitrary
fixed angle.

D. Vision

Minion’s vision module, which uses the visible imagers
on both Minion and Anchor, supplements the information
supplied by the perception module, which relies on LiDAR
sensing. In 2016, Minion relied almost solely on the LiDAR
system due to efficiency and reliability concerns with the
Vision module. As many competition tasks require vision, it
was a key to the 2018 strategy to address this deficiency.

Improving vision was addressed by using convolution
neural networks (CNNs), which are a type of deep learning
network, to increase the speed and accuracy of the vision
classification and detection networks. The computational
burden of these networks is also offloaded to the system

GPUs to prevent slowdown of the other critical systems on
Minion.

Ultimately, CNNs are trained using Tensorflow V1.5 to
accomplish the Scan the Code task, identify buoy colors,
and identify the shape and color of the target on the dock.
These CNNs were all created from retraining already
constructed networks. This design feature allows crossover
of code between different networks and tasks. For the 2018
competition, the Mobilenet V1, Inception V2, and Inception
V3 networks are all used to allow for a trade-off between
speed and accuracy as well as classification and detection.
Using this approach allowed for the easy implementation of
a new network for the sub deployment task as well, since
the code to run the networks is already compiled and all
that is needed is retraining a network.

E. Electrical

To power and control the improvements to the
propulsion, sensor, and payload systems, much of the
electrical system has been improved from 2016.

The largest changes to the electrical system are the
changes made for the new propulsion system. New RDPs
demanded a change in motor controllers; new degrees of
freedom in the propulsion and vehicle controls system
required additional actuators and their associated power
distribution and communications circuits. An off-the-shelf
motor controller was integrated with the existing safety
systems and a custom circuit board was designed to power
and drive both the azimuth degrees of freedom and the
thruster retraction actuators.

Each payload system, including the turret and the AUV
deployment system, also required control circuitry. To
improve maintainability of the whole system, the circuit
board designed for the azimuth and retraction actuators
included some extra peripherals that allowed its common
use for the control of the payload systems, increasing field
maintainability.

A new feature that has been added to the electrical
systems is an upgraded external indicator system.
Supplementing the basic light tower of the previous
competition, a system of large LED arrays that is an order
of magnitude brighter has been added to allow bystanders
and operators to easily know the status of the system.

A problem that was found in the previous competition
was that the vehicle’s motor noise far exceeded the
amplitude of the pinger signal, rendering the hydrophones
useless while the motors were in operation. This problem
has been remedied with the addition of a 5-stage analog
filter and gain circuit that attenuates the motor noise.

Please see Appendix H for more electrical information,
and Appendix F for more information on the hydrophone.

III. VEHICLE DESIGN

A. Design Process

The design process for Minion incorporates techniques
from AGILE [1] for both hardware and software
development. A 2-week sprint cycle was adopted, as well as
weekly stand-up meetings. Stand-up meetings require every

ERAU Team Minion 4 of 11

member of the team present their progress in a fast-paced
manner with few technical details. This permits every
member of the team to be versed in the progress of the
entire project. A 2-week sprint cycle concludes with an in-
water test on the final day. This provides a visible metric of
progress for all team members, as well as incentive to
accomplish all goals within a sprint cycle. A 2-week sprint
may also conclude with a design review for projects that
can’t be tested within a 2-week sprint.

B. Major Changes

1) Propulsion Redesign
Following the 2016 RobotX Competition, Minion’s

propulsion system was redesigned to address weaknesses
that were limiting the maneuverability of the platform. Two
“motor pods” mount to existing hardpoints on the WAM-V,
one at the aft of each pontoon. The pods serve a dual
purpose of housing the propulsion system and providing
required buoyancy to the WAM-V. Each motor pod houses
a RDP thruster. These are a type of marine electric motor in
which a brushless motor is built around the propeller to
improve efficiency and reduce noise compared to electric
trolling motors. It also minimizes the risk of tangling with
seaweed or anchor lines and ensures the platform does not
disrupt wildlife. Minion’s 2016 Torque-Jet RDP thrusters
been replaced with Copenhagen VM Asymmetric thrusters
in 2018 for improved efficiency, thrust, and reliability.

The focus of the propulsion system redesign was to add
azimuthing and beaching capabilities to the selected
thrusters. Allowing the thrusters to rotate, or azimuth,
improves maneuverability because it allows control over
the magnitude and direction of force from each thruster,
rather than just magnitude. Independent azimuthing also
improves robustness as it allows the platform to operate and
maneuver even if only one thruster is functional. To limit
the impact of the additional complexity on reliability, the
azimuthing thrusters can be mechanically locked, returning
the platform to differential thrust. Azimuthing is achieved
with Volz DA-30 servos, allowing the thrusters to rotate ±
85°. These powerful servos were chosen due to their
environmental ratings and ability to rotate at 150°/s while
producing 70.8 lbf-in of torque to smoothly and quickly
azimuth the thrusters, even under maximum thrust.

The thrusters can also be retracted from the water,
reducing the human intervention required when launching,
retrieving, and beaching the ASV. Linak LA-36 linear
actuators raise and lower the thrusters. Due to their worm
drive, these actuators lock in position when not powered.
Retraction and deployment each take under 10 seconds.
Appendix D further details the design and analysis behind
the new propulsion system. The final propulsion system is
shown in Fig 2.

Fig 2. Azimuth and beaching enabled propulsion system.

2) Racquetball Turret

For the purpose of completing the Detect and Deliver
task, Team Minion opted to develop a logistically simpler
but more functionally robust solution than the air-powered
turret used in 2016. The turret, Bodyguard II, is
independently powered from the rest of the vehicle by a 6-
cell lithium-polymer battery in a waterproof housing, rather
than requiring a source of compressed air. This simplifies
the beach operations that will be necessary to recharge the
turret, and is accomplished by changing the method of
firing from a compressed-air cannon to two sets of counter-
rotating wheels.

The 2018 turret, shown in Fig 3, is mechanically simpler
than in 2016. Bodyguard II operates on two four-bar
linkages, powered by HiTec D845WP Waterproof servos.
These servos, when operating at 6V, can produce 35 in-lb
of torque through their 180 degrees of motion. The
mechanical advantage of the four bar linkages, which
reduces the azimuth range of motion to 60 degrees, and the
altitude range of motion to 20 degrees, amplifies the torque,
offering smoother and stronger responses to the changing
positions and angles of the WAM-V deck and target.

The active targeting system built into Bodyguard II is
enabled by a Microsoft Lifecam, with processing taking
place onboard the turret using a Nvidia Jetson TK1. Once
triggered by a task running on the primary Minion
computer system, the video feed from the LifeCam detects
the center of the Detect and Deliver target. The servos then
move to position the target in the center of the camera view,
and the turret fires.

Fig 3. Bodyguard II Racquetball Turret.

ERAU Team Minion 5 of 11

3) Underwater Capability

a) AUV

Anchor, Minion’s deployable AUV, is a BlueROV2 from
Blue Robotics, and was selected because of its robust
design, compact size, and open-source software. The
BlueROV2 uses two Blue Robotics T200 thrusters to
control depth and an additional four thrusters for holonomic
control in the horizontal plane. Anchor is controlled by
Minion via a Mavlink stream by processing a video stream
from Anchor’s onboard low-light 1080p USB camera.

b) Deployment

Anchor is linked to the ASV with the Blue Robotics
Fathom Slim Tether that carries 2-wire ethernet and
includes Kevlar, so it can act as both a physical link and
data link. A custom ratcheting winch spools the tether to
deploy and retrieve the BlueROV2. The winch itself is a
large spool driven by an Ampflow A28-150-F48 48V motor
through a 3-stage gearbox. The winch is mounted on
Minion’s modular under-deck payload tray, the MAST,
shown in Fig 4.

Fig 4. Submarine deployment module mounted on the MAST.

Since the deployment system’s location on the MAST is

port of the ASV’s centerline, a spring-loaded swing-arm
transfers the sub from the deployment tray to the centerline
of the platform. This minimizes the risk of the sub hitting
Minion’s pontoons during retrieval, seen in Fig 5. More
details on Anchor and its deployment system are in
Appendix B.

Fig 5. BlueROV2, Anchor, and deployment showing swing-arm.

4) Path Planning & Controls Approach

Two modules are responsible for acting on autonomous
behaviors: the Path Planning and the Controls modules. The
Path Planning module is responsible for taking objectives
from MinionTask and producing a trajectory that
accomplishes the objective. The Controls module takes
those trajectories and commands the vehicles actuators. For
details on controls and path planning, see Appendix L.

The Path Planning module takes input of different
objectives (waypoint, path with constant heading, station
keeping, circling, docking) that produce trajectories for the
Controls module. The other four, (stop, heading hold, point
hold, direct) are special cases that do not produce
trajectories and disable parts or all of the Controls module.

The Path Planning module coverts the nine tasking
objectives into three possible controls modes: stop, direct,
path. In the stop mode the vehicles actuators are disabled.
In the direct mode the Controls module is receiving surge,
sway, and yaw targets directly. The path mode causes the
Controls module to follow a trajectory to an objective.

The trajectory controller in the Controls module is time-
based leader-follower technique. Trajectories are smooth,
continuous functions of time. The controller first calculates
an error using the current vehicle state and the target state at
time 𝑡. Then, the controller calculates an error between a
future predicted state and the target state at time 𝑡 + 𝑡௟௘௔ௗ .
A weighted average of the resulting control outputs is used
to command the body controller.

The body controller consists of a set of gain-scheduled
PID algorithms to control the following states: yaw, yaw
rate, sway speed, and surge speed. The PIDs also have
ramped inputs and output rate limits. The output of the
body controller stage are a set of desired forces and
moments. These are given to the actuator allocation stage.

The last stage of the Controls stack is actuator allocation.
The allocation stage attempts to produce those forces and
moments with the available actuators. The allocation
problem is solved with a nonlinear optimization using
quadratic sequential programming. The nonlinear optimizer
considers the command limits of both the azimuthing
actuators and the thrusters, as well as minimizing the
amount of change in setting for the actuators. If an exact
solution cannot be found, then a best fit solution is
produced instead using a relative weighting of the
objectives. The currently set modes are differential (no
azimuth), full (complete azimuth), crutch mode (only one
available azimuth), limp mode (only one motor/azimuth
pair), and “twerk” mode (only a single, non-azimuthing
thruster).

IV. EXPERIMENTAL RESULTS

A. Test Approach

1) Simulation & Playback
In between tests, the software team uses simulation and

playback tools to develop and improve algorithms.

ERAU Team Minion 6 of 11

2) Vehicle Shakedown
A vehicle shakedown takes place the day before a test to

verify changes and ensure compatibility between modified
code throughout the past sprint. This procedure helps
ensure that time is not wasted during a test debugging
incompatibility between the software modules.

3) Test Days
A test day occurs the final day of each 2-week sprint. In a

standard AGILE method, this would be the member demo.
During a test, the platform is deployed in the river with a
chase boat and may be run in tele-operated or autonomous
modes. These tests may be used to find discrepancies
between simulation and the real-world environment.
Similarly, it offers a good opportunity for logging data from
the sensors to improve algorithms in the next sprint.

4) Logging
The Minion platform has multiple methods of logging to

ensure all the relevant data is captured while on the water.
Each module automatically logs all MinionCore messages
or incoming sensor data while open. However, for some
modules like vision, these logs are compressed and may not
provide the best information for new algorithms. There is
also a method for taking uncompressed manual logs.

5) Test Debrief & Sprint Planning
After a test, there is a debrief for all team members. This

debrief covers everything that was accomplished during the
test, as well as anything that needs to be accomplished for
the next test. These debriefs are used to begin planning for
the next 2-week sprint cycle.

B. Capabilities Testing

1) Perception
The Perception module is responsible for the detection of

waterborne objects, mapping those objects, and determining
if any of the detected objects are a competition object. The
goals for this system are:

1. Detect objects within 25m to bow, port, and
starboard, 10m to stern

2. Identify object location and size to within 0.5m
3. Map an area up to 1 sq. mile
4. Classify competition objects within 5 seconds of

detection
5. Classify objects with over 90% accuracy and less

than 20% false positive rate.
The detection, mapping and classification methods of the
perception module are all detailed in Appendix E.

The accuracy of the detection and mapping system was
found to be approximately 20cm for stationary objects
within 20m of the vessel. This accuracy can be seen in Fig
6 where the pier pylons can be easily distinguished.
However, all competition objects are floating, and can
therefore have their point clouds distorted by the wave
induced motion. The point clouds can still be easily
recognized as the associated object, as evidenced by the
TaylorMade Buoy and Light Tower object in Fig 7. Both
Fig 6 and 7 were created using empirical data collected
from on-water testing and then re-played through Minion’s
perception module.

Fig 6. Satellite view of a pier compared to the 3D point cloud captured

by Minion. The yellow polygon surrounding the bottom of the pier
represents the mapped object boundaries used by the path planner.

Fig 7. Point clouds for a floating TaylorMade Buoy and Light Tower.

The CAD Model for each object has been placed on the figure in
the location the object was detected. The CAD model for the light
tower does not include the guide ropes on each corner of the base
which are connected to the pole just below the panels.

Object features used in classification were collected from

four competition objects during in-water testing, which are
unique in spatial capabilities or near infrared reflectivity.
The confusion matrix of Table I shows the accuracy of
classifying these objects across a total of 1863 samples. It
should be noted that a tall buoy with reflector refers to the
green and red TaylorMade buoys, while the general Tall
buoy class is a white TaylorMade buoy or totem.

Table I

CONFUSION MATRIX OF CLASSIFICATION RESULTS

 Test Class

Tall Buoy A3 Buoy Light

Tower
Tall w/o

Reflector
Unknow
n

Predicted
Class

Tall Buoy 97.7% 17.4%
A3 Buoy 97.2% 1.1% 9.2%

Light Tower 95.8% 3.2%
Tall w/o Reflector 98.5% 20.9%

Unknown 2.3% 2.8% 3.1% 1.5% 49.3%

ERAU Team Minion 7 of 11

The results show that the goal of over 90% accuracy has
been achieved with the lowest classification accuracy being
95.8%. Similarly, the false positive rate is under 20% for
every class with only unknown objects even exceeding a
2% false positive rate. While not a specific goal, false
negative rates are also below 4%. These results, combined
with the history-based filtering discussed in Appendix E,
allows the MinionTask to trust the class label given by the
perception module.

2) Vision

The vision module is responsible for identifying the color
of objects and shapes used in competition. Color
classification is required to complete Scan the Code, while
shape and color detection are required for the Detect and
Deliver task as well as the Docking task.

a) Light Tower Task

A combination of three different CNNs was used to
determine the sequence of the tower. The first network ran
using the Faster RCNN Inception V2 (Coco) detection
model trained with 50 proposal regions to crop the raw
image from the camera down to the light tower. From the
tower image, the single-shot detector (SSD) mobilenet V1
(Coco) was used to crop the image down to the light panel.
Once the light panel image was obtained, a final network
uses the Inception V3 classification framework to output
the color of the panel.

This task ran at approximately 7 frames per second to
obtain this number of samples per sequence. Next, to
determine the sequence, a detector was implemented which
used a moving mode to determine the color of each panel.
Using this method, the sequence was output successfully in
all cases except when the sun washed out the colors on the
panel. In this case, the boat would rotate around the light
tower and attempt to classify the panel in better lighting
conditions. Fig 8 shows an example of the proposed regions
(blue bounding box) of the light tower and panel.

Fig 8. Light tower and panel prosed areas of interest.

The results in Table II show a robust system that can

effectively crop down to the light panel when the light
tower is in range during the task. These networks worked in
bad lighting conditions as well since the CNNs did not rely
heavily on color as a determining factor in the detection
process. This was not true, however, for the panel color
detection as this CNN was almost solely based upon color

of the panel, since that is the only difference between red,
green, and blue.

Table II

COMBINED SPEED AND ACCURACY OF LIGHT TOWER NETWORKS

Network Purpose Type
Speed
[ms]

Accuracy
[%]

Inception
V2

Crop Tower Detect 100-150 100

Coco
Mobilenet

V2
Crop Panel Detect 20-40 99.7

Inception
V3

Identify color Classify 20-40 98.2

Combined All Both 140-230 97.9

An overall results and confusion matrix is shown in

Table III for an 855-image set over two different sequences.
This data shows that the color detector is robust as well and
only fails to work well when the sun washes out the panel.

Table III

LIGHT PANEL COLOR CLASSIFICATION NETWORK RESULTS

The final step in predicting the sequence is the use of the

sequence detector, which uses the results of the CNNs in
real time. The detector uses a moving mode of the last five
predictions to vote on the actual prediction. This is repeated
until a sequence is detected; a black panel, 3 non-black
panels, and a final black panel. A sequence is output once it
has been voted for three times in the allotted time. If no
sequence is detected in this time, the boat will circle around
the tower and try once more.

b) Object Classification

The other use of vision for Minion was classifying the
different colored buoys and the signs for docking. Both
tasks were also completed using the Inception V3
classification network. These networks were retrained
individually for the different tasks they were applied to.

For the buoys, the network was segmented into
classifying the buoy as either red, green, blue, yellow,
white, or black. Only color was of importance, so the type
of buoy did not matter and was not accounted for in the
classification. This was possible since the LiDAR data was
accurate enough to classify the type of buoy.

A confusion matrix is shown in Table IV for the general
performance of this network. For this task, if a color could
not be identified with over a 70 percent confidence and a
majority vote over a range of 20 images, the color is
returned as unknown. This was done because a false
positive is almost always worse than having an unknown

Black Blue Red Green

Black 100.0%

Blue 96.4% 3.0%

Red 100.0%

Green 3.6% 97.0%

Test Class

Predicted
Class

ERAU Team Minion 8 of 11

color, as other logic can be applied to determine the
corrective action to take.

Table IV

CONFUSION MATRIX FOR BUOY COLOR CLASSIFICATION

The second classification network that was trained was

for the docking signs. This network was used to detect the
shape and color of the different docking signs. The same
process was used for this task as was for the buoys. The
network identified the color (red, green, or blue) and the
shape (cruciform, circle, or triangle). Due to time
limitations, there was no available data for testing this
network.

3) Acoustics

Localization of the pinger was accomplished utilizing an
ultra-short baseline array of four hydrophones and a
multilateration processing algorithm. These sensors were
arranged in a tetrahedron, allowing for the position of the
source to be calculated as opposed to the bearing, which
was employed in the prior implementation on the platform.
This approach allows for more robust means of rejecting
invalid returns, as the location can be compared to the
buoys defining the gate. The specifics of the system as well
as a detailed discussion of the algorithms implemented are
in Appendix F.

At a high level, the goals of the system were to provide a
more robust system than the prior iteration of the
technology that could leverage the positioning information
with enough accuracy. This translated into requirements
would be:

1. Bearing accuracies (on surface plane) of ±5 deg
2. Positional accuracy within ±1m on (surface plane)

To validate whether or not the algorithm achieved these
results, two forms of testing were employed. Signal
simulation models allowed for rapid validation of the
behavior of the full array; pool testing allowed for a
controlled environment where the source could be easily
moved and its location measured. These two forms of
testing allowed for a confident deployment of the system on
the platform.

To process the data, the raw waveform, Fig 9, is taken
and the pulse, Fig 10, is extracted using frequency analysis.
This allows the clean signals at the front of the incident
pulse, Fig 11. At this point, phase analysis can be
performed in order to compute the position.

Fig 9. Raw waveform – 0.5 second capture.

Fig 10. Extracted pulse (seen at t-0.15s above)

Fig 11. Wavefront Signals (seen at t=0.001s above)

Evaluating the position involves a numerical solution to

the location of the pinger in XYZ space. For the signals
above, doing so yields a position offset of (10,11,1) m.
Based on the measurements of the pinger and arrays
location, this results in a positional error of 0.2 and 0.18 m
and an angular error of -0.1 deg in the surface plane. These
performance results were repeatable in subsequent testing,
achieving errors less than that of both the angular and
positioning requirement.

C. Mission Testing

The break-down of each mission’s testing, both in
simulation and in-water, can be seen in Table V. The result
of this extensive simulated testing was 58 total tests run
across 5 different tasks, including: Navigation Gates,
Acoustic Gates, Scan the Code, Obstacle Field and Totem
Circling, and Docking. This extensive simulation testing
helped ensure that the limited in-water test time was used to
tune task run times and thresholds. As a result, the
approximately 13 hours of in-water testing were used to
refine the task parameters and to find edge cases to further
test in simulation.

ERAU Team Minion 9 of 11

Table V

MISSION TESTING RESULTS

Mission
Simulation
Test Hours

In-Water
Test Hours

Navigation Gates 20. 5
Scan the Code 20 5
Acoustic Gates 10 2

Obstacle Field and
Totems

8
-

Docking - 1
Total 58 13

1) Simulation Tracker Results

Of the five tasks that were tested, four of these were able
to be tested in MinionSim. The tasks that were tested in the
simulator were the Navigation, Scan the Code, Acoustic
Gates, and Obstacle Avoidance and Totem Circling tasks.

The Navigation task was the most heavily tested task in
the simulator. Since it is the entry key to all testing that will
need to be done on the course, it was critical that this
challenge would be able to be robustly and reliably
completed. In the simulator, the team was able to test
several edge cases such as the gates being severely out of
spec compared to the listed dimensions in the task outline.
This included gates that were upwards of 40 meters apart
and in skewed configurations, such as the case shown in Fig
12. Testing in the simulator also allowed testing of the
platform’s ability to complete this challenge both with and
without color classification information being applied to the
buoys. Through over 20 hours of simulator testing
throughout the logic development phase, this task was
proven to be highly reliable.

Testing of the Scan the Code challenge was fairly limited
in MinionSim. Without the ability to simulate the sequence
in a way that would allow the vision module to be tested,
simulation was limited to checking the movement routines
of the platform throughout the task. However, this did allow
for around 20 hours of behavior and waypoint testing in
simulation.

Similar to the Scan the Code task, limitations in
MinionSim prevented the team from simulating pinger data,
which would be used to determine the start gate to cross
through. As a result, the platform would randomly guess
and then transit through one of the three gates before
completing the rest of the task.

Fig 12. Navigation gate simulation using 40+ meter long, skewed

gates

Although the pinger could not be simulated, MinionSim

was more than capable of testing of edge cases and of
situations that would be out of specification for competition
requirements. Some of the edge cases tested included
unevenly spaced gates, gates with the start buoys positioned
above and below the line of fit (see Fig 14) and elongated
start gates. The robustness of the module was also tested by
simulating objects with incorrect or missing classifications
as well as missing color identifications.

While testing this task, the circling of a specified totem
was also tested, which allowed for behavior validation for
the circling that would be done for the totem task. This also
included testing the behaviors of the platform when only
one buoy was detected in the region where a totem would
be expected for circling. As a result, nearly 10 hours of
successful simulator testing for the acoustic gate task was
performed.

Fig 13. Acoustic gates with skewed, unevenly spaced entry gates.

ERAU Team Minion 10 of 11

2) In-Water Tests
As was to be expected, in-water testing revealed logic

bugs and edge cases that were not initially considered when
testing each of the tasks. During the time that was available
for testing each challenge, four of the five tasks were
attempted on the water. These included the Navigation
gates, Scan the Code, Acoustic gates, and Docking
challenges. Through all this testing, an impressive 13 hours
of tasks testing was accumulated.

 In-water testing of the Navigation gates challenge
showed that several edge cases needed to be accounted for
in the task logic. The first of these edge cases discovered
was when the start gates were skewed. This was solved by
adding a check in the logic for possible skewed gate
conditions, further described in Appendix I. However, after
this fix was implemented, it was found through in-water
testing that it causes the boat to plot waypoints away from
the end gate location to correct for what it thought was a
skewed gate when only one of the end gate buoys had been
classified. This problem was then solved by making the
skewed gate case toggleable in the configuration file. Real
world testing also showed that, due to potentially slow
classification times, there was a need for this task to be able
to find both the start and end gates with limited, and in
some cases incorrect, classification information from
Vision and Perception. After these changes were made, the
navigation gates challenge was again attempted in the
water. The platform was able to successfully navigate
through the gates during 10 hours of in-water testing.

Testing of the Scan the Code challenge in real world
conditions proved to be highly successful. This testing
showed that scan angles, which allowed the sun to appear in
front of or behind the ASV, hindered the sequence
accuracy. The configuration files were changed to allow the
platform to approach the tower at more ideal angles.
Testing of this task also showed that the ideal scanning
distance to get fast, reliable sequence returns was anywhere
from 10-15 meters from the light tower, which was also
edited in the configuration file. Testing of this task proved
to be extremely successful with around 10 hours of
successful in-water testing.

The Acoustic Gates task in-water testing revealed that the
details about the ASV’s real-world handling characteristics,
primarily Minion’s turning radius, were not accurately
modeled in the simulation environment. As a result, it was
determined that the circling radius for the end buoys was
too tight, so this parameter was added into the configuration
file so it could be tuned. It was also discovered that the
intermittent waypoint generated after the ASV crossed
through the gate, but before it went to search for the buoy to
circle, was too close to the gate buoys. This would cause
the ASV to make large, circular paths that would often put
the ASV back through one or more gates while attempting
to achieve the intermittent waypoint. This was then
corrected in the Acoustic Gate task code by making the
parameter for how far out the waypoint was placed past the
gates a tunable parameter. Unfortunately, the only element
of this task that was unable to be tested on the water was

the gate detection via the hydrophones. However, even
without this element, the ASV was able to successfully
detect the gates, navigate through a randomly selected gate,
find the required buoy to circle, and circle that buoy in the
correct direction. As such, there were only 5 hours of
successful attempts at this task on the water.

 The Docking challenge was one that was only able to
be simulated on the water through hardware-in-the-loop
simulation of the dock. However, this did allow the logic
for this challenge to be refined and tested. Through the in-
water testing that was done, it was determined that the
object growth that was done by the path-planner in order to
ensure the ASV did not ram into obstacles prevented the
ASV from being able to successfully complete the docking
challenge. Thus, it was noted that there needed to be a
direct mode in the Path Planner that would ignore obstacles
in the way and simply drive to a point. It was also noted
that a fall-back option that would be able to directly
command the controls module, regardless of obstacles in
the path, would need to be developed or revived. This
resulted in emergence of Direct Mode, which overrides the
path-planner and sends direct messages to the controls
module. Both additions would allow the ASV to
successfully complete the docking challenge.
Unfortunately, this resulted in only around an hour of in-
water testing for the docking challenge.

V. CONCLUSIONS

ERAU Team Minion has improved on its 2016 RobotX
entry by improving the electrical, propulsion, controls,
tasking, simulation, and vision capabilities to address the
2018 challenges. Additional new capabilities include
azimuthing control and a deployable AUV. The system has
been extensively tested with hundreds of hours of
simulation development and over 100 hours of in-water
testing. The result is a highly capable autonomous maritime
system capable of competing successfully in RobotX 2018.

VI. ACKNOWLEDGEMENTS

ERAU Team Minion acknowledges the RobotX
sponsors, AUVSI and ONR. The team also wishes to
acknowledge its sponsors: Glenair, Velodyne Lidar, TORC
Robotics, Volz Servos, Teledyne Dalsa, Solidworks,
Mathworks, ERAU COE, ERAU SGA, Copenhagen
Subsea, Pelican, the Paul B. Hunter and Constance
Charitable Foundation and all other generous sponsors.
Finally, the team would like to thank all those individuals
who have helped us in this project.

VII. REFERENCES

[1] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. & Thomas, D.
(2001). Manifesto for Agile Software Development
Manifesto for Agile Software Development.

ERAU Team Minion 11 of 11

VIII. APPENDICES

A. Situational Awareness
B. Autonomous Underwater Vehicle
C. Racquetball Turret
D. Propulsion Systems
E. Perception Systems
F. Acoustic Systems
G. MinionCore Inter-process Communications
H. Electrical Systems
I. MinionTask Mission Planner
J. MinionSim Simulator
K. Vision Systems
L. Controls & Path Planner

ERAU Team Minion 1 of 6

Appendix A: Operator and Onlooker Situational

Awareness

Grady C. Delp, Marco A. Schoener

I. INTRODUCTION

With the increasing presence of autonomous vehicles in

everyday life, it is necessary to make the intentions and actions

of a vehicle known, not only to the operators and occupants, but

to onlookers in the surrounding environment. Team Minion has

developed a set of novel solutions to this problem, making use

of the modular nature of the Minion platform, and its software

stack. These solutions are three-fold:

• MinionTab Tablet Interface

• MinionG Ground Station Interface

• Lighted Indicator Panel Modules

II. MINONTAB TABLET INTERFACE

Making a return from 2016, the MinionTab Tablet Interface

has a new and more fully-realized user-interface, giving it a

more streamlined appearance and providing greater ease-of-

use.

MinionTab fulfills the 2018 Maritime RobotX Challenge

requirement of a “Judges Display”. The tablet enables the user

to remain updated on the status of the Minion platform during

a mission run. By displaying information about Minion’s

physical location, health, and modes, as well as information

about mission tasks in progress vehicle hardware and software

The interface (Figure Fig 1) is composed of two panes: the

navigation panel and the boat monitor.

The navigation panel displays the different boat monitoring

panels, gives current general mission state and statuses of the

boat, and contains user settings for the application. The buttons

are set to display the available status of the boat. The general

information underneath the buttons give updates of mission

tasks; boat speed and bearing; the current wind speed and

direction; and safety and control states. And the user-settings

allow the user to change unit systems for data display.

The boat monitor comprises of the up-to-date status of the

boat. This panel contains interactive elements to view certain

aspects of the boat. For example, the boat tab can be zoomed in

or use buttons to display the search grid as the mission runs.

A. Mission Tab

The Mission tab (Fig. 2) displays all of the scoring elements

required for the “Judge’s Display”, the mission and run-block

time, and a list of the compiled tasks. Mission information

comes directly from the Mission Planner running off of the boat

to keep up-to-date with each run. The tasks are as follows: Scan

the Code color sequence; the detected active entry and exit

pingers; the two colors and shapes both for the Dock Signs and

Detect and Deliver targets; and which totems are supposed to

be circled.

B. Map Tab

The Map tab (Fig. 3) displays the boat’s environment which

includes the boat (red), the visibility horizon (light blue),

objects in the environment (colored by class), the trail of the

boat’s movements, the search grid (not shown), and the current

object path. The boat’s position is displayed as latitude and

Fig 2. Mission Tab of the MinionTab UI displaying example results for the

scoring elements.

Fig 1. The MinionTab interface overall display.

ERAU Team Minion 2 of 6

longitude.

The map can be zoomed in and out using the zoom slider (on

the right) or a pinch gesture. The search grid and the boat’s trail

can be toggled on and off.

C. State Tab

The State tab (Fig. 4) displays the states of the boat in a set

of history graphs. The states that can be viewed are translational

speed, rotational speed, and the angles. The history can range

between the previous 10 to 60 seconds with the ability to pause

them.

D. Cameras Tab

The Cameras Tab (Fig. 5) displays the images that the boat

streams out. Each available camera can be toggled to show up

to two of the available cameras.

The boat is equipped with cameras on the base and auxiliary

platforms (submarine and turret). However, the GigE cameras

on the platform transmit too much data to be handled over a

wireless link. To alleviate this issue, the GStreamer [1] package

was used to enable both end-to-end streaming and hardware

encoding/decoding.

The boat hosts a server awaiting connection requests from

viewer devices via MinionCore message. This permits any

number of users to request individual video streams at any

bitrate. The server multi-casts the streams such that no duplicate

streams are used, minimizing the bandwidth overhead of the

video.

E. 3D Visualizer Tab

A 3D Visualizer tab (Fig. 6) was desired to display an

accurate representation of the world as viewed by Minion. This

visualizer was built on the PCL [2] library to handle large

numbers of point clouds and polygons. On the platform, the

visualizer can view the raw point clouds and the processed

occupancy grids. However, for remote users, the visualizer may

show a CAD model of Minion, polygons representing each

object with class information, and the planned path of Minion.

Fig 3. The Map tab of the MinionTab UI that shows the boat moving about

its environment.

Fig 6. The 3D Visualizer Tab in the MinionTab UI that displays the

boat, path, and objects in 3D.

Fig 5. The Cameras tab of the MinionTab UI that displays the boat,

submarine, and turret cameras.

Fig 4. The State tab of the MinionTab UI that displays the measured

speeds and angles off of Minion for up to 1 minute of history.

ERAU Team Minion 3 of 6

F. Boat Tab

The Boat tab (Fig. 8) displays the hardware statues and

operations for the boat. A picture of Minion is displayed with

colored components of the boat to determine which component

statuses can be viewed. The color of these components also

determine a general idea on its connectivity and operation

status. When the user clicks on the component, a popup displays

that specific information.

III. MINIONG GROUND STATION INTERFACE

Minion’s Ground Control Station (GCS) has been revamped

to focus on providing for a full interface for the vehicle and its

software, removing the need to use Remote Desktop to interface

with on-board modules. The 2018 GCS has the ability to

monitor the vehicle, the environment, and each active module

in a concise interface (Fig. 7).

The GCS interface is split into two panes: the environment

monitor (left) and the module monitor (right). The environment

monitor displays the vehicle (red), the visibility horizon (light

blue), objects in the environment (colored by class), the current

objective path (not shown), the current and desired heading

extending from the boat (white and red respectively), the

azimuth angles from the port and starboard motor pods (red and

green respectively), control target (not shown), and the search

grid (not shown).

 The environment monitor has a set of ease-of-use features for

the user to interact with. The user can zoom in and zoom out,

follow the boat, or snap the map to show all existing objects.

Distances on the map can be measured via two user-selected

points. The user can use the environment pane in order to input

values for the monitor panes (i.e. drawing the search grid

bounds by clicking on the environment pane).

Above the module monitor is the safety monitor that

indicates the user on battery voltage, safety state, and

autonomous state.

A. Mission

The Mission monitor (Fig. 7) displays the boat’s current

mission tasks, mission and run-block time, mission generation

and loading, and general mission parameters. The task

generator can import pre-existing missions or create new

missions to send to the Mission Planner module. The user can

generate a new search grid boundary by clicking on the

environment monitor.

Fig 8. The Boat tab in the MinionTab UI that displays the status of the

boat hardware as popups.

Fig 7. A screenshot of the opening panel of the MinionG Ground Station. On the left is the environment monitor. On the right the mission module monitor is

currently selected. The Mission module monitor allows the user to communicate and generate missions from the Ground Station for each run.

ERAU Team Minion 4 of 6

B. Perception

The Perception monitor (Fig. 9) displays the LIDAR health

status, mapping parameters and filters, request to log specific

LIDAR files, and send general perception parameters. This

monitor is intended for quick health check on the perception

algorithms and sensors and monitor the applied settings.

C. Vision

The Vision monitor (Fig. 10) displays the currently streamed

images from the boat and submarine cameras, requests for

specific logs to be taken, and general camera and Vision

settings. The image incoming will be from the Vision module’s

Gstreamer tool to send compressed GiGE images over the

network. The images displayed will be either raw or processed

with overlaid LIDAR points to verify the cameras are

calibrated. The images are also selectable to be displayed

individually or both port and starboard cameras simultaneously.

D. Controls

The Controls monitor (Fig. 11) displays the history of all

states, displays desired and current histories of specific

controllable states, set gains and autonomy modes, request

specific logs, command setpoints for control tuning, and view

the propulsion system’s commands, feedback and detected

faults.

This monitor is primarily a verification of control stability on

the water. This tool will show what the boat wants to do versus

what it is currently doing. The history keeps the previous 140

seconds of data to track patterns and give time to verify data.

E. Path Planner

The Path Planner monitor (Fig. 12) sends path settings to the

Path Planner module, sends waypoints via user-selection, and

displays the path calculation and error statuses. This monitor is

primarily for verifying the correct settings are in the planner

before the planner begins calculating paths. And during testing

and controls verification, clicking on the environment monitor

places a waypoint location and waits until the user hits the

Fig 11. Communicates settings and objectives to the controls module

and displays Minion's desired movement.

Fig 9. Communicates and sets perception settings from the Ground

Station to the Perception module.

Fig 10. Displays the streamed images from Minion’s Vision module.

ERAU Team Minion 5 of 6

“Send Wypt” button below the module monitor.

F. Hardware

The Hardware monitor (Fig. 13) displays histories of the

propulsion system commands and feedback. The commands

displayed are the thruster throttle commands and the azimuth

angles. The feedback histories are the motor RPMs,

temperatures, and angles; the motor controller temperature,

voltage, and current draw, and the RC controller’s PWM

channels.

IV. LIGHTED INDICATOR PANEL MODULES

When operating in the early interim between the 2016 and

2018 Maritime RobotX Challenges, it was evident that the

lighted status indicator, as specified by the competition

organizers, and built into the Minion ASV since 2014, was

insufficient for operation in bright daylight. Lighted indicator

stacks are typically designed for use in factory-floor

environments. As such, they are not readily available in

configurations that would make them adequately visible in

outdoors usage scenarios. Team Minion made the decision to

develop a purpose-built indicator system that would be

daylight-visible and provide enhanced situational awareness for

onlookers and persons in the environment immediately

surrounding the Minion ASV.

A. Construction

The lighted indicator panel modules are constructed of

widely available WS2812B individually addressable RGB LED

modules. These were sourced in the form of pre-assembled

flexible arrays, which are low-cost and easy to implement for

this application. These arrays are available in a variety of sizes

and pixel pitches; the team opted for the narrowest array that

would still provide ample numbers of pixels for display of

simple text and graphics. This minimum size leads to panels

that are less than four inches tall, and vary between seven and

thirteen inches wide.

These LED arrays were built into water-resistant housings that

include thermally conductive material to sink the heat

dissipated LEDs into the frame of the housing. The housings

are mounted to the Minion ASV utilizing the picatinny-style

Fig 12. Communicate settings and statuses to the path planner module.

Fig 13. Indicates the statuses and commands of the propulsion system.

Fig 14. Photograph of the indicator panel modules dry-fitted to the

Minion ASV during a sensor mount overhaul.

Fig 15. Render depicting indicator panel modules mounted to the

starboard side of the Minion ASV.

ERAU Team Minion 6 of 6

attachment points positioned around the periphery of the deck

(Fig. 14, Fig. 15). The front face of the housing is a matte-finish

acrylic, which serves to diffuse the light from the LEDs as well

as to prevent glare from the sun that may affect nearby

onlookers.

Power for the LED arrays is provided through a 5V regulator.

Signal for the panel is driven by an LPC1768 microcontroller,

which is seated into the SPI expansion port that is built into the

BUGS safety system and acts as a daughterboard to the BUGS

system. This provides it with direct information as to the safety

state of the system and also allows BUGS to pass along

information from the software running on the Minion ASV

primary computers. This information determines which of the

three modes the indicator panels operate in.

B. Safety Mode

Safety Mode is the primary operating mode of the indicator

panels, is the default if it detects the system changing to an

active, non-emergency-stopped, state. This default behavior

ensures that the vessel will, when operating on water, display

the most relevant information to onlookers in its vicinity. This

information can be displayed as solid colors or as black text

with colored background, based on configuration. The

information displayed in this mode includes:

• Boat is non-engaged (“STOP”, red illumination) (Fig

16.)

• Boat is under manual control (“R/C”, amber

illumination)

• Boat is under autonomous control (“AUTO”, blue

illumination)

Fig 17. Indicator panels in team spirit mode

C. Static-Display Mode

Static-Display mode is a mode that allows user-set text,

images, or animation to display on the indicator panel modules.

These images can be used to demonstrate team-spirit or provide

an energetic light-show. Static-Display mode is only available

when the boat is in the emergency-stopped state for greater than

ten seconds, and the user purposefully opts to enter Static-

Display mode after that time has passed. The BUGS safety

system then serves as a passthrough between the Minion

computer systems and the indicator panel controller. If the ASV

switches to an active state, Static-Display mode will be disabled

until the conditions of safe-duration and user-input are met

again (Fig. 17).

D. Enhanced Operation Mode

Enhanced Operation mode serves as an extension of the

safety mode that provides further information to onlookers who

may not have express knowledge of the boat’s intention or

purpose. In this configuration, the safety system will actively

listen to the ASV computer systems to determine and display

the autonomous operations the vessel is performing.

For the purpose of the Maritime RobotX Challenge, this may

include the task the ASV is in the process of performing. In a

more general purpose, this can include what maneuvers the

vessel may be attempting. This mode can be likened to the

reverse lights or turn-signals in an automobile that serve to

provide the autonomous intent of the vessel to those in its

immediate vicinity.

REFERENCES

[1] Gstreamer. (n.d.). Retrieved November 23, 2018, from

https://gstreamer.freedesktop.org/documentation/

[2] R.B. Rusu, S. Cousins, “3d is here: Point cloud library

(pcl).” In Robotics and automation (ICRA), 2011 IEEE

International Conference on (pp. 1-4). IEEE, May 2011.

Fig 16. The indicator panel display when the boat is in the

"STOP" state, shown as black text on red background.

ERAU Team Minion 1 of 6

Appendix B: Submarine

Nate D. Bloom, James J. Hendrickson, Matthew R. Helms, David J. Thompson

I. INTRODUCTION

The 2018 Robot X Challenge introduced an underwater task,

which requires teams to recover stationary rings on an

underwater “tree”. While this task would be feasible with an

attachment to the surface vessel, developing such a system

would have very little relation to real world research and

development opportunities. Therefore, the team elected to

pursue the more challenging but more relevant path of

deploying an AUV.

Minion’s deployable AUV, Anchor, is a Blue Robotics

BlueROV2. Anchor acts as an extension of Minion and is

controlled as if being driven by a human operator. Minion

processes the incoming video stream and generates the

appropriate Mavlink messages to guide Anchor toward the

rings.

Since regulations require the underwater vehicle to be

tethered to the surface vehicle, a simple winch with a single

cable that serves as the mechanical tether and communication

line was designed.

Fig 1. The Submarine Deployment System with the BlueROV2, Anchor

II. AUV

Anchor is constructed from a series of milled HDPE plastic

and six Blue Robotics T200 thrusters. A Pixhawk autopilot on-

board handles controls and a Raspberry Pi manages the video

stream. The two computers and the other hardware they need to

operate are mounted in a waterproof acrylic enclosure. Two of

the T200 thrusters are used to control the depth of the AUV

while the remaining four thrusters allow for holonomic

movement in the horizontal plane. The onboard camera

assembly provides clear high-definition video to Minion in low-

light conditions with the added capability of a servo-based

tilting mechanism. The Blue Robotics Newton subsea gripper

is mounted to the AUV to provide the ability to obtain the ring.

Anchor is powered by a Blue Robotics 4s Li-ion battery that is

comprised of 16 Samsung 30Q 18650 cells. The thrusters,

lights, camera tilt, and gripper are all directly controlled by the

Pixhawk autopilot running the Ardusub firmware.

Integration of the BlueROV2 system with Minion was made

simple with the open-source nature of the Ardusub project.

Minion controls Anchor by sending a Mavlink message that is

intended to contain joystick information. Minion is capable of

relaying these joystick messages directly from the ground

station computer to Anchor for remote manual control. When

attempting the ring retrieval task, Minion processes the

incoming video stream and adjusts the joystick values in the

Mavlink message. The video is streamed from Anchor to

Minion using GStreamer.

A. Deployment

1) Requirements

1) The system shall deploy and recover Anchor from

Minion to the water.

2) When Anchor is in the water, the system shall direct

the tether to the center of the boat on the y-axis.

The intended deployment location from Requirement 2 is

shown in Fig 2. The intent of Requirement 2 is to minimize the

likelihood of the AUV hitting Minion’s pontoons during

retrieval.

Fig 2. Anchor at the Y-Axis Center of Minion

3) When completely retrieved, Anchor shall sit on the

MAST (Minion Autonomous Systems Tray) to the port

of Atlas (Minion’s Computer System).

ERAU Team Minion 2 of 6

Requirement 3 specifies that the AUV deployment system

shall attach to Minion in the previously empty spot on the

MAST. This is the empty area at the bottom right of Fig 3.

Fig 3. The MAST with an Open Payload Bay

4) The system shall be able to retrieve Anchor when 40 m

of tether is unspooled in less than 60 seconds.

5) The system shall be able to contain 50 m of spooled

tether.

6) The system shall be compatible with 20-60V systems.

Requirement 6 ensures that Minion may continue to operate

at either 25 V or 50 V nominal.

2) Winch Mechanism

a) Spool and Tether

The winch mechanism essentially consists of a geared motor

and a spool with a tether. The tether is a BlueRobotics Fathom

Slim, a two-wire cable with internal Kevlar strands for strength.

This allows it to serve as both the data and physical connections

to Anchor. The tether has a minimum bend diameter of 1 inch,

a working strength of 80 lbf, and a breaking strength of 350 lbf.

This meets the working load of 50 lbf discussed in the Motor

and Gearbox section.

To ensure the tether is always contained, regardless of how

much slack is in the line as it is spooled up, the spool is

significantly oversized. If the tether was perfectly wrapped the

tether could hold 173 m of cable, but it is only required to hold

50 m. From here, the tether is spooled through a pulley to a

guiding eyelet, discussed below.

b) Motor and Gearbox

The motor and gearbox were selected based on the voltage

and time requirements. To determine the torque needed to meet

time requirements, a constant retrieval velocity was assumed.

The force on the tether was simplified to the weight of Anchor

and the force of drag on Anchor. In reality, Anchor's speed

would be constantly varying, even with a constant motor

rotation per minute (rpm), due to the layers of tether on the

spool changing the effective spool diameter. Therefore, torque

to pull Anchor at constant speed was determined at the

minimum and maximum pulley diameters and averaged.

 Since both the motor and gearing ratio needed to be selected,

an Excel tool was developed to quickly compare different

motors and find the optimum gearing ratio. The tool requires

the spool/tether specifications, and two points on the motor

rpm/current/torque curve. For any given gearing ratio, it

assumes the motor curve is linear, finds the motor rpm that

matches the required torque, and finds the spool time at

minimum and maximum pulley diameters based on that motor

rpm and the gearing ratio. It also finds the linear speed to

calculate drag on the tether. This drag can be iterated to get

more precise results for a given gearing ratio. Finally, it finds

the motor’s current draw at that torque to determine if it may be

putting too much stress on Minion’s electrical system.

A motor capable of 48 V nominal was desired, as it could

operate at both of Minion’s voltages without the need for a

voltage regulator. With these considerations and iterations of

different motor and gearing combinations with the Excel tool,

the AmpFlow A28-150-F48 was selected. Its specifications are

shown in Table I.

Table I

AMPFLOW A28 SPECIFICATIONS [1]

Specification Value

Max Torque (continuous) 7400

Max Torque (stall) 141.6 lbf-in

Supply Voltage (nominal) 48 VDC
No Load Amps 2.5 A

Kt (in-lbf/Amp) 0.544

 At a gearing ratio of 38:1, the AmpFlow can retrieve Anchor

in an average of about 37.6 seconds, giving it a factor of safety

of 1.6 to the requirement. This was determined using the Excel

tool and is verified in the following steps.

1. The drag force of pulling the sub at 4 ft/s is about 26

lbf, and the weight of the sub in air is 24 lbf with all

ballast. Since the sub is positively buoyant in water

and there is minimal drag in the air, the tether will

never see both of these forces at the same time.

Therefore the force on the tether will be assumed to be

the average of the drag in water and weight in air, 25

lbf, and doubled to 50 lbf for a factor of safety of 2.

𝑇 = 𝐹𝑑

𝑇 = (50 𝑙𝑏𝑓) ∗ (1.75 𝑖𝑛)

𝑇 = 87.5 𝑙𝑏𝑓 ∗ 𝑖𝑛

2. At a gearing ratio of 38:1, this torque is reduced to 2.3

lbf-in at the motor shaft. The motor current draw and

rpm may then be found with linear interpolation as

follows.

ERAU Team Minion 3 of 6

Table II

TORQUE-SPEED-CURRENT SPECIFICATIONS

Torque (lbf-in) Speed (rpm) Current Draw (A)

0 7400 2.5

156.25 0 290

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(𝑥 − 𝑥1)

𝑦 − 7400 𝑟𝑝𝑚 =
0 − 7400 𝑟𝑝𝑚

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0)

𝑦 = 7293 𝑟𝑝𝑚

𝑦 − 7400 𝑟𝑝𝑚 =
0 − 7400 𝑟𝑝𝑚

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0)

𝑦 = 𝟕𝟐𝟗𝟑 𝒓𝒑𝒎

𝑦 − 2.5 𝐴 =
290 𝐴 − 2.5 𝐴

156.25 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0
(2.3 𝑙𝑏𝑓 ∗ 𝑖𝑛 − 0)

𝑦 = 𝟔. 𝟔𝟓 𝑨

3. Since the current draw of 6.65 A is acceptable, the

spooling time can be calculated from the motor rpm of

7293 rpm. The 38:1 gearing reduction means the spool

rotates at 191.9 rpm. The amount of tether let out will

be assumed to be 90% of the total tether length. Since

we have 50 m (1968 in) of tether, 90% is 1758 in. In

this case it is assumed that the spool constantly reels

in at the minimum diameter. Therefore, the spool time

is:

1758 𝑖𝑛

𝜋 ∗ 3.5
𝑖𝑛

𝑟𝑒𝑣
∗ 191.9

𝑟𝑒𝑣
𝑚𝑖𝑛

∗
1 𝑚𝑖𝑛
60 𝑠

= 𝟒𝟗. 𝟗 𝒔

Doing the process again for the maximum spool rpm, it is

found that the motor draws 10.8 A, and spools in 25.37 seconds.

This confirms the average spool time of 37.6 seconds.

 Gearing is achieved with VexPro aluminum gears. These

gears were selected due to their availability and off the shelf

usability. Most off the shelf gears have plain bores that need to

be broached to a drive pattern. These VexPro gears are sold with

a 0.5 inch hex bore, reducing our manufacturing time. Since the

gears are aluminum, they are also less prone to corrosion than

steel gears. The gearbox has three reduction stages. The first

reduction is 48:84, followed by 18:84 and another 18:84. This

results in an overall reduction of 38.1:1.

 To hold load while the motor is not powered, a brass ratchet

and pawl are used. These are driven off the motor shaft to

minimize the load they must hold. A waterproof servo

disengages the pawl during deployment, and a torsional spring

forces pawl engagement during retrieval and storage.

3) Deployment Arm

To prevent the submarine from hitting Minion’s pontoons or

frame, the system pulls it from the middle of the platform, as

shown in Fig 2. However, the empty payload bay on the MAST

is on the port side. Therefore, a spring-loaded swing arm directs

Anchor to the center during deployment and guides it to the port

payload bay during retrieval. Fig 4 illustrates the motion of the

deployment arm.

Fig 4. Deployment Arm

 The arm is passive and pulled to center by a constant force

spring. The tether is fed through an eyelet at the base of the arm.

When Anchor is lifted to the base of the arm, it catches on the

eyelet, and the tether pulls against the spring to retract the arm.

 The desired force from the constant force spring when the

arm is deployed is enough to keep the tension in the tether from

pulling the arm away from the center. Determining force from

the tether on the arm begins with finding the force the tether

exerts on the eyelet. Refer to Fig 5.

ERAU Team Minion 4 of 6

Fig 5. Tether Routing Visualization

 Here, the tension in the tether is the weight of the sub, about

24 lbf. The tether to the sub will be assumed to be vertical, and

the tether angle between the pulley and the eyelet is 40

degrees from horizontal. Therefore, the horizontal force trying

to pull the eyelet away from center is:

24 𝑙𝑏𝑓 ∗ cos(40°) = 18.38 𝑙𝑏𝑓

This force acts as a moment on the deployment arm, which

must be cancelled by the spring to prevent rotation

Fig 6. Deployment Arm as Simple Beam

F ∗ 4 in = 18.38 lbf ∗ 9.64 in

Σ𝑀 = 0

𝐹 = 44.3 𝑙𝑏𝑓

 The most powerful constant force spring readily available

has a loading force of 40.9 lbf and was chosen for the design.

4) Structural Analysis

a) Deployment Arm

Maximum loading on the deployment arm occurs when the

tether and spring are simultaneously pulling on the arm, but the

arm is not moving. Maximum force from the spring occurs

when the arm is in the deployed position, as the angle between

the spring and the arm is nearly 90 degrees (see Fig 4). Since

the chosen constant force spring creates 40.9 lbf, that load is

applied to the arm at a conservative angle of 90 degrees. This

moment is equal to the perpendicular component of the force

from the tether. To approximate the load from the tether, the

bearing hole for the eyelet was set as a fixed support. The

bearing hole for the arm pivot was set as a cylindrical support

with free tangential movement. Refer to Fig 6 and Fig 7.

Fig 7. Static Loading of Deployment Arm

This loading results in very minimal deflection for the arm,

and a maximum stress of 2,375 psi, giving a factor of safety of

16.8 to 6061 Aluminum’s yield strength of 40,000 psi. [2]

Fig 8. Deflection and Equivalent Stress of Deployment Arm

b) Pawl Shaft

When Anchor is in the payload bay, it is held up by a ratchet

and pawl on the motor output shaft. This pawl rests on a shaft

that spans the gearbox as shown in Fig 8.

ERAU Team Minion 5 of 6

Fig 9. Gearbox Showing Ratchet and Pawl

The max force this shaft could ever see occurs at the breaking

point of the tether. The tether’s breaking force is 350 lbf. [3]

Assuming the tether is at the maximum diameter of the main

spool, this is multiplied by a 3.5-inch moment arm for 1,225 in-

lbf of torque at the main spool. This is reduced by 38 times due

to the gearbox reduction, creating 32.2 in-lbf at the motor shaft.

The pawl shaft is offset about 1.5 inches from the motor shaft,

so this torque is divided by that moment arm, resulting in 21.5

lbf on the pawl. This loading was added to a simple FEA model

as shown in Fig 10.

Fig 10. Simple Beam Loading of Pawl Shaft

 This loading does not yield the shaft, creating a max stress of

14,417 psi, a factor of safety of 4.18 to 302 stainless steel’s

yield strength of 60,200 psi. [4] This is very minimal deflection

in the shaft. Refer to Fig 12.

Fig 11. Equivalent Stress in Pawl Shaft

Fig 12. Deflection in Pawl Shaft

B. Vision

The submarine utilizes a low-light, 1080p camera with a 110°

horizontal field of view to capture images. The camera stream

is then sent from Anchor to Minion for processing. The stream

is retrieved from the sub in the same manner as vision data is

sent from Minion to the ground station, as described in

Appendix K.

After the sub has been deployed, the submarine’s vision

module will begin detecting rings in the camera frame. This is

accomplished using a Faster R-CNN Inception V2 [5] network.

A further description of this network’s structure can be found

in Appendix K. This network was trained on an image set of

2400 samples at various angles, distances, and lighting

conditions. The results of this training were superb. In a

validation set of 490 images, the retrained Faster R-CNN

network achieved a mean intersection over union (mean IoU)

score of 0.901. An additional detection validation criterion was

set such that the proposed bounding box could take up no more

than ¼ of the overall size of the image and that the detection

confidence needed to be over 70%. Even with this additional

bound, the network was capable of detecting the ring in over

90% of the validation images. This was also able to be achieved

while running at a framerate of ~10 FPS on a GTX 1080. This

network was very robust to most conditions including distance

ERAU Team Minion 6 of 6

extremes, oblique angles, and lighting changes, with some

positive detections shown in Fig 13.

Fig 13. Positive detection of four rings in the same frame

False positives were seen with the network confusing a

yellow ring with the yellow tether from Anchor. This may be

seen in Fig 14. However, this problem only surfaced when the

tether was wrapped in a loop in front of the camera. This

problem was solved with the addition of the spool tensioner.

While the tether could end up in the camera frame while

attempting the ring recovery task, it would be unable to wrap

into a ring-like shape due to the constant tension kept on the

tether.

Fig 14. Incorrect detection due to the tether looping in a way that looks like a

ring

 After positive detection of a ring is obtained, the sub uses the

rings position in the camera as feedback for a position

controller. The area of the bounding box is utilized to estimate

the distance from the sub to the ring. The aspect ratio is used to

estimate the offset angle of the sub, in both the vertical and

horizontal directions from the ring. If the ring drops out of

frame, the sub is commanded to maintain the commands that

were previously given. This is maintained until positive

detection is regained or after several empty frames have

elapsed. If the system has had too many empty frames then the

platform will being searching for the ring again.

REFERENCES

[1] "Three Inch High Performance Motors," AmpFlow, [Online]. Available:

http://www.ampflow.com/three_inch_high_performance_motors.htm.
[2] MatWeb, "Aluminum 6061-T6; 6061-T651," [Online]. Available:

http://www.matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b

9b54bd7b69e4124d8f1d20a.
[3] BlueRobotics, "Fathom Slim Tether Specifications," [Online]. Available:

http://docs.bluerobotics.com/fathom-slim/#specifications.

[4] MatWeb, "303 Stainless Steel," [Online]. Available:
http://matweb.com/search/DataSheet.aspx?MatGUID=4041fb2dafde405

49e59f4018b7571b8.

[5] Ren, S., He, K., Girshick, R. and Sun, J. (2017). “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 39(6),

pp.1137-1149.

ERAU Team Minion 1 of 3

Appendix C: Bodyguard II Turret

Grady C. Delp, Juan L. Halleran, David J. Thompson

I. INTRODUCTION

For the 2018 RobotX challenge Team Minion has completely

redesigned the Bodyguard racquetball turret from the 2016

RobotX Challenge. Taking the undesirable behavior and

maintenance requirements of the previous design and

eliminating them in the updated version, this new design uses

counterrotating flywheels to propel the racquetball to the target

and is able to pan and tilt independently from the rest of the

boat. The system has an onboard Jetson TK1 for vision

processing and active aiming adjustment, as well as an isolated

power system, which makes the subsystem capable of operating

independently from the boat, save two easily pluggable

connections to the boat’s computer network and E-Stop circuit.

II. HARDWARE

Even when only considering the hardware components of the

system, Bodyguard II serves as a vast improvement over the

Bodyguard turret from 2016. This can be seen through

numerous aspects of the design and manufacturing strategy, the

selection of components, and the overall abilities of the system.

A. Design Strategy

Bodyguard II serves as a departure from its predecessor in

nearly every way, with a render displayed in Fig 1. Bodyguard

I utilized a compressed-air cannon to fire racquetballs, with a

relatively tight tolerance on a gravity-fed reloading mechanism,

and brushless gimbal motors for stabilization and aiming.

Fig 1. Bodyguard II Racquetball Turret

The compressed-air cannon has been replaced with sets of

counter-rotating wheels, through which racquetballs are fed by

a HiTec D646WP waterproof servo. This eliminates many of

the previous internal complaints of the system, including that it

required an auxiliary control box to regulate compressed air

between multiple pressures, and that it required a cumbersome

method to recharge the compressed air tanks when on-site at the

competition. By contrast, the counter-rotating wheels are

powered electrically, and the on-board power system even

makes it independent from the ASV power supply. This reduces

the number of connections required when mounting Bodyguard

II to the payload tray of the ASV to one. While the counter-

rotating wheels do not have a barrel through which the ball

would achieve increased accuracy, like a compressed-air

cannon would, it is the experience of several of our team

members, who have built similar mechanisms in prior robotics

competitions, that they perform on-par with compressed-air

methods of firing.

The brushless gimbal motors used to stabilize and aim the

2016 iteration of Bodyguard have been replaced with servo-

controlled four-bar linkages. The major unexpected downside

of the gimbal motors, that caused Bodyguard I to underperform,

was that the system would need to be almost exactly balanced

around the center of rotation to operate competently. As

implemented, there was a large unbalanced load placed on the

gimbal by the tubing connected the auxiliary control box with

the turret, which would require more torque to maneuver than

the gimbal motors can provide.

To mitigate the issues that were seen with the previous

gravity-feed mechanism, the hopper that stores racquetballs

prior to firing is looser and allows them to fall more freely. The

hopper is illustrated with a cutaway view in Fig 2.

ERAU Team Minion 2 of 3

Fig 2. Cutaway view showing operation of Bodyguard II

In the initial design, Bodyguard II was designed to use the

same Volz DA-30 servo motors utilized by the azimuth

assembly on the 2018 propulsion system. This was to allow

better synergy within the Minion ecosystem: one type of servo

would allow interchangeability of the components and

decreased quantities of spares. However, due to the long lead

times that came with those components, they were swapped

with a high-torque model of servo by HiTec, the D845WP. This

required the design of 3D printed adapters to affix them to the

predesigned mounting holes.

These servos do not necessarily provide the necessary torque

to drive the turret directly through its ranges of motion.

However, by synthesizing four-bar linkages to adapt the 180-

degree stroke of the servo to the 60 degrees of stroke in the

azimuth direction, or the 20 degrees of stroke in the altitude

direction, the servos possess a mechanical advantage over the

turret.

The angle of 60 degrees of azimuth control is to

accommodate one of the design requirements for Bodyguard II.

When designing this turret, it was determined that the ASV

would be able to maintain a heading hold within 30 degrees of

the desired angle. The center of the 60-degree stroke lies 30

degrees offset from forward, off the port bow of the vessel.

With this angle, and the designed location of the turret, the

racquetballs fired from the turret would have to veer 15 degrees

off of the firing plane to strike the forward sensor array, which

may cause physical damage to the sensors. This amount of

curve was deemed unlikely to occur over the 25cm that stretch

between the firing position and the forward sensor array.

The electrical system was designed to be robust, but capable.

On-board computer vision is accomplished using a Jetson TK1

SOC development board, with video capture coming from a

Microsoft LifeCam. This computer was chosen due to the

availability, and the camera was chosen due to the team’s

experience in making water-resistant housings for this model in

the past. Off-the-shelf motor controllers and inexpensive 24V

DC brushed motors are used for spinning the counter-rotating

wheels.

B. Construction

Bodyguard II was designed to be largely constructed of three

categories of components:

• commercially available off-the-shelf components

• 3D-printed components that can be produced in-house

• Laser-cut 1/8” aluminum plate

The small remainder of the components are simple

geometries and hole-patterns that can be cut or drilled by hand,

or pieces of bar-stock that can be cut to length by hand.

All 3D printed components were manufactured in ABS by an

Ultimaker 2+. ABS was chosen primarily due to its ability to

withstand weathering in the outdoors.

C. Electrical Design

Bodyguard II was designed to be electrically independent of

the ASV’s power systems. This was to reduce the cost required

to source components that would be capable of powering the

turret, including the motor controllers, relays, and voltage

regulators for the servo and on-board computer and controller

systems. Based on the battery configuration, the Minion ASV

may operate between 24-30 and 48-60 volts. Typically, we

specify regulators that can handle both of these ranges without

issue, but for the high stall currents that the motors selected may

draw, specifying relays and motor controllers that could handle

this wide input voltage range proved to be an expensive

endeavor. Due to this, power is supplied independently from the

ASV’s other power systems via a 6S lithium-polymer battery,

which typically supplies voltages between 22.2 and 25.2V. Due

to the ability to limit power draw from the motors, and the fact

that the turret will only be searching for the Detect and Deliver

target when triggered to do so by Minion, idle power draw will

be minimized, and having the small independent power supply

is not considered to be an issue.

Power supplied to the motor controllers first passes through

a set of relays that are controlled in parallel, with one relay

operating each of the two motor controllers. The relays’ coils

are driven by a low-voltage signal that is in parallel with a safety

control on the Bodyguard control board and is in series with a

parallel line of the E-Stop circuit on the Minion ASV. This

configuration allows the Minion ASV to continue to operate if

the turret suffers a fault but prohibits the turret from functioning

if the boat enters an emergency-stop state. It also requires the

boat be in an active state, or else power will not be supplied to

the motor controllers. This is similar to how the primary motor

controllers for the ASV’s thrusters are supplied power.

The HiTec D845WP servos are driven by an mBed LPC1768

microcontroller, integrated into a PCB similar to what drives

the servos for the propulsion azimuth servos.

All of the electronics are housed within a watertight Pelican

1170 case. Team Minion regularly uses Pelican cases for

creating watertight electronics housings, and this is a fitting

application for that style of enclosure.

ERAU Team Minion 3 of 3

III. SOFTWARE

The software of the turret is all on an onboard Nvidia Jetson

TK1 where it uses a camera to sense the target and then

commands the servos to place the target in the center of the

camera view. To calculate the elevation, angle a Minion Core

message is sent to the perception module to find the distance to

the target using the onboard boat LIDAR.

A. Vison

The turret system uses a Microsoft LifeCam to collect images

and pass them to a Jetson TK1 that is running OpenCV. A

sample image from a mockup target is shown in Fig 3. The

vision uses collects images when the boat aligned with the

target and will threshold and greyscale the images. It then uses

a trained Histogram of Gradients (HOG) to find the location of

the square in the frame. Since we are asking the boat LIDAR

for distance the vision system is solely dedicated to the x-angle

of the turret.

Fig 3. Testing mockup

B. Controls

The control software to align the turret to the target is

dependent on the angle found by the vision and the distance

given by the boats LIDAR. The distance is directly plugged into

the y-angle of the turret because that distance value is corrected

for boat pitch and roll in the Perception module. This will keep

the turret elevation in the correct position to compensate for

varying distances. The pixel error found on the vision side is

then used to move the x-angle of the turret center on the target.

Since the turret is driven by servos all error values can be

directly plugged into the servos since they have an internal

position controller.

ERAU Team Minion 1 of 7

Appendix D: Propulsion

Nate D. Bloom

I. INTRODUCTION

Following the 2016 RobotX Competition, Minion’s
propulsion system was re-evaluated, finding three key
weaknesses. First, the RDP (rim-driven propeller) thrusters
were nearing their end of life. Second, Minion’s
maneuverability was inadequate. Third, deploying and
retrieving Minion required team members to manually raise or
lower the RDP thrusters. The propulsion system was redesigned
to address these weaknesses.

The overall layout of the new propulsion system is similar to
the old propulsion system. There are two “motor pods,” one at
the aft of each pontoon. The layout of each pod is shown in Fig
1. Each motor pod has one azimuthing Copenhagen Subsea VM
RDP Thruster. This thruster is the newest iteration of the
Torque-Jet thrusters on the previous system. Azimuthing is
accomplished with Volz DA-30 Servos. These servos produce
enough torque at high rotational speeds and are IP67 rated with
additional testing for saltwater spray. Beaching is accomplished
with a Linak LA-36 linear actuator, a component the team has
prior experience with in hydrophone deployment.

Fig 1. Azimuth and Beaching Enabled Propulsion System

II. REQUIREMENTS

Requirements for the updated propulsion system were based
on the strengths and weaknesses of the 2014-2016 propulsion
system. The requirements and justifications are as follows.

1) The system shall attach to the WAM-V boat using the

attachment points detailed in the “RobotX Guide WAM-V
Propulsion Examples” paper’s section on “Other
Alternatives.” [1]

Since the WAM-V does not include a propulsion system, there
is a pivot at the aft of each pontoon. These pivots serve as the
mounting point for custom propulsion systems and allow these
systems to pitch relative to the WAM-V pontoons. This
pitching motion helps to ensure that the propulsion motor
remains submerged. The motion is illustrated in Fig 2.

Fig 2. Propulsion Pitch Relative to WAM-V

2) The system shall be positively buoyant.

Requirements 1 and 2 together ensure that Minion fulfills the
2018 Maritime RobotX Challenge Rule 3.1.2. [2] The WAM-V
requires additional buoyancy aft of the pontoon, or it risks
capsizing.

3) The system shall be compatible with the Torque-Jet RDP

thrusters, as well as suitable replacement thrusters.

As mentioned in the introduction to this appendix, the Torque-
Jet RDP thrusters were to be replaced. However, the team
wished to ensure that the propulsion system could run if there
were delays in acquiring the new thrusters, or if one or both new
thrusters were to be damaged.

4) The system shall be able to deploy the topmost point of the

thrusters to a minimum depth of 4 inches below the bottom
of the WAM-V pontoons.

This depth requirement helps to ensure that the thrusters always
remain submerged.

5) The system shall be able to deploy the centerline of the

thrusters to a minimum of 24 inches aft of the mounting
points.

ERAU Team Minion 2 of 7

The intent of Requirement 5 is to ensure a sufficient moment
arm from the thruster to Minion’s CG. This moment arm is key
to yaw acceleration.

6) The length of Minion including the system shall not exceed

16 feet.

Florida maritime law requires that vessels larger than 16 feet
require a floatation device for each person on board, plus an
additional floatation device [3]. This would require that Minion
always have a personal floatation device despite being
unmanned. To avoid complications with this regulation, 16 feet
was accepted as Minion’s maximum length.

7) The system shall be able to pan the thrusters +/- 85 degrees

from parallel with the WAM-V pontoons.

170 total degrees of rotation with thrusters that can turn in
forward or reverse means that thrust can be applied in nearly
any direction from a top looking down view. While a range of
motion of +/- 90 degrees would be more advantageous, limiting
this requirement to 85 degrees improves the availability of off
the shelf actuators that meet the required specifications.

8) The system shall be able to retract the thrusters from the

water such that the bottommost point of the thruster is
above the bottom of the WAM-V pontoons.

Requirement 8 protects the thrusters when trailering Minion or
landing Minion on a beach. This prevents the thrusters from
striking the ground or the trailer in these scenarios.

9) The system shall be compatible with 20-60V systems.

Requirement 9 ensures that Minion may continue to operate
at either 25V or 50V nominal.

10) The system shall be able to operate continuously in the

marine environment.

The marine environment is especially harsh on mechanical
systems. Actuators need to be waterproof, and all materials
need to be exceptionally corrosion resistant.

III. UPDATED THRUSTERS

For 2018, team Minion elected to continue with RDP
thrusters. RDP thrusters have numerous advantages over
electric trolling motors. First, the removal of a central shaft
improves efficiency and reduces the likelihood of tangling with
seaweed, anchor lines, and other debris. RDP thrusters are also
inherently covered in a shroud and typically produce little
noise. This minimizes their potential impact on marine wildlife,
which is particularly important to the team since dolphins
and/or manatees occasionally approach the ASV.

The dated Torque-Jet thrusters Minion used in 2016 were
replaced with Copenhagen Subsea VM asymmetric thrusters.
These thrusters are based on a similar design but are thoroughly
updated. Improvements include inlet and outlet shrouds, revised
propeller profiles, and revised internals. Due to these

improvements, the Copenhagen Subsea thrusters offer
improved efficiency, durability, and thrust capability compared
to the Torque-Jets.

IV. BEARING MATERIAL SELECTION

Since all bearings in the propulsion system need to function
both in and out of a saltwater environment, all bearing surfaces
are static bushings. Bearings with moving pieces are susceptible
to salt buildup over time, and underwater bearings do not
function well out of water.

Multiple bushing materials were selected, and specific
bushings were chosen from these selected materials based on
the availability and cost of each.

The selected materials are Igus Iglide T-500, Iglide H-370,
and Iglide J. Their applicable properties are shown in Table 1.

TABLE 1

IGUS BUSHING MATERIAL PROPERTIES [4] [5] [6]

Specification Iglide T-500 Iglide H-370 Iglide J
Water Absorption (%

Weight)
0.5 < 0.1 1.3%

Permissible Static
Surface Pressure (psi)

21,760 10,880 5,075

Effective Coefficient
of Friction

0.09 - 0.27 0.07 - 0.17 0.06 – 0.18

V. AZIMUTHING

 Geometry

As specified in the requirements, the thruster must sit 4
inches below the nominal waterline. However, there are few
high torque electric motors that are made to be used
continuously underwater. Therefore, the azimuthing actuator
must sit above water and some drive system must connect the
azimuthing actuator to the thruster. To maximize efficiency, a
direct drive was chosen. An exploded view of the drive shaft is
shown in Fig 3.

Furthermore, the thruster must be retractable from the water
for beaching. To simplify the direct drive system, the thruster
and azimuthing assembly function as a single piece that can be
raised and lowered for beaching.

Fig 3. Azimuth Direct Drive Exploded View

To route the thruster cable, the direct drive is achieved with
a hollow drive shaft. Adapters at the top and bottom of the shaft
couple the actuator to the thruster. The drive shaft is supported
by bearings at the top and bottom of the shaft to minimize radial
force on the actuator. A section view of the top and bottom
azimuth bearing assemblies is shown in Fig 4.

ERAU Team Minion 3 of 7

Fig 4. Azimuth Bearing Assemblies

The pieces shown in Fig 3 and Fig 4 are as follows:
 The orange tube is the hollow drive shaft.
 The black pieces are the thruster and azimuthing

actuator.
 The green pieces are bushings.
 The red pieces support the bushings.
 The yellow pieces prevents the drive assembly from

moving axially.
 The purple pieces couple the thruster and actuator

to the driveshaft

 Structural Analysis

To find the torque requirements for the actuator, the worst-
case scenario must be considered. For azimuthing, that occurs
when there is a maximum force of friction on the bushings. This
maximum force of friction most likely results from the
thruster’s maximum load. To find the friction, the force
reactions at the bearings during maximum thrust are found.
These are multiplied by the bushing’s static coefficient of
friction and the radius of the shaft to be converted to the
frictional torque opposing azimuthing. This frictional torque is
what the azimuthing actuator must overcome. The torque was
found using two methods to verify results: hand calculations
modeling the system as a simply supported beam and an FEA
model.

1) Method 1: Simply Supported Beam

Fig 5. Azimuth Modeled as Simply Supported Beam

Σ𝐹௫ = 0
B = 20 lb

Σ𝑀 = 0

(100)(6.125) = 𝐶(15.44)
C = 39.7 lb

Σ𝐹௬ = 0

100 + 39.7 = 𝐴 → 𝐴 = 139.7 𝑙𝑏

Σ𝑁 = 20 + 39.7 + 139.7 = 199.4 𝑙𝑏
𝐹௙ = 𝜇𝑁 = 0.1 ∗ 199.4 = 19.94 𝑙𝑏

𝜏 = 𝐹𝑟 = 65.8 𝑙𝑏 ∗ 1.1 𝑖𝑛 = 𝟐𝟏. 𝟗 𝒊𝒏 ∗ 𝒍𝒃𝒇

2) Method 2: FEA Reactions

For this FEA, a full thruster load of 100 lbf was applied to
the azimuth tube model as shown in Fig 6. The red arrow
indicates the force, which was applied at the distance of the
motor centerline to the motor attachment plate. The 3 Igus
bushings were constrained and monitored for their reaction
forces.

Fig 6. Azimuth FEA Load

This load case resulted in a net 180 lbf reacting from the
bearing surfaces. With the 0.1 coefficient of friction mentioned
above, a normal force of 18 lbf is present at the outer diameter
of the bearings. To overcome this, the thruster must produce
enough torque to overcome the normal force and the moment
arm of the shaft radius (1.1 in). Therefore, the actuator must
produce 19.8 in-lbf of torque.

3) Evaluating the Methods

Since the methods have very close results, a nominal
operating torque of 22 in-lbf was used.

 Actuator

The selected actuator is the Volz DA-30 servo, shown in Fig
7. A summary of the applicable features of this actuator are in
Table 2.

ERAU Team Minion 4 of 7

Fig 7. Volz DA 30 [7]

TABLE 2

VOLZ DA 30 APPLICABLE SPECIFICATIONS [7]

Specification Value
Max Torque (continuous) 70.8 lbf-in

Max Torque (stall) 141.6 lbf-in
Supply Voltage Range 24 – 32 VDC

Max Travel Angle ±85° = 170° total travel
Environmental Rating IP67
Salt Water Resistance >100 hrs salt water spray

The environmental rating and supply voltage clearly meet the

requirements, and the built-in position sensing, limited travel
angle, and rated salt water resistance are massively
advantageous features.
 The Volz also meets the torque requirements, with a factor of
safety of 3.2 for continuous operation and 6.4 if stalled. While
this may appear excessive at a glance, there are many factors
which could increase the resisting friction including drag,
imperfect alignment, and the surface finish of the driveshaft.

VI. CHASSIS

 Design

Construction of the propulsion system was largely driven by
the methods easily available to our team. Embry-Riddle has
CNC mills and lathes, but very limited capability in welding
thin aluminum or bending sheet metal. Therefore, CNC
machining was the primary method of manufacture for parts to
minimize outsourcing and associated costs. Most parts are
anodized 6061 or 5052 aluminum to prevent corrosion. Where
higher strength material is required, 316 stainless steel is
typically used. Parts are joined using aluminum rivets or 316
stainless steel bolts.

The main frame of the propulsion system is an assembly of
gusseted 1 x 1 x .125’’ square 6061 aluminum tube. This
construction was chosen to allow easy mounting of the
beaching and azimuth systems. It was also designed to allow
any number of construction methods to the pod skin. The
chassis is intended to take the greatest part of all loads, to
minimize the stress on the skin assembly.

Fig 8. Primary Load Bearing Structure

 Structural Analysis

1) Chassis
As stated, the motor pod chassis is designed to take the loads

of the system, independent of the skin structure. FEA was run
under two full thrust loading cases, assuming full thrust reverse
and full thrust sideways. Gravity was also included, and
buoyant forces were added where the pod skin meets the
chassis. The model and loads are shown in
Fig 9.

ERAU Team Minion 5 of 7

Fig 9. Model and Loads on Propulsion System Chassis

The sideways loading resulted in a max stress of about 25 ksi,

in the bottom pin where the Linak attaches. These stresses are
well under 316 Stainless Steel’s yield strength of 34.8 ksi. [8]
The 78.6 ksi stress is a false concentration at an interference
where the azimuthing tubing meets the upper arm assembly.
Results are shown in Fig 10 and Fig 11.

Fig 10. Full Sideways Thrust Chassis Stress

The full reverse thrust load case resulted in max stresses in
the 15-20 ksi range where the Linak mounting plates meet the
chassis. These stresses are well under 6061-T6’s yield stress of
40 ksi. [9]

Fig 11. Full Reverse Thrust Chassis Stress

ERAU Team Minion 6 of 7

2) Azimuth Structure

The azimuthing portion of the system was independently
evaluated under full forwards thrust and full reverse thrust to
see the loading the Linak would experience.

Fig 12. Full Forward Thrust (Left) and Full Reverse Thrust (Right)

Under full forward thrust, the Linak sees about 100 lbf, or
445 N of force. Under full reverse thrust, the Linak sees about
150 lbf, or 667 N. This is significantly less than the Linak’s
static holding force of 3400 N. This analysis also further proves
the structural integrity of the azimuthing assembly as shown in
Fig 13 and Fig 14.

Fig 13. Forward Stresses (Left) and Reverse Stresses (Right)

Fig 14. Forward Deflection (Left) and Reverse Deflection (Right)

VII. BEACHING

Fig 15. Motor Pod in Beached Configuration

The beaching motion is accomplished with a Linak LA-36
actuator. The Linak was selected due to an IP-66 dynamic and
IP-69K static rating, and the team’s experience using a smaller
Linak in very close proximity to the water. The selected LA-36
also has 400mm of travel, end stop signals, a max actuation
force of 2600N, and a static holding force of 3400N. [10] These
forces are more than sufficient as proven in the azimuth
structural analysis above.

ERAU Team Minion 7 of 7

 Skin

Fig 16. Skin

To contain the motor pod’s buoyancy and give visual
continuity from the WAM-V’s pontoons, most of the motor
pods are surrounded by a 16.25-inch diameter aluminum skin.
Aluminum was chosen over fiberglass (which the previous
propulsion system used) due to fiberglass’s tendency to crack
and shatter on impacts. This skin is epoxied to the main chassis
using 3M EC2216 Scotch-Weld Epoxy. Other fastening
methods such as brackets with rivets were not chosen due to
increased likelihood of leaks through additional holes.

Buoyancy is accomplished using a closed cell expanding
foam fill with Dow Froth-Pak. This ensures that in the case of
any leaks, the pod will not fill with water.

REFERENCES

[1] "Maritime RobotX Challenge Primer WAM-V

Propulsion Examples," 21 March 2014. [Online].

[2] "2018 Maritime Robot X Challenge Rules and
Requirements," 19 September 2018. [Online].

[3] Florida Fish and Wildlife Conservation Commission,
"Minimum Required Safety Equipment for Class 1
Recreational Vessels: 16 to less than 26 ft/ 4.9 to less
than 7.9m)," [Online]. Available:
http://myfwc.com/boating/safety-
education/equipment/vessels-16-to-259-feet/.

[4] Igus, "Iglide T500," Igus, [Online]. Available:
https://www.igus.com/contentData/Products/Downloads/
iglide_T500_FM_USen.pdf.

[5] Igus, "Iglide J," [Online]. Available:
https://www.igus.com/_Product_Files/Download/pdf/h37
0.pdf.

[6] Igus, "Iglide H370," [Online]. Available:
https://www.igus.com/_Product_Files/Download/pdf/h37
0.pdf.

[7] "DA 30 Technical Specifications," Vikz, [Online].
Available: DA 30 Technical Specification. Volz Servos,
www.volz-
servos.com/English/resources/Downloads/DataSheets/D
A-30_Datenblatt_uni_Rev-C.pdf..

[8] "316 Stainless Steel, annealed bar," MatWeb, [Online].
Available:
http://www.matweb.com/search/DataSheet.aspx?MatGU
ID=dfced4f11d63459e8ef8733d1c7c1ad2.

[9] "Aluminum 6061-T6; 6061-T651," MatWeb, [Online].
Available:
http://www.matweb.com/search/DataSheet.aspx?MatGU
ID=b8d536e0b9b54bd7b69e4124d8f1d20a.

[10
]

"Actuator LA36 Data Sheet," Linak, [Online]. Available:
https://cdn.linak.com/-/media/files/data-sheet-
source/en/linear-actuator-la36-data-sheet-eng.ashx.

ERAU Team Minion 1 of 6

Appendix E: Perception through Object Detection,

Mapping and Classification

David J. Thompson and Eric J. Coyle

I. INTRODUCTION

Team Minion designed a perception module to perform

the necessary functions of object detection, mapping and

classification. Object detection proceeds through the use of

four on-board LiDAR sensors whose returns are mapped to

an occupancy grid for object extraction. The contours of each

object are then represented by a single planar polygon. The

Minion platform then maps objects by combining the object

contours identified from the occupancy grid with those

previously known to the system using Boolean polygon

operations. Lastly, objects are classified using unique spatial

and reflective properties through a priori training and a

Multi-Variate Gaussian (MVG) classifier.

The output of this module is used by three corresponding

modules in operation on the Minion platform. The vision

module uses object detections to associate object color with

the objects, the path planning module utilizes the set of

mapped objects in order to plan and navigate safely, and the

MinionTask module uses the set of classified map objects as

cues to complete the individual challenges.

This appendix contains several excerpts from a pending

publication with the Journal of Oceanic Engineering. All

sections using this work are denoted as such.

II. OBJECT DETECTION

The following section is an excerpt from a pending

publication with the Journal of Oceanic Engineering.

A. Coordinate Transformation

LiDAR returns, such as those on Velodyne LiDAR

sensors, are natively provided in a local reference frame in

spherical coordinates. The elevation angle is a constant, as it

is related to the fixed mounting of each laser. The rotational

angle is provided by an encoder built into the sensor, and the

radius is the distance measured by time-of-flight. It should

be noted that since water absorbs the laser light, only low

intensity returns are obtained from the water’s surface. Thus,

water is easily ignored using an intensity threshold on the 0-

255 intensity output given by the LiDAR sensors.

When using multiple LiDAR sensors, it is necessary to

convert their returns into a common reference frame for

processing. A global frame not only permits the use of

multiple sensors but makes mapping more straightforward

and efficient by preventing the need to continuously compute

point locations in a moving reference frame. To that end, a

northing-easting-down (NED) frame will be used here.

LiDAR returns are first converted from spherical coordinates

to homogeneous coordinates using:

𝑝𝑉𝐸𝐿 = [

𝑅 sin 𝜔 cos 𝛼
𝑅 sin 𝜔 sin 𝛼

𝑅 cos 𝜔
1

], (1)

where 𝑃𝑉𝐸𝐿 is a single LiDAR return in the Velodyne’s

reference frame, R is the distance measurement reported by

the sensor, α is the rotational azimuth angle reported by the

sensor, and ω is the elevation angle of the laser. This

transformation is illustrated below in Fig 1 as provided by

the manufacturer [1].

Fig 1. Coordinate Frame used by Velodyne Sensors [1]

Then, using the known mounting location and orientation

of each LiDAR, the points are moved into a body Forward-

Right-Down (FRD) reference frame using:

𝑝𝐹𝑅𝐷 = 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿𝑝𝑉𝐸𝐿, (2)

where 𝑇𝐹𝑅𝐷
𝑉𝐸𝐿 is the homogeneous transform from the

Velodyne LiDAR’s local frame into the local FRD reference

frame of the vessel. This frame is represented on the platform

in Fig 2Error! Reference source not found.. The FRD

frame is centered between the Minion’s two battery bays,

which are not shown in Fig 2.

Similarly, the LiDAR returns are then moved into the

NED global reference frame using the TORC PinPoint

GPS/INS reported state of the vessel, i.e. the NED location

and Euler angles. This is given by:

 𝑝𝑁𝐸𝐷 = 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷𝑝𝐹𝑅𝐷, (3)

ERAU Team Minion 2 of 6

where 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 is the homogeneous transform from the local

FRD frame to the global NED frame.

Fig 2. Platform FRD frame. Top – Platform port-side profile. Bottom –

Platform rear profile

This approach is only valid for obtaining 𝑝𝑁𝐸𝐷 for a single

LiDAR return. However, the acquisition rate of individual

LiDAR returns is over 300kHz, while the vehicle state is

updated from the GPS/INS at a rate of only 100Hz. Using

only the most recent vehicle state to determine 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 could

lead to significant errors in the calculation of 𝑝𝑁𝐸𝐷 ,

particularly if the vehicle is moving at a high linear or

angular speed. Since the Velodyne sensors can return a GPS

time stamp for each LiDAR return, 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 is uniquely

determined for each LiDAR return by linearly interpolating

the vehicle state based on GPS time stamps. It should be

noted that a full sweep of the scanning LiDAR (i.e. a single

LiDAR scan) occurs at a rate of 10 Hz. To reduce the

processing load, all points are retained in a memory until a

full scan has been completed by each of the onboard

Velodyne sensors and then fed into the object extraction and

mapping algorithms. The resulting calibration is accurate to

approximately 5cm, as shown in the example of Fig 3 where

the returns from each sensor is represented by a different

color.

B. Object Extraction

Object extraction is performed by first fitting raw LiDAR

returns from a single scan of each sensor into a 3D occupancy

grid structure. The occupancy grid is referenced to the global

frame, but the grid range is limited to tunable area around the

vessel. Here, the 𝑀𝑥𝑀𝑥𝑁 grid matrix has a size defined by:

𝑀 = 1 + (𝑑/𝛿), (4)

and

 𝑁 = 1 + (ℎ/𝛿), (5)

where the distance 𝑑 is the maximum range covered by the

occupancy grid, 𝛿 is the resolution of each grid cell, ℎ is the

height of the grid, and the vessel is located in the center of

the grid at all times. The occupancy grid indices, denoted

𝑝𝑖𝑑𝑥, of return 𝑝𝑁𝐸𝐷 , are computed by:

Fig 3. Top: A sample of LiDAR returns from the port (blue), starboard

(red), bow (white), and aft (green) Velodyne sensors. This plot shows

how accurately the sensors are calibrated to the same NED frame. [2]

Bottom: Satellite view of the same area.[3] Note: None of the
vehicles or construction equipment were present when the LiDAR

data was taken.

 𝑝𝑖𝑑𝑥 = 𝑟𝑜𝑢𝑛𝑑 (
𝑝́𝑁𝐸𝐷−𝑞𝑁𝐸𝐷

𝛿
) +

[𝑀 𝑀 𝑁]𝑇

2
, (6)

where 𝑝́𝑁𝐸𝐷 is a 3x1 vector comprised of the first three

elements of 𝑝𝑁𝐸𝐷 , 𝑟𝑜𝑢𝑛𝑑(𝑥) rounds all elements of 𝑥, and

𝑞𝑁𝐸𝐷 is the current NED location of the USV. This equation

can easily be inverted to give NED location for any indices

in the grid.

 The approach thus far is limited to using LiDAR returns

from the most recent LiDAR scan from each sensor.

However, a single scan may not be sufficient to detect all or

even most of the geometry of a maritime surface object due

to gaps between the LiDAR lasers.

To address this, a temporal decay of grid cells is used,

which also allows object locations to slowly change over

time. Similarly, the temporal decay alloys false positives

from the LiDAR to be removed from the map after a period

of time. While false positives are rare, certain conditions can

increase the frequency of false positives, such as white caps

on the water’s surface, as noted in [4], or increased

particulates in the water. False positive LIDAR returns could

then lead to detected objects in areas that could actually be

traversed. This temporal decay is implemented by first

tuning 𝜂𝑚𝑎𝑥, which is the maximum allowable age of a

LiDAR return in milliseconds. When a LiDAR return is used

to fill an occupancy grid cell, it is assigned a current age of

𝜂 = 0. For each subsequent scan that is processed, any grid

cell that is not updated by a newly received LiDAR return

has its age incremented by the elapsed time since the

ERAU Team Minion 3 of 6

previous scan was received. Once the age of a grid cell meets

the criteria 𝜂 > 𝜂𝑚𝑎𝑥, the cell is set to empty. The choice of

𝜂𝑚𝑎𝑥 is a tuning parameter and for this sensor configuration

was selected to be 𝜂𝑚𝑎𝑥 = 4000 ms.

One popular application for LiDAR mapping is the use of

Octomaps [5]. This method reduces the size of point clouds

with an octree structure such that 3D maps may be retained.

However, the retained information of Octomaps is most

useful when the environment contains stationary objects.

Even a shoreline changes location between visits as the tide

may be at a different height. Indefinitely retaining 3D

information for waterborne objects can be problematic as

these objects tend to have variations in both position and

orientation.

Using a 3D representation of the entire environment is

likely overly complex for solving the 2D path planning

problem of most USVs. Realize that while the third

dimension is useful as classification features (to give features

such as height and surface area), it is rarely needed for path

planning. This is because unlike a ground environment

where there are plentiful overhead obstacles such as foliage,

signs, lights, and overpasses, a maritime environment

generally only has bridges that create overhead obstacles. A

2D map will inherently use less memory than a 3D map, even

when using specialized 3D structures such as octrees. Thus,

the grid can be flattened to 2D for navigation purposes. To

this end, the 3D occupancy grid is first flattened to 2D,

resulting in a binary matrix. While object segmentation could

then be performed by clustering algorithms such as

Euclidean Clustering [6][5] or K-Means [7], these algorithms

can be computationally intensive and may require the

number of objects to be pre-determined.

Here object extraction is performed using the pixel

following method, from computer vision, which is fully

described in [8]. Any holes in objects are ignored, so that

only the outer object boundaries are retained. The

coordinates of these contours are moved into the NED frame

using the previously discussed operations in (6), resulting in

a list of objects 𝐴 = {𝑎1, 𝑎2, ⋯ 𝑎𝑛}. Where each object

𝑎1 = {𝑥1, 𝑥2, … 𝑥𝑛 , 𝑦1, 𝑦2, … 𝑦𝑛} is defined by a set of NED

vertices, x is a northing coordinate and y is an easting

coordinate. While this paper does not focus on classification

of objects, it should be noted that any 2D or 3D occupancy

grid cell within the bounds of 𝑎1 and 𝜂 > 0 can be used to

compute spatial characteristics of the object such as size and

surface area.

The pixel following method is not necessary when using

the 2D occupancy grid for path planning directly. However,

the complexity in planning increases when using

voxels/occupancy grids rather than polygons. This approach

trades the unbounded problem of path planning using the

voxels/occupancy grid for the bounded complexity of

combining detected polygons with mapped polygons. This

additionally opens up the system to methods that don’t utilize

grid-based planning.

C. Point Decimation

While the list of objects 𝐴 has been created, it is beneficial

to reduce the number of points that represent the polygon 𝑎1

to improve path planning computations. To accomplish this,

the Ramer-Douglas-Peucker point decimation algorithm is

used. This algorithm uses an iterative method to reduce the

number of points on a curve or polygon to find a similar

polygon subject to a perpendicular distance constraint [9].

This distance is treated as a tunable value, but in general

should be at least as large as the grid resolution 𝛿. Setting the

value too high will result in a loss of object resolution to the

point of distortion.

III. MAPPING

A. Mapping process

The following section is an excerpt from a pending

publication with the Journal of Oceanic Engineering.

Recall that the list of polygon objects extracted from the

occupancy grid is defined in the NED frame and denoted 𝐴 =
{𝑎1, 𝑎2, ⋯ 𝑎𝑛}. This set provides a detailed description

of the local area around the vessel, but vessel operations are

likely to require an extended map of the area for both path

planning and tasking. Thus, it is desired to find a set of

mapped polygon objects at time 𝑡𝑘, denoted 𝐵(𝑡𝑘). While it

may seem logical to simply union 𝐴 with 𝐵(𝑡𝑘−1) to give

𝐵(𝑡𝑘) = 𝐴 ∪ 𝐵(𝑡𝑘−1), this is impractical for several reasons.

First, it is likely that part or all of some objects will be

already represented in 𝐴 and 𝐵(𝑡𝑘). Second, the polygon

boundaries of 𝐴 are more current and likely more accurate

than those of 𝐵(𝑡𝑘−1) for most objects. Lastly, some objects

may be present in 𝐵(𝑡𝑘−1) and not 𝐴 due to the range of the

LiDAR sensors.

To address this issue, a visibility horizon is defined in the

FRD reference frame and denoted by a polygon boundary.

The visibility horizon, denoted 𝑃𝐹𝑅𝐷, is said to contain the

area around the vessel where there is sufficient LiDAR return

density to trust the current information in 𝐴 over 𝐵(𝑡𝑘−1).

The vertices of the visibility horizon can then be moved into

the NED reference frame using the homogeneous transform

𝑇𝑁𝐸𝐷
𝐹𝑅𝐷 . This results in

 𝑃𝑁𝐸𝐷 = 𝑇𝑁𝐸𝐷
𝐹𝑅𝐷𝑃𝐹𝑅𝐷. (8)

The portion of each object 𝑎𝑗 ∈ 𝐴 that should be mapped

is then defined by the intersection of 𝑎𝑗 and 𝑃𝑁𝐸𝐷 . This

results in a new set 𝐴̃ defined by:

 𝐴̃ = {𝑎̃1 𝑎̃2 ⋯ 𝑎̃𝑛} =
{𝑎1 ∩ 𝑃𝑁𝐸𝐷 , 𝑎2 ∩ 𝑃𝑁𝐸𝐷 , ⋯ 𝑎𝑛 ∩ 𝑃𝑁𝐸𝐷}. (9)

Similarly, 𝑃𝑁𝐸𝐷 should be removed from each polygon

𝑏𝑖 ∈ 𝐵(𝑡𝑘−1) using a polygon subtraction. This results in:

ERAU Team Minion 4 of 6

 𝐵̃(𝑡𝑘−1) = {𝑏̃1 𝑏̃2 ⋯ 𝑏̃𝑚} =

 {𝑏1 − 𝑃𝑁𝐸𝐷 , 𝑏2 − 𝑃𝑁𝐸𝐷 , ⋯ 𝑏𝑚 − 𝑃𝑁𝐸𝐷}. (10)

The process to determine the current map 𝐵(𝑡𝑘) is then

simplified to the polygon union of all objects 𝐴̃ with the

objects in 𝐵̃(𝑡𝑘−1). This is defined by the following polygon

union

 𝐵(𝑡𝑘) = 𝐴̃ ∪ 𝐵̃(𝑡𝑘−1). (11)

1) Assigning Class to Mapped Objects

While 𝐵(𝑡𝑘) creates a set of polygon objects, with a

tunable number of vertices for path planning, the current

formulation does not show how to determine the class of

objects 𝑏𝑖 ∈ 𝐵(𝑡𝑘). To do this the class of any object 𝑏𝑖 ∈

𝐵(𝑡𝑘) and 𝑏𝑖 ∈ 𝐵̃(𝑡𝑘−1) should be the same at time 𝑡𝑘 and

𝑡𝑘−1. Similarly, the class should be the same for any 𝑏𝑖 ∈
𝐵(𝑡𝑘) as 𝑎𝑗 if 𝑎𝑗 ∩ 𝑃𝑁𝐸𝐷 = 𝑏𝑖. The only remaining case is

that 𝑏𝑖 ∈ 𝐵(𝑡𝑘) is the union of one or more objects from 𝐴̃

and 𝐵̃(𝑡𝑘−1). In this case the class of 𝑏𝑖 should be set to the

most prevalent class among the polygons in 𝐴̃ that have a

non-zero intersection with 𝑏𝑖 ∈ 𝐵(𝑡𝑘). The result is that any

polygon in the map 𝐵(𝑡𝑘) will have an associated class if it

has ever been classified before, and that its class information

can be re-evaluated only if new sensor data is sufficient to

change its classification.

B. Object IDs

For each object in the map, Minion retains object

information that includes the known extents of the object, the

classification history, the class label, and an object ID that is

unique to the object. When a new set of mapped objects are

found, the extents of the newly discovered objects are

compared to the previous set of mapped objects to determine

if the object is new or had been previously identified.

Mathematically this is implemented by assuming that object

extents will not change from one map iteration to the next by

more than 1m in distance. If matching extents are found, the

classification history and object ID are passed from the

previous iteration of the map onto the object from the current

iteration. Object IDs are then used by the task tracker to

ensure that Minion continues to interact with the same object

throughout the execution of an individual task and for fusing

vision data with perception.

IV. OBJECT CLASSIFICATION

A. Minion Classification

Classification is performed on every object in the visibility

horizon. This is accomplished by extracting a feature vector

from the 3D and 2D occupancy grid cells. The feature vector

F is defined as shown below:

𝐹 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9, 𝐹10] (12)

where:

𝐹1 − 𝑀𝑎𝑥 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐹2 − 𝑀𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐹3 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐹4 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐹5 − 𝑀𝑎𝑥 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡

𝐹6 − 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑙𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑂𝑏𝑗𝑒𝑐𝑡

𝐹7 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐹8 − 𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝐴𝑟𝑒𝑎

𝐹9 − 2𝐷 𝑀𝑖𝑛𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

𝐹10 − 2𝐷 𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠 𝐿𝑒𝑛𝑔𝑡ℎ

To classify these features the team considered the use of

two classifiers: a support vector machine (SVM) classifier

and a Multi-Variate Gaussian (MVG) distribution. While

both of these classifiers are considered to have low real-time

computational costs, SVM is typically more robust due to a

variety of tuning parameters and the assumptions made by

MVG. The research team did in fact find SVM to give better

classification performance as evidenced by the table below:

Table 1: Classification accuracies by class, mean classification,

and misclassification rate

Class SVM MVG

Taylor Made Sur-Mark Can Buoy 99.1% 95.9%

Competition Light Tower 99.8% 99.6%

Competition Dock 100% 100%

Competition Detect and Deliver 100% 100%

Taylor Made A3 Black Buoy 98.4% 90.4%

Taylor Made A7 Black Buoy 94.6% 83.7%

Mean Classification 98.7% 94.9%

Misclassification Rate 1.3% 5.1%

Despite the better classification performance with SVM,

the SVM implementation does not natively allow for objects

which the system has not classified to be left as unknown.

Placing a threshold on confidence and training for unknown

objects are both possible solutions to this issue with SVM,

but neither could be completed in time for competition.

 Instead the MVG classifier, which is itself able to achieve

a high accuracy for competition objects, is utilized and false

positives are reduced by requiring a minimum confidence

before trusting the predicted class label. Furthermore, the

team utilizes a classification filter to prevent objects from

switching class based on an infrequent misclassification or

unknown label. This is implemented by tracking the

classification history in the form of a counter on each

possible class label. All objects are initially given the class

label of “unknown.” Once the object has been classified a

minimum number of times, and minimum percentage of its

classification history is of the same object class, then the

class label is updated. Once the object label is switched from

“unknown”, the system does not allow re-classification of

the object. Since identifying objects of a specific class is a

common cue used by the tasking software, MinionTask, this

prevents the loss of pertinent cues to task completion.

ERAU Team Minion 5 of 6

B. Dock Bay Identification

While Minion Classification is responsible for detecting

course elements including TaylorMade Buoys, Polyform

Buoys, the Light Tower, and the Detect and Deliver Target,

the identification of Docks and Docking Bays creates a

different challenge. This is due to the size of the dock often

exceeding the limits of the visibility horizon, and even if the

dock is detected via Minion Classification additional

processing is required to identify the location of the Docking

Bay.

For this reason, team Minion has developed an algorithm

to search mapped objects for potential Docking Bays. The

principles of this algorithm are to look for a concave object

that can fit the regulation sized docking bay within its

contents while ensuring the approach to the docking bay is

clear of obstacles. As such, for each mapped objected (which

is again represented by a polygon in the map), the algorithm

follows the series of steps below:

Fig 4. Pseudo-Code for detecting a docking bay

where 𝑤 is the width of a docking bay, 𝑙 is the length of a

docking bay, 𝐷𝐵 is the set of all known docking bays, and

𝑟𝑜𝑡𝑧(𝐵𝐸, 𝛼) rotates the polygon 𝐵𝐸 by angle 𝛼 about the 𝑧

axis.

 The team did not have the resources to build or transport a

competition sized dock to our test site. Instead, docks at a

local marina were used to test the algorithm. A sample result

from testing at the marina is shown in Fig 5. As shown, after

tuning 𝑤 and 𝑙 for this test location, the algorithm was able

to detect docking bays. In a 20 minute driving session, all

docking bays were discovered that met the tuned width and

length criteria, with only three false positive results. It should

be noted that the 3 false positive results were from large,

partially mapped objects. However, no objects this large will

occur on the competition course and these false positives

were eventually ignored by Minion once the full dock object

had been mapped. Furthermore, the orientation of the

docking bays was detected to within +/- 15 degrees.

Fig 5. On top, the satellite view of the Halifax Harbor Marina. On

the bottom is a plot of the objects (yellow) and docking bays

(blue Minion outlines) detected by Minion. The current

location of Minion is shown with a cyan line, while the

visibility horizon is plotted in a dashed cyan line.

V. ACKNOWLEDGEMENTS

The authors would like to thank the Office of Naval

Research (ONR) and the Association of Unmanned Vehicle

Systems International Foundation (AUVSI) for supporting

the Maritime RobotX competition for which the team at

ERAU originally developed the methods disclosed here. This

work was also partially supported by the Department of the

ERAU Team Minion 6 of 6

Navy, Office of Naval Research, grant number N00014-17-

1-2492.

REFERENCES

[1] VLP-16 User’s Manual and Programming Guide, Velodyne

Acoustics, Inc. Rev A, August 2015.

[2] R.B. Rusu, S. Cousins, “3d is here: Point cloud library (pcl).” In
Robotics and automation (ICRA), 2011 IEEE International

Conference on (pp. 1-4). IEEE, May 2011.

[3] Google Maps. (2018) Retrieved from
https://www.google.com/maps/@29.1833392,-

81.0426868,60a,35y,270h,39.6t/data=!3m1!1e3

[4] R. Halterman, and M. Bruch. "Velodyne hdl-64e lidar for unmanned
surface vehicle obstacle detection." Unmanned Systems Technology

XII. Vol. 7692. International Society for Optics and Photonics, 2010

[5] A. Hornung, K.M. Wurm, et al. “OctoMap: An Efficient Probabilistic

3D Mapping Framework Based on Octrees,” Autonomous Robots,

2013
[6] R.B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in

Human Living Environments,” Computer Science Dept. Technische

Universitaet Muenchen, Germany, 2009
[7] T. Kanungo, et al. "An efficient k-means clustering algorithm:

Analysis and implementation." IEEE Transactions on Pattern Analysis

& Machine Intelligence 7 (2002): 881-892.
[8] J. Seo, S. Chae, J. Shim, D. Kim, C. Cheong, & T.-D. Han, “Fast

Contour-Tracing Algorithm Based on a Pixel-Following Method for

Image Sensors,” Sensors, vol. 16, Issue 3, pp. 353, 2016.
[9] D. Douglas, and T. Peucker. “Algorithms for the reduction of the

number of points required to represent a digitized line or its

caricature.” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 10, pp. 112-22, 1973.

ERAU Team Minion 1 of 5

Appendix F – Design and Implementation of an

Ultra-Short Baseline Array for Acoustic

Localization

Stephen P. Cronin, Nicholas D. Moline

I. INTRODUCTION

The RobotX competition requires the AMS to detect and

localize underwater pingers at specific frequencies in order

to complete the acoustic transit tasks. Minion uses four

Teledyne TC-4013 hydrophones in an ultra-short baseline

array to detect the acoustic wave fronts.

The process by which the wave front is converted into a

source location is known as multilateration. At a high level,

this approach looks at the time difference of arrival of the

source to multiple sensors in an array. As the geometry of the

array is known, this can be used to determine the positional

offsets of the source to the array.

II. ALGORITHM OVERVIEW

The process by which a sound pulse is separated from the

signal being propagated through the environment to the

desired location information is a multi-step endeavor

involving both analog and digital signal processing. At a high

level, the sound wave is converted to an electrical signal by

an array of hydrophones. This signal is then filtered by

analog components before being sampled and converted into

a digital signal. The signal is then further processed with the

goal of extracting the wavefront of the signal, the portion of

the signal containing the sound transmitted in the shortest

path to the sound source. This portion contains the

information needed to extract the time difference of arrival

and to calculate the location of the sound source. For the

RobotX competition, this source is a periodic sound pulse at

a rate of 0.5 Hz, with a possible frequency of 25-40 kHz at

each kilohertz increment.

III. LOCALIZATION THEORY

A. Analog Signal Processing

In the 2016 competition, during the find-the-pinger task,

Minion had trouble simultaneously locating the pinger and

keeping the boat stationary because of the extremely high

level of motor noise which caused clipping on the analog to

digital converter rendering the data useless. This was

remedied with a 5-stage analog bandpass filter on the

hydrophone signals before being digitally sampled.

B. Digital Signal Processing

The signal being sampled by the data acquisition device

(DAQ) accepts a range of frequencies that are limited on the

low end by the analog filter stage. To filter the target

frequency out from the signal present, a bandpass

Butterworth filter is employed. The Butterworth filter was

selected for the flat response it provides within the passband.

As the spacing between the frequencies, 1 kHz, is

significantly greater than the frequency of the noise around

the target, on the order of Hz, this provided the best response

for the search frequency while still removing those not

desired. To ensure that the frequencies outside of the band

were properly removed, a filter order of 10 was used with a

band of 150 Hz above and below the target frequency.

C. Wavefront Detection

To extract the sound signal at the wavefront, a

spectrogram is taken of the raw signal. The goal of this is to

determine the region of the signal that contains the full pulse

itself. As can be seen in Figure 1 and Figure 2, at the location

of the pulse, a spike occurs in the spectrogram return at the

frequency and subsequent harmonics. Extracting the region

of signal corresponding to the spectrogram spike results in

the pulse itself being extracted from the overall signal. Figure

3 shows the pulse extracted ready for filtering to extract the

wavefront.

Fig 1. Raw waveform containing pulse (at t = 0.11s).

Time (s)

ERAU Team Minion 2 of 5

Fig 2. Spectrogram of waveform with pulse.

To extract the signal, a bandpass is first applied to the

pulse to remove all spurious frequencies. It should be noted

that although the application of a bandpass will produce a

phase shift on the data, it will be consistent across all

channels, meaning that the end goal of computing the

difference of phase will be unaffected.

Applying the bandpass to the pulse results in the signals

shown in Figure 4. As can be seen, we the combination of

the phase shift and removing of spurious data has left the

initial presence of the pulse arriving at the array. The final

step in the process is to reduce these signals down to as close

to the initial arrival as possible.

Fig 4. Signal pulse after bandpass application.

 To extract the initial rising edge of the signal, the absolute

value of the filtered region is taken and then a moving

average filter is applied to the signal. This serves to capture

the behavior of the signal. An approximation of the second

derivative is applied to this signal. When the signal first

begins to experience a change in slope, the location is

recorded. A fixed length segment is then pulled out of the

signal from that location onwards. Figure 5 shows the result

of this extraction process, taking place at a time of

approximately 0.00325s (at the red line) in Figure 4.

Fig 5. Signals at the wavefront.

D. Phase Calculation

With the wavefront extracted from the signal, the phase of

each channel of the signal can be computed. Phase is utilized

over the time of arrival as it allows for the calculation of the

difference of arrival at any point during the wavefront as

opposed to at the instant of arrival, which is significantly

harder to detect. More specifically, the phase difference of

the signal can be calculated anywhere within the clean

portion of the arriving signal, whereas using timing requires

one instant of the signal, one that may not actually be exactly

captured as the sampling rate of the DAQ is not infinite.

To compute the phase of the wavefront of each channel,

begin by taking the FFT of the signal. From this filter the bin

corresponding to the frequency in question is of interest. As

indicated before when discussing the bandpass filter applied,

the order of this filter must be high enough to suppress

frequencies near the signal that can be of similar magnitudes.

As Nyquist-Shannon states, for the sampling rate of the

hardware, 500 kSamples/s, and the size of the wavefront

detected, 80 samples, the bin size of the FFT can be

computed.

An FFT on 80 samples yields half that many bins:

80 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2
= 40 𝑏𝑖𝑛𝑠

Applying Nyquist-Shannon to the sampling rate can

resolve up to 250 kHz. With this the frequency resolution of

each bin is computed:

250 𝑘𝐻𝑧

40 𝑏𝑖𝑛𝑠
=

6250 𝐻𝑧

𝑏𝑖𝑛

This large amount of frequency per bin is what

necessitates the higher order filter to reduce the chance of

other frequencies not of interest impacting the bin of interest.

t = 0.11s

Fig 3. Pulse extracted from raw signal

ERAU Team Minion 3 of 5

It should be noted that decimating the data will not help in

this case, as it produces both a reduction in the number of

samples and the maximum frequency resolvable, yielding the

same frequency per bin.

The bin of interest is the bin corresponding to the

frequency being produced by the sound source. From this

bin, compute the frequency of the signal as a means to

validate removal of the spurious frequencies from the bin.

E. Ultra-Short Baseline Array

Looking at the mathematics of localization, the fewest

sensors that can be used to locate a sound source in 3

dimensions is 4 sensors. The following mathematics shows

how to convert the time difference of arrive to location.

Assume: 4 hydrophones at (x0,y0,z0), (x1,y1,z1), (x2,y2,z2),

(x3,y3,z3) and Source at (x,y,z)

The distance from the source to the hydrophone can be

described by Euclidean distance, where:

𝐷𝑛 = √(𝑥 − 𝑥𝑛)2 + (𝑦 − 𝑦𝑛)2 + (𝑧 − 𝑧𝑛)2 (1)

For hydrophone 0:

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0

For hydrophone 1:

√(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝐷1

For hydrophone 2:

√(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝐷2

For hydrophone 3:

√(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝐷3

The time difference of arrival and phase difference of

arrival are directly related by a constant speed of sound

throughout the water. Therefore, the distances can be related

through differences in phase, a more accurate calculation

than time.

𝛥𝑑1 = 𝐷0 − 𝐷1 and 𝛥𝑑1 =
(𝛷0− 𝛷1)

2𝜋
𝜆 (2)

Since the phase difference can be measured, all 𝛥𝑑’s are

known:

𝐷0 − 𝛥𝑑1 = 𝐷1

Therefore:

For hydrophone 0:

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0

For hydrophone 1:

√(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝐷0 − 𝛥𝑑1

For hydrophone 2:

√(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝐷0 − 𝛥𝑑2

For hydrophone 3:

√(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝐷0 − 𝛥𝑑3

Squaring each side:

For hydrophone 0:

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝐷0
2

For hydrophone 1:

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑1 + 𝛥𝑑1

2

For hydrophone 2:

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑2 + 𝛥𝑑2

2

For hydrophone 3:

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2

= 𝐷0
2 − 2 ∗ 𝐷0 ∗ 𝛥𝑑3 + 𝛥𝑑3

2

At this point, the location is represented as 4 equations and

4 unknowns, (x, y, z, D0). To solve for the location, a

numerical solution must be employed as the terms are not

linearly separable.

IV. HARDWARE DESIGN

The hardware of the acoustic localization system consists

of three main components, the ultra-short baseline array,

filtering circuits, and the DAQ.

A. Ultra-Short Baseline Array

The type of array employed is an ultra-short baseline

array. This allows for some assumptions to be made about

the behavior of the array.

Sizing the array is based on the shortest wavelength the

array would process. For the purposes of this competition,

this occurs at 40 kHz. The wavelength at this frequency is:

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1480 𝑚/𝑠

40000 𝐻𝑧
= 0.037 𝑚

Half this wavelength is used to determine the maximum

distance the sensors are spaced from one another to prevent

there being multiple locations where the same delta phase

can be produced. In practice, a factor of spacing is employed

to account for factors such as differences in the speed of

sound as well as frequency shifts. A distance of 1.8 cm was

used as the spacing between the sensors. The sensors

themselves are physically less than half of this spacing with

a diameter of 9.25 mm, making this array possible.

B. Hardware Filtering

A hardware filter to removes the 15 kHz motor noise

before the signals are sampled. The design consists of a low

pass Butterworth filter with a cutoff frequency of 50kHz

followed by a high pass Butterworth filter with a cutoff

frequency of 20kHz. The gain of the system was designed to

be +20dB. The goal of this gain was to align the output of the

circuit with the inputs of the DAQ, which accepts a voltage

of -10 to 10 volts.

C. Digital to Analog Conversion

Sampling of the signals is done with a four-channel digital

ERAU Team Minion 4 of 5

to analog device. These signals are sampled at 500

kSamples/s/channel. This sampling rate puts the resulting

signals well above the Nyquist criteria for resolving the

frequencies in question. Sampling on each channel is also

synchronized, meaning that measurements happen at the

same time. This is useful in extracting the wavefront of the

signal and ensures that the FFT bins are referring to the same

portion of time between sensors.

D. PODS Board

One of the goals of the platform was to reuse technology

whenever possible. To this end, the same circuit board used

to raise and lower the motors for beaching was used to lower

the hydrophone arm.

E. Sensor Guard

As the sensors themselves are relatively fragile, with some

of them even experiencing damage during the 2016

competition due to a collision with the dock bay, a guard was

constructed to handle accidental contact instead of the

sensors themselves. A guard was designed with the ability to

prevent damage to our sensors at the full range of operating

speeds experienced and at all likely collision angles.

Validation of the guard was conducted using finite element

analysis (FEA).

V. DESIGN CONSIDERATIONS

A. Multipath

As with any system involving signals being transmitted

through and environment, multipath is one of the primary

sources impacting the phase measurement. Looking at the

physical system, the closest source of reflection to the array

describes how long of a usable wavefront will be present.

The equation below relates the distance of the shortest

reflection path to the number of DAQ samples the wavefront

will have sampled. For this system, a distance of at least one

meter from any source of reflection was the target, resulting

in approximately 350 samples, many full phases at the

frequencies in question.

𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑
∗ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (3)

B. Digital Bandpass

Filtering the data is a balance between the filter order,

band size, and time to compute. From these features the best

suited filter can be determined. It should be noted that these

features are all inter-related in terms of impact but are treated

separately as they are distinct from an algorithm perspective.

Looking at band size, first consider the doppler shift,

shown below, where c is the speed of sound in the medium,

f is the observed frequency, fo is the emitted frequency, vr is

the receiver speed, and vs is the source velocity. Note that for

this purpose, the operating speeds are significantly less than

the medium speed. In testing, the boat travels at a maximum

of 3.5 m/s whereas the speed of sound is approximately 1480

m/s. The other frequency shift that would widen the band is

from the inconsistencies in the device producing the

frequency. Applying doppler shift to the highest produced

frequency, 40 kHz, this would result in a shift of

approximately 95 Hz. To account for the fact that additional

velocity components from water current which can be added,

the band was sized at 150 Hz.

𝑓 = (
𝑐± 𝑣𝑟

𝑐± 𝑣𝑠
) 𝑓𝑜 (4)

Filter order effects the falloff of the frequencies outside of

the band allowed. Based on the competition rules, there is a

separation of at 2 kHz between channels. As discussed prior,

this separation is less than the FFT bin width, necessitating a

more aggressive filter to prevent other sound sources in the

environment from impacting the frequency of interest. Based

on experimental testing on the range of frequencies allowed,

a filter order of 10 was found to provide the necessary falloff

to prevent other frequencies from presenting an issue.

C. Wavefront Detection

The methodology described assumes that a wavefront is

present in the collected data. This however, is not a guarantee

and as such cases where there is not one present need to be

rejected. Figure 6 shows a spectrogram return for this case.

In this implementation, a check is performed on the average

spectrogram return of the lowest bins, typically containing

random noise sources, to the bin of interest. If the difference

in return does not reach a threshold, there is considered to be

no pulse present. This approach was deemed robust in this

implementation as hardware filtering takes place in the

filtering process, drastically reducing the presence of random

noise in returns.

D. Phase Calculation

The signal to noise ratio (SNR) is one of the primary

factors in accurately determining the phase of the signal, and

as such the location of the source. Various sources of noise

can contribute; however the primary concern is in frequency

sources in the same FFT bins as the target frequency. This

can stem from environmental sources themselves or

harmonics of sources, a 32 kHz harmonic of a 16 kHz motor

controller for instance would be one of the available

localization targets. Through testing, it was found that

accurate phases could be computed at signal to noise ratios

of 50 or more. Raw signals can possess more noise than this,

however after a bandpass filter is applied to the signal noise

levels are dramatically reduced with signal to noise ratios in

Fig 6. Spectrogram without pulse present

ERAU Team Minion 5 of 5

the 100’s. Therefore, noise does not typically prevent the

algorithm from functioning as intended.

E. Numerical Method

Each difference of phase that the array can experience

correlates to one point uniquely in space within the

hemisphere of the array governs. However, this claim is only

true in a purely theoretical sense. When a signal is sampled

into a finite resolution, 16 bits, and multiple algorithms each

with errors is applied to these signals, the phases are no

longer unique. As a result, the numerical algorithm can

converge to multiple solutions. A property of how the errors

equations converge is that solutions along the same vector

are the most likely solution that the method will converge to.

As such, these solutions have the same bearing to the source,

and can be used for navigational purposes. Other spurious

results are filtered through outlier analysis over multiple

readings.

VI. PERFORMANCE

Experimentation on the performance of the algorithm took

place in both field testing as well as simulation. This allowed

for easy testing of large numbers of use cases along with

accurate representations of multipath in environments,

something difficult to model along with the impact that the

system may have on the localization hardware.

It should be noted that the data presented is not a

comprehensive look at the performance of the system.

Further testing to draw statistically significant conclusions is

needed. As such, test cases relevant to the competition will

be evaluated rather than the generalized performance.

The results presented took place in the university pool.

This was used as it is a controlled environment that allowed

for ease in producing repeatable results.

To test the relevant cases to the competition the

assumption was made that the boat would be near the vicinity

of the gate and be able to face hold a heading. Table I shows

the results of testing at various bearings to the pinger. This

was selected as the results to present as from a measurement

perspective it was easier to produce accurately measure. In

the competition this is sufficient to be able to navigate the

gates. As can be seen, the deviation of error was relatively

low, achieving results lower than the accuracy target of ±5

degrees discussed in the main paper. Certain cases have

higher standard deviation, but at this time it a conclusion as

to the cause of this is unknown. Moving forward more testing

in the same test cases and other frequencies and bearings will

be conducted to form a better picture of the behavior of the

system as a whole.

Table I

EXPERIMENTAL RESULTS PINGER BEARING

Case

(deg)

Frequency

(kHz)

Mean

(deg)

Standard

Deviation

(deg)

Samples

45 40 45.34 7.85 7

0 40 -0.62 3.93 17

0 35 0.25 4.62 13

80 35 79.29 3.20 12

-90 35 -90.90 5.94 8

ERAU Team Minion 1 of 3

Appendix G: Minion Core Inter-process
Communications Library

Timothy A. Zuercher, Patrick N. Currier

I. INTRODUCTION

Team Minion has historically used National Instruments
LabVIEW as a basis for the autonomy software package.
Although somewhat unusual in the robotics community,
LabVIEW is natively parallelizable, is designed to interact
with hardware, is capable of calling libraries written in other
languages, offers excellent debugging tools, and is easily
accessible to students who are not extremely skilled
programmers.

The Minion code base is highly modularized in order to
spread the responsibility for programming across the team.
To solve the problem of inter-process communications, the
team developed the Minion Core communications library for
LabVIEW. This library emphasizes ease of use while still
maintaining robustness to component configuration and
communication interference.

II. MINION CORE

Minion Core is designed as a lightweight, master-less,
auto-configuring, UDP-based communication structure
featuring support for acknowledgement and sequential
messages.

A. Interface Design

The primary design goal for Minion Core was to produce
a library that was extremely easy for students to deploy and
use. Specific interface design goals included:

1. Simple and automated message generation
2. Minimal code components
3. Minimal LabVIEW data wires
4. Automatic network configuration
5. Support for parallel loops
6. Deployment in pre-compiled form

An example of a complete program capable of sending and
receiving Minion Core messages is shown in Fig 1.

Fig 1: Example of complete Minion Core program

Minion Core is distributed as a packed library (the
LabVIEW equivalent of a dynamic linked library or a shared
object). Fig 1 shows all of the features of the Minion Core
interface that are contained in the library. In the top right is
the MINION CORE block. This block contains all of the
underlying code that manages message transfer. To use
Minion Core, a user must simply drop this block on to the
base diagram and create a Core Settings control that contains
basic network information. In most cases, default values are
used, but this control allows for separate Minion Core
networks.

Messages are sent and received using auto-generated
polymorphic blocks. To send a message, the SEND MSG
block is dropped into the diagram. This block auto-detects
the correct message to send based on the data type wired. In
some cases, a user may want to override this setting and can
do so using the case selector (set to New Path in this
example). Once the data is entered into this block, it is passed
to the MINION CORE block using a LabVIEW notifier,
enters a send loop, and is automatically sent to all known
destinations for the message ID. On the first call of the send
block for a particular message, the MINON CORE block
sends out multicast ping messages to attempt to find a
destination component for the message. All returned
components are considered valid destinations until the
component’s heartbeat drops from the network.

Receiving a message works similarly using the
polymorphic RECV MSG block. When first called, this
block triggers a multicast ping message to find a component
send the requested message. Once a message has been
received, the RECV MSG block will return data in the
correct data type for the message. A separate indicator

ERAU Team Minion 2 of 3

reports if new data has been obtained or if the block has
timed out. The RECV MSG block is implemented as
blocking code, but the timeout can be set to zero if required.
In the event that no new message has been received, the
block will return the last received data.

Messages are configured using a Message Manager that is
contained within the packed library, Fig 2. This component
allows a user to define all of the relevant messages by
creating a LabVIEW cluster containing the data type,
specifying an ID, and setting default options for timeout,
acknowledgement, and sequence enforcement. Once these
options are specified for each message, the Generate
Messages button triggers automatic generation of the SEND
MSG and RECV MSG blocks. Individual VIs are generated
for each message based on a template and then bundled into
the polymorphic blocks. Regeneration of messages affects all
components within the project, but messages remain
backwards compatible unless data types or IDs are changed.

Fig 2: Minion Core Message Manager interface

The final component of the interface design is the STOP
blocks that allow for control of multiple parallel loops. This
is often a challenging problem in LabVIEW, but is handled
in Minion Core via a SEND STOP block (stop sign shaped
block) that triggers a global stop notifier. This notifier is the
read by the QUERY STOP block and used to signal
additional loops to stop execution.

B. Communications Design

The Minion Core communications architecture was
designed with several goals:

1. Low overhead
2. Master-less, auto-configuring
3. Robust to low-bandwidth links
4. Robust to intermittent links

To address these design objectives, Minion Core
communications are based around a UDP multi-cast auto-
configuration and single-cast message sending.

UDP was selected to reduce overhead relative to TCP,
which requires retransmission of data to confirm receipt.
Minion Core adds only a 17-byte header and standard UDP
header to each message. Messages are allowed in sizes up to

65519 bytes of data. Multi-part messages are currently not
supported. The potential weaknesses of UDP are addressed
through Minion Core features, except for security.
MinionCore is not inherently secure and requires the network
to be secured at OSI layer 1.

At startup, each Minion Core component opens an
available single-cast UDP port and registers a set of sent and
received messages from an array of critical messages
connected to the MINION CORE block. Additional
messages are registered as the SEND MSG and RECV MSG
blocks are called in the user code.

The Minion Core auto-detect module attempts to find
sources and destinations for each message by sending out
multi-cast UDP pings containing its network port and arrays
of message IDs that it is seeking. Other Minion Core
components listening on the same multi-cast address reply
with ping messages.

The component parses these messages and sets up single-
cast UDP connections via a heartbeat message. The
components each register a new source or destination for the
relevant message and continue to exchange single-cast
heartbeat messages at a user-defined interval. If the heartbeat
is not received for a user-specified amount of time, the
connection is considered lost and the relevant message
source or destination is de-registered, triggering additional
multi-cast pings if no other sources or destinations are
registered.

This auto-detect functionality allows for components to be
easily moved between computers for testing purposes.
Components can be run on developer laptops for debugging
with no reconfiguration or additional overhead.

Robustness to poor communications links is provided by
the Minion Core acknowledgement functionality. By default,
messages are transmitted over single-cast UDP with no
guarantee of delivery. For messages that are sent rapidly and
where only the latest data is relevant (such as vehicle state),
this is a desired functionality to minimize bandwidth
requirements. Data validity for all messages is checked using
the UDP checksums.

For messages that may only be sent once or that are
critical, the user may choose to request an acknowledgement.
When an acknowledgement is requested, the Minion Core
code will send the message and then add its ID and
destination to an acknowledgement queue. The receiving
component will detect the requested acknowledgement and
reply with an ACK message containing the header of the sent
message. The acknowledgement queue will attempt
retransmission of the message until either the ACK message
is received or a user-specified timeout is reached. Either way,
the user will receive a Boolean indicating the status of the
acknowledgement.

For messages that may be required to be received in a
specific order, Minion Core also allows the specification of
enforced sequence. If this option is selected, the receiving
component will reject messages that violate the monotically
increasing sequence number for that message ID. Since

ERAU Team Minion 3 of 3

sequential messages are required to be acknowledged, this
functionality will trigger a retransmit of the message from
the sending component, ideally arriving after the lost
sequential message (which has also not been acknowledged)
is received.

This method reduces bandwidth requirements by requiring
only minimal ACK messages while allowing for multiple
retransmission attempts in the case of intermittent
connections. These types of connections are often
encountered in long-range wireless environments, such as
ship-to-shore. The Minion Core acknowledgement and
sequential enforcement provides increased robustness to
real-world communications not found in some other
packages, such as ROS.

Minion Core also logs all messages sent and received by a
component. The disk space allocated to this log is
automatically managed subject to user-specified file and
total size limits. These messages can then be played back to
simulate or replay events.

C. Results

Minion Core has proven highly successful in practice.
Students can learn to use the package in only a few minutes
of training. The auto-configuration functionality enables
rapid debugging by allowing components to move
seamlessly between computers and the acknowledgement
functionality improves robustness to poor communication
conditions experienced in field operations.

ERAU Team Minion 1 of 5

Appendix H: Electrical and Power Systems

Jefferson S. Romney, Nicholas R. Middlebrooks

I. INTRODUCTION

The design of Minion’s electrical system has evolved

since its first version in 2014. The design follows three main

tenets. The firs t and most important philosophy is safety

first. Safety takes priority over function in all cases. After

safety, but closely related, redundancy is a goal of the

electrical design. Although not every system has total

redundancies, most systems critical to the minimal function

of the vehicle have redundancies. The third major design

guideline is distributed power regulation. This is a lesson

learned from the first power system on Minion; where if

multiple systems were tied to the same power source, when

one goes down, they all go down, where now if one system

goes down the others can still run. Every subsystem regulates

power for itself and there is no central power distribution.

This follows the principle of redundancy in that no one

regulator failure can disable the whole boat. This can be seen

in Fig 1 where each system gets direct battery power.

Fig 1. Main Power Distribution on Minion

II. SAFETY

A. E-Stop system

The most important safety system on the boat is the E-Stop

system. Minion’s e-stop system is designed for utmost

reliability and redundancy. It allows the boat to be e-stopped

both remotely and with on-board physical buttons, all

without software intervention. It also includes a low-level

software watchdog to monitor the system and allow for

software-controlled e-stopping as well.

1) On-Board Button system

Minion is equipped with 4 physical e-stop buttons; one at

each corner of the boat is located low on the arches for ease

of access when on the water. These normally closed buttons

operate in series as an input to the estop circuit. Fig 2 shows

the circuit of the 4 buttons.

Fig 2. E-Stop Button Loop Circuit

2) R/C Hardware E-Stop

The primary remote e-stop is operated using a dedicated

channel on the remote-control system. The signal is received

as a standard RC PWM signal and is split to both the safety

system micro-controller and a specialized flip-flop circuit to

threshold the pulse width, shown in Fig 3. The signal path to

the microcontroller allows software to monitor the signal

without interfering with its e-stop functionality.

Batteries

Sub Deployment

Azimuth

Servo

Controller /

Thruster
RC Link

Hydrophone

System

Retraction Motor

Atlas and

Sensors

ERAU Team Minion 2 of 5

Fig 3. RC Hardware E-Stop Flip-Flop Circuit

3) Backup External E-Stop Solution

A consideration that was included in the design of the e-

stop system was the ability to integrate an external

independent wireless e-stop system such as a TORC

SafeStop. This is done via a simple active high input.

4) Software Oversight

To monitor the hardware e-stop circuit and enable software

activation of the e-stop, a microcontroller monitors the

overall e-stop state and the RC signals, and is allocated an

input to the e-stop system. With these connections the

microcontroller software provides RC out-of-range

detection, protects against quick oscillations of the signal,

and communicates with the higher-level software autonomy

systems.

5) Hardware OR-ing Combination

Each of the inputs to the estop system: buttons, RC,

external e-stop, and software control are OR-ed using a

system of MOSFETs. This circuit allows any one of the

inputs to put the boat into a safe state ensuring that no

software can interrupt the assertion of e-stop. The schematic

of this circuit is shown in Fig 4.

Fig 4. E-Stop Control OR-ing Circuit

6) Dedicated Relay Coil Power Regulators

The output of the MOSFET circuit enables or disables two

individual isolated power supplies that each control one of

the e-stop relays.

B. Indicators

During the 2016 competition, it was difficult for the light

tower indicator to be seen from the shore. To address this

issue, a new light indication system was developed using

multiple LED panels.

These LED panels are NeoPixel brand LED matrix boards

being controlled from an auxiliary microcontroller attached

to the control/safety board on Minion. A NeoPixel is an

addressable RGB LED, and Minion is equipped with 5

panels of these totaling 1024 pixels, providing an order of

magnitude increase in indicator brightness over the previous

tower which improves the visibility at nearly all angles. Each

panel can draw between 12-25W of power for the LEDs,

compared to the .75W draw of the old light tower. While this

provides a simple way to display the E-Stop, R/C, and

Autonomous modes of Minion, the light panel array can also

be used to display other information that 5 simple lights

could not. Instead of just showing light colors, the light panel

can show colored words to let other vessels know what each

light mode means

C. Smart Batteries

There are four Torqeedo Power 26-104 batteries in use on

Minion are marine-grade, high-performance, smart lithium-

NiMnCoO2 (LiNMC) batteries. Each battery has an energy

rating of 2.6 kWh at 25.9V nominal, and are configured on

Minion as two batteries connected in series and then

connected in parallel, for a total energy rating of 10.7 kWh

at 51.8V nominal while running. In this configuration,

Minion has a continuous runtime of 6-8 hours. The batteries

are ideal for use in a marine environment due to their robust

integrated battery management system that protects the

batteries against overcharging, over depletion, shorts,

overheating, and polarity reversal. The batteries are also IP67

rated.

D. Isolation

Because of the high power-draw of the thrusters, a spike

in thruster speed can cause significant fluctuation in the level

of the battery ground. These fluctuations are very dangerous

to other components on the boat. To combat this, each of the

distributed regulators is isolated and communications

between all the major systems are also isolated. This is

achieved through isolating grounds; using isolated power

supplies for stepping down voltage; and isolating data lines

through magnetics, opto-electronics, and capacitive

isolation.

III. REDUNDANCY

A. Datalinks

To interface with the main autonomy system, a high-speed

ERAU Team Minion 3 of 5

5.8 GHz datalink is employed through the use of paired

Ubiquity Rocket M5 radios to connect to the ground station

and judges’ tablet. This datalink can be susceptible to

interference and network faults. To ensure that manual

control is always available, it is transmitted over a second,

more reliable, lower-frequency datalink dedicated to RC

control that can be run on either a 433 or 900 MHz frequency.

This makes sure that if the connection monitoring the

autonomy fails, the manual control link can act as a

redundancy rather than failing with it.

B. Degrees of Freedom

With the addition of an azimuth degree of freedom on each

thruster, some redundancy has been built into the control

system. With as little as one thruster and one azimuthing

actuator, the boat can be fully controllable in forward or

backward motion. To support this redundancy, each

azimuthing servo has an independent isolated drive circuit

and power regulator. If any single actuator or thruster fails,

Minion can still be driven in all but fully holonomic modes.

For more information see Appendix I.

C. Independent Computer Power supply

Inside the Atlas control box are two separate computers

that act as the computational brain for the Minion platform.

Each computer has a copy of the runtime software, so in the

unlikely case that one computer is disabled, the other

computer could shoulder the load to keep basic autonomy

functional. To complete this redundancy, each computer has

an independent custom DC/DC ATX power supply.

D. Uniform Platform for Actuator Interface

To control the additional actuators, including the

hydrophone boom actuator, the Submarine deployment

system actuators, the racquetball turret, and the motor pod

azimuth and retraction actuators, a new circuit board was

designed to meet the needs of all these subsystems. This

unified design allowed the same circuit board to be used in

all these applications. The resulting interchangeability

allows for reduced development time, simple replacement,

and fewer unique spares needed to keep on hand.

E. Thruster Controllers

Since the old Torque-Jet thrusters and the new

Copenhagen VM thrusters are both compatible with similar

motor controllers, the custom controller designed in-house

and the new Piktronik controller are freely interchangeable.

IV. CHANGES

A. New Thrusters

1) No longer prototype thrusters

The Minion platform for both the 2014 and 2016

competition used Torque-Jet Rim Driven Propeller (RDP)

thrusters. Those were some of the first generation of small-

scale RDP thrusters available on the market, and as such

reached the end of their operational life during late 2017.

Torque-Jet’s technology has since been purchased by

Copenhagen Subsea A/S, who then further developed and

refined, and the product of these improvements has

succeeded its predecessor as the propulsion unit used on

Minion. Copenhagen Subsea’s VM thruster was selected to

replace the old thrusters.

Like the previous RDP thrusters, the new VM Thrusters

are 12-pair permanent magnet brushless DC RDPs, making

them easy drop-in replacements. The new VM thrusters carry

many advantages over the older Torque-Jets thrusters,

including: optimized blade design for increased

hydrodynamic efficiency, more efficient cooling for higher

sustained load, improved serviceability and maintainability,

and increased thrust.

2) Asymmetric Thrust

The new VM Thrusters are fitted with special nozzles and

propellers to give asymmetric thrust for greater thrust in the

forward direction, as most of Minion’s movement, especially

with azimuthing control, is with the thrusters spinning in the

forward direction. The asymmetric nozzles can be seen in Fig

5.

Fig 5. Copenhagen VM Thruster with Asymmetric Nozzles

3) 3D Printed Propellers can be Easily Replaced

The Torque-Jet RDP propellers were injection molded in

very dense and brittle plastic making them heavy, expensive

to produce, and susceptible to chipping. The VM Thrusters

mitigated these problems by using 3D printed propellers

made out of Nylon PA12, allowing for Copenhagen Subsea

A/S to quickly iterate and optimize the propeller design to

produce maximum thrust with minimal weight, making the

propeller easier to accelerate for better response. The

flexibility of the Nylon PA12 prevents chipping of the edges

of the blades which can prolong the life of the propeller. A

major design improvement is replaceable propellers so that

if one of the propeller blades does break, it can be quickly

replaced with backup propellers that are on hand. In addition

to these improvements, the Nylon PA12 retains a high degree

of resistance to moisture absorption a good chemical

tolerance. [1]

ERAU Team Minion 4 of 5

B. New Thruster Controllers

1) Failure of Old Motor Controllers and Use of New

COTS Controller

The new VM Thrusters and the old Torque-Jets are both

sensor-less brushless DC thrusters that use the same 3-phase

interface, so it was very easy have them interface into

Minion’s existing motor controllers that had been custom-

built in-house for the Torque-Jets. However, due to

complications with the existing motor controller relating to

higher-voltage operations, the Piktronik SAC1-90A motor

controllers recommended by Copenhagen Subsea A/S

proved to be the most favorable choice for primary thruster

control. The advantages of the COTS motor controller are

that it is a proven product that can be easily sourced for

replacements, and the bundled SACTERM software for

motor interfacing/troubleshooting. The advantages of the

custom motor control solution include customizability and

increased feedback which are important for research

purposes, therefore the compatibility with these is

maintained as a backup solution.

The SAC1-90A controllers also include many features

built into the custom motor controllers such as thermal

monitoring and protection of the controller, current

measurement and torque and speed estimation. The included

SACTERM interface software allows for easy bench testing

and troubleshooting of the SAC1-90A controllers when

connected to the VM thrusters, as seen in Fig 6.

Fig 6. SACTERM interface software displaying VM Thruster config data

2) New Software Interface Over CAN Bus

The Piktronik SAC1-90A controller, in contrast to the

older motor controller that was controlled using a simple

PWM signal, uses a CAN Bus for control and data feedback.

To interface with this, a CAN transceiver was added to the

control/safety board which provides motor control signals.

Both motor controllers are plugged into this CAN bus and

each is given its own address range.

C. Pods

1) Pods Control for Thruster retraction and Azimuthing

Since the new thruster pod design has auxiliary actuators

for control of azimuthing and thruster retraction, a new

microcontroller board was needed for the low-level interface

and control. The retraction actuator is the Linak LA-36, and

the azimuth actuator is a Volz DA-30 servo. This led to the

development of the Pods board to regulate power, control the

actuators, process actuator feedback, and communicate with

the safety/control board via an opto-isolated UART

connection.

The Linak LA-36 is a 24V brushed motor linear actuator

with built-in end-stop switches. The Pods board supplies the

24V power from an on-board converter and controls the

Linak through a standard H-Bridge driver circuit.

The Volz DA-30 servos are high-torque servos rated for

use in salt water, powered through 24V and controlled over

an optocoupled or standard TTL-level PWM interface. The

Volz servo draws power from the same 24V regulator as the

Linak while being directly driven from the Pods board over

PWM. For greater noise immunity over the long cable run

near switching motor phase wires, it uses the optocoupled

interface with approximately 10mA of current in the on state.

The actual position of the servo is reported back via a single-

ended analog signal.

D. Hydrophone Filter

In the 2016 competition, during the find-the-pinger task,

Minion had trouble simultaneously locating the pinger and

keeping the boat stationary because of the extremely high

level of thruster noise which caused clipping on the analog

to digital converter rendering the data useless. This was

remedied applying a 5-stage analog high-pass filter to the

hydrophone signals before being sampled by the ADC. For

more information on the hydrophones and the filter, see

Appendix F.

V. CONCLUSION

The electrical system, while it is the backbone of the

Minion platform, is only there to support the platform while

it completes its various tasks. To be that support, the

electrical system was updated with respect to its main tenets

to be safer, more reliable, and having a distributed power

delivery system in order to work with the various new

systems added to Minion this competition. It is safer by

preventing shorts due to the improved signal and power

isolation and more visible using higher powered indicator

lights. It is more reliable through increased redundancy with

backup datalinks, motor controls, and power; a unified

platform for actuator control; and interchangeable control

systems for the new thrusters and actuators. It works with

more subsystems by interfacing with brand new motor

controllers, thrusters, actuators, servos, and sensors; all while

making sure they have their own independent power

supplies. While from the outside it may seem that the

electrical system hasn’t changed, it has sustained many

substantial under the hood upgrades to keep Minion at peak

efficiency.

ERAU Team Minion 5 of 5

REFERENCES

[1] M. de Wargney, “Nylon PA11, Nylon PA12 & Multijet Fusion

PA12 in 8 questions,” 3D Printing Blog: Tutorials, News, Trends and

Resources | Sculpteo, 23-Nov-2017. [Online]. Available:

https://www.sculpteo.com/blog/2017/09/06/differences-pa11-pa12-

multijetfusionpa12/. [Accessed: 16-Oct-2018].

ERAU Team Minion 1 of 9

Appendix I: Intelligent Autonomous Mission

Planning and Execution

James J. Hendrickson, Patrick N. Currier

I. INTRODUCTION

The MinionTask module is responsible for identifying

which tasks can be completed, executing the tasks, and

managing the operating mode of the vessel. Both

competition and research objectives for the Minion ASV

require a robust and reliable system to autonomously

determine the operating mode of the robot based on

information streaming in from onboard systems and off-

board systems.

The MinionTask module differs from most competition

approaches in that it utilizes this information to dynamically

launch task modules to execute the required tasks as the

course elements are discovered. The following sections will

first go into detail how the MinionTask module is structured,

then analyze the task development, and finally analyze the

results of the simulation and in-water testing.

II. GENERAL STRUCTURE

MinionTask implements a multi-modal mission planner with

intelligent tasking. User-specified configurable objectives

and geo-fencing information initialize operations for a given

task scheme, and the module then searches the defined area

and acts on information as task elements are discovered. The

tasking code is implemented as an independently compiled

library that is launched asynchronously as start conditions

are met. An overall progress tracker monitors the mission

state, and launches or terminates behaviors to ensure

continued mission progress by either accomplishing goals or

timing out. The structure of this can be seen in Fig 1.

Fig 1. General module run-time structure.

A. Mission Configuration

Configuration files for the MinionTask module come in

two forms. The first contains the search configuration that

sets up the search pattern, the geo-fence, and the priority

search nodes based on the GPS points of interest for each

task that are provided by the technical directors. The latter

elements are particularly important as it allows MinionTask

to prioritize searching areas of the field of known interest

before searching the remaining nodes based on their

coverage by the perception modules.

The other configuration file is the task configuration. This

XML file contains all the information needed to configure

each mission. Each configuration file can define any number

of allowable tasks and contains the task setup parameters and

the path information to the dynamic task functions.

When a new task configuration is loaded, it is stored into

the MinionCore Task Database. For the 2016 competition,

this database only allowed a single set of task configurations

to be loaded into the database, as shown in Fig 2.

Unfortunately, if two or more platforms, for instance the

ASV and a UUV, were running the same instance of

MinionTask, they would both receive the same task list

despite having very different operational objectives.

This vehicle deployment issue was solved by restructuring

the database to include a sub-heading before the “task

configuration” stage whereby the platform could be dictated

and accessed by name, as shown in Fig 3. This allows not

only for each independent platform on the network to run its

own tasks, but also allows for any other platform specific

information to be accessed from the database. The revised

structure allows multi-vehicle operation from a single

instance of MinionTask.

Fig 2. Minion task database for the 2016 competition

ERAU Team Minion 2 of 9

Fig 3. Minion task database for multiple platform configuration.

B. Search Mode

Upon mission start, the module is assumed to have no

information of the competition course beyond the search

configuration file. Every mission begins by entering a search

mode to discover the task elements until a task is ready to be

launched.

While the module attempts to find the required start

conditions for a task, it will sweep through the field

following a lawn mower search pattern in an attempt to find

all of the course elements. If there are priority nodes

available, then these points would be visited first based on

each priority node’s Euclidian distance from the boat. As

new objects are discovered, new priority nodes are

dynamically placed to ensure that the search explores areas

near course elements. MinionTask will remain in search

mode until a new task is launched and will return to search

mode after the completion of the task. Once the search area

has been exhaustively explored, MinionTask will return to

idle.

C. Mission Structure

After a task configuration file has been loaded, the module

calls three separate files for each task: initialize, ready check,

and main. An example of how these files are called for each

task that is loaded can be seen in Fig 3.

The initialize function for each task is responsible for

converting the configuration data into the proper data type.

For example, in the Navigation challenge, critical

configuration elements that are configured include the

tolerance on the start gate buoy spacing, if it is expected that

color information about the buoys will be available or not,

and the task timeout. This structure is also readily changed

to allow for configuration elements to be added or removed

rapidly during testing.

The ready check function for each task is responsible for

checking the perceived field elements to see if any of the

objects in the perception object list meet the requirements

needed to start a given task. For example, in the Navigation

challenge, the ready check is looking for two tall buoys with

reflectors that are within 10 meters, plus or minus the

tolerance specification that was loaded by the initialization

function. Once the start conditions for a task have been

satisfied, the ready check sends back a flag to the main

module to declare the task ready as well as an expected task

completion time, transition waypoint, and expected score.

The task engine attempts to optimize the overall score by

selecting ready tasks based on their projected scores.

Specifically, the expected score for each task is divided by

the sum of the travel time to the transition point and the

expected completion time to create a points-per-second

value. This value can take into account information linkages

between tasks and probability of completion if this

information is encoded in the ready check. The engine also

requires a minimum points-per-second value that decreases

as overall mission time elapses. The task with the highest

points-per-second value is selected, the vessel begins driving

to the transition point, and its main function is activated.

The main function for each task utilizes behavior

primitives to accomplish the components of a task after the

platform has moved into position to begin the task. The logic

for individual tasks is discussed in Section III. Inside each

main function, there is also a continuous check of the task

conditions for validity. In the event that an object used for

the task that is running is reclassified, the module will stop

running the task, but will not report that the task has been

completed. This will allow for the ready check for that task

to be run again and to trigger the start for the task if the

required start conditions are met again.

Once a task main has either exited or timed out,

MinionTask will return to search mode. Once all tasks have

been completed, MinionTask will return to idle and await

operator commands.

III. TASK STRUCTURE

A. Navigation and Control Demonstration

The demonstration of navigation and control challenge

logic begins with the ready check for the challenge. The

ready check function contains the following checks:

1. Check the object list for two buoys that are within

10 meters of each other, plus or minus a tunable

threshold.

2. Check if these buoys have color classifications.

a. If one of the buoys is classified as either

red or green, plot a waypoint that is in the

center of the two buoys with a heading that

is that keeps the red buoy to the port side

of the ASV.

b. Else, assume that it is on the start gate side

of the navigation challenge, plot it’s

starting waypoint between the two buoys,

assume the buoy that is furthest left of the

ERAU Team Minion 3 of 9

ASV is the “red” buoy, and plot the

resulting heading.

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. Clear the start gate by placing a waypoint that is 5

meters forward of the center of the start gate.

2. After this point is achieved, plot a waypoint 40

meters in the same bearing used to cross through the

start gates.

3. Begin transitioning to the end point and search for

the end gates as the ASV transitions to that point:

a. The end gates must meet the same

requirement as the start gate of having two

buoys that are within 10 meters of each

other, plus or minus a tunable threshold.

b. The center of the end gate buoys must also

be within a tunable distance (typically 35

meters) of the center of the start gates.

4. If the ASV does detect the end gates, then plot a

waypoint that is 5 meters past the center of the end

gates.

5. If the end gates are not found using the same criteria

as the start gates, then a further check is preformed:

a. Minion then looks if there is at least one

object that is more than 10 meters away

from the center of the start gates and is

classified as a tall buoy with a reflector.

b. If there is at least one object that is

classified as a tall buoy with reflector and

another object; classified as a tall buoy

with reflector, a tall buoy, or an unknown

object, that is within 10 meters plus or

minus the threshold, then those two

objects are assumed to be the end gates.

6. If there is a single tall buoy with reflector that has

been classified, is within 15 meters, and at least 5

meters away from the ASV, Minion will enter into

what is known as the skewed gate case:

a. This case assumes that the end gates are

offset to the left or right of the

perpendicular bisector of the start gates.

b. If this case is entered, then the ASV plots

an intermediate point either to the right of

the detected buoy if it is on the right-hand

side of the perpendicular bisector, or vice-

versa for the left side.

7. As the ASV transits to this new point, it continues

looking for the end gate in the same manner as

before:

a. If the end gates are detected, then the ASV

plots the remaining waypoint as was

described previously.

b. If it fails to detect the end gate before

reaching the new end point, then the ASV

assumes that it has successfully crossed

through the end gates and merely failed to

classify the other buoy.

c. If the end gate is not detected in this case,

then the final predicted score for

accomplishing this task is reduced.

8. If the ASV instead made it to the original end point

without detecting the end gates:

a. Minion assumes it passed through the end

gates along the way.

b. The final predicted score for this task is

reduced to a greater extent than the failure

state in the skew case.

9. This task concludes by reporting back the expected

score and that the task has been completed.

B. Scan the Code

The scan the code challenge logic begins with the ready

check for the challenge. The ready check function contains

the following checks:

1. Check the object list for detection of the light tower

by perception.

2. Set a waypoint that is 20 meters away from the

tower, facing the tower:

a. The bearing of this waypoint with respect

to the tower is governed by the

configuration file

b. Typically set to be either north or south to

keep the sun from being directly in front or

behind the camera

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. Move to a waypoint that is 5 meters from the tower:

a. The heading of the boat at this point is set

such that either the port or the starboard

camera has the tower fully in frame.

b. The side that the boat will point at the

tower is set in the configuration file.

2. After this point has been achieved, the boat is

commanded to heading hold at that waypoint.

3. The Vision module is signaled to begin scanning the

sequence. The processes for determining the

sequence can be found in Appendix K.

4. The platform will wait for either vision to return a

sequence or for a configurable amount of time

(usually 2 minutes) to elapse.

5. If the sequence was returned, a check is performed

on the result that was sent from Vision.

6. If the sequence contains no repeated values or

unknowns, then this sequence is used.

7. If the data contains any unknowns in the sequence:

a. The module will replace the unknowns

with a randomly generated result of red,

blue, or green (making sure to not repeat

the same color for two consecutive

values).

b. Then the task function will reduce the

expected score for the task based on the

number of sequence elements that were

replaced.

ERAU Team Minion 4 of 9

8. If no sequence is returned or the timeout elapses:

a. The module will report back a randomly

generated sequence that has no

consecutively repeated values.

b. The expected score for the task will be set

to the minimum value.

9. This task concludes by reporting back the sequence,

the expected score, and that the task has been

completed.

C. Entrance and Exit Gates

The entrance and exit gates challenge logic begins with the

ready check for the challenge. The ready check function

contains the following checks:

1. The ASV searches for 4 buoys that meet the

following criteria:

a. 4 buoys are checked to see if they fall

within line that is no more than 40 meters

long, plus or minus a configurable

threshold and within a tunable distance

from the line of best fit.

b. If these conditions are met, then the center

point is used as a reference for the start

waypoint, which is set a configurable

distance (typically 15 meters) back from

the start gate.

2. If 4 buoys cannot be found that meet those criteria,

then the ASV attempts to see if 3 buoys meet the

following criteria:

a. The same check is followed as before,

except the three buoys must now make a

line that is no more than 30 meters long,

plus or minus a configurable threshold,

within the configurable distance from the

line of best fit and has one of the end buoys

classified as a tall buoy with reflector.

b. The two tall buoys that are not a tall buoy

with reflector are used as the reference for

the start waypoint, which is again set back

the configurable distance from the center

point of those buoys.

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. At the starting waypoint, the ASV is first

commanded to heading hold at the same heading as

the transition point.

2. MinionTask then communicates to the

Hydrophones module to begin lowering the

hydrophone arm and then to start listening for the

pinger.

3. MinionTask will wait for either the Hydrophone

module to return the pinger location or for a

configurable amount of time (usually 1 minute) to

elapse.

4. If the Hydrophone module does return the point

where the reading was captured and the NED

bearing of the pinger from the reading point, then a

check on this information is performed to determine

which gate to select.

5. To select a gate, the system compares the NED

bearing of the pinger at the reading point to the

NED bearings of each pair of buoys that makes up

the gates with respect to the reading NED location:

a. If the pinger bearing falls within any of

those ranges, then the boat selects that gate

as the one to go through, reports the gate

chosen, and sets a waypoint at the

midpoint of the line between the respective

buoys.

b. If the bearing reported does not lie within

the buoy range of the outer most buoys,

plus a configurable threshold, then the

module will guess a gate to go through,

reports the selected gate, reduces the score

for this task, and sets the waypoint to that

gate.

6. If the timeout occurs, then the module makes a

guess on which gate the pinger is in, reduces the

expected score for this task, and sets a transition

point to be at the center of the selected gate.

7. Before transitioning to the center of the selected

gate, Minion Task signals the Hydrophone module

to raise the hydrophone arm and waits for this action

to complete.

8. After the hydrophone arm is raised, the ASV

transitions to the center point of the selected gate.

9. After the ASV has made it to the center point of

whichever gate was selected, an intermediate

waypoint is projected forward 15 meters from the

center of the start gate.

10. After the ASV has achieved this waypoint, it sets an

end waypoint that is 40 meters from the center of

the start gate and begins driving towards this

waypoint.

11. During this transit, the ASV checks for any objects

that are within a cone that is mirrored about the

perpendicular bisector to the start gate:

a. The angular coverage and length of the

cone are configurable tuning parameters.

b. The coverage parameters are typically set

to be 90° and 50 meters, respectively.

12. If any tall buoy without reflector that is the correct

color to be circled is in the cone:

a. The ASV immediately proceeds to circle

that buoy in the direction based on the

configuration file.

b. Circling of a buoy is done by projecting a

configurable number of waypoints

(currently 4 waypoints) in succession in

either a counter-clockwise or a clockwise

pattern that is a configurable distance from

the center point of the object to be circled

(currently 5 meters in radius).

ERAU Team Minion 5 of 9

13. If two buoys are detected within the cone, but no

color information is available, then the module

refers to configuration file:

a. A parameter is given for what the left most

buoy in the cone’s color should be.

b. Based on this possible color information,

the ASV then decides which buoy to circle

based on the proposed color information

and circles it.

c. The module then reduces the expected

score for this task.

14. If only one tall buoy without reflector is detected in

the cone by the time the ASV reaches the projected

end point:

a. The ASV will proceed to circle that buoy

in the correct direction.

b. The module will reduce the expected score

for this task further.

c. This is done to ensure that the platform

will at least have chance at circling the

correct buoy, even in the event of a failure

of the perception and vision modules to

properly detect and classify buoys.

15. If the ASV reaches the projected end point without

detecting any buoys within the cone:

a. No buoys will be attempted to be circled.

b. The module will reduce the expected score

for the task to account for the fact that no

buoy was circled.

16. This task concludes by reporting back the gate

number traveled through, the expected score, and

that the task has been completed.

D. Obstacle Avoidance and Totem Circling

The obstacle avoidance and totem circling challenge logic

begins with the ready check for the challenge. The ready

check function contains the following checks:

1. Check for three tall buoys without reflectors that are

in an L-shaped configuration:

a. This includes checking that any two buoys

are within a configurable distance

(typically 40 meters).

b. This also includes checking that the ‘L’ is

formed by three buoys that are 90° plus or

minus a configurable threshold (typically

20°).

2. A transition waypoint is set 10 meters away from

the buoy that is nearest to the ASV at that time and

projected back 180° from where the opposite corner

of buoy is or would be (if unidentified).

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. A waypoint is set that is 10 meters past the buoy that

is opposite the buoy the ASV is currently closest to.

2. As the ASV transitions to this point, it:

a. Scans for tall buoys without reflectors that

are within the area formed by the three

buoys that define the obstacle field.

b. Moves to avoid obstacles as they appear.

Re-planning of the path as new objects

appear can be found in Appendix L.

3. If a tall buoy with reflector is classified in the

obstacle field are and has a color class associated

with it, the ASV will do one of the following

actions:

a. If the buoy color is one that is supposed to

be circled, then the ASV will proceed to

circle that buoy.

b. Otherwise, the ASV will ignore that buoy.

4. If the ASV detects a tall buoy without a reflector,

but it does not have a color classification associated

with it:

a. The ASV will move to point either its port

or starboard camera (a configurable

selection) at the buoy while facing the

buoy from north or south, whichever is

closer, to give the best chance at giving

classifying the color.

b. If the color is classified, then the ASV will

perform the checks and routines based on

its color.

5. If the ASV get to the end point and there are any tall

buoys with reflectors that are within the obstacle

field:

a. The ASV will circle the buoys in a random

order.

b. The module will also reduce the expected

points for this task.

6. If the ASV gets to the end point and the are no tall

buoys with reflectors in the obstacle field, then the

ASV will reduce the expected score to account for

the fact that no totems were circled.

7. This task concludes by reporting back expected

score and that the task has been completed.

E. Underwater Ring Recovery

The underwater ring recovery challenge logic begins with

the ready check for the challenge. The ready check function

contains the following checks:

1. Check the object list for detection of a tall buoy with

reflector that also has been classified with the ring

buoy color.

2. Set a waypoint that is 20 meters away from the

tower, facing the tower:

a. The bearing of this waypoint with respect

to the tower is governed by the

configuration file.

b. Typically set to be either north or south to

keep the sun from being directly in front or

behind the submarine’s camera.

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

ERAU Team Minion 6 of 9

1. Move to a waypoint that is 5 meters from the ring

buoy.

2. After this point has been achieved, the boat is

commanded to station keep at that waypoint.

3. The Submarine module is signaled to deploy the

submarine. The methodology for retrieving the ring

once the sub has been deployed can be found in

Appendix B.

4. The ASV will wait for either the sub to report that a

ring has been recovered or for a configurable

amount of time (usually 2 minutes) to elapse.

5. If the submarine reports that the ring has been

recovered, then the maximum expected points for

the task awarded.

6. If the ring was not recovered, due to the timeout

elapsing, the following checks will be done:

a. If a ring was detected, then the module will

reduce the expected points for this task to

indicate that no ring was recovered.

b. If no ring was detected, then the module

will reduce the expected score for this task

to account for no ring being detected or

recovered.

7. Before completing the task, Minion Task will signal

the Submarine module to recover the submarine and

the ASV will wait to finish the task until the

submarine has been reported as being recovered.

8. This task concludes by reporting back the expected

score and that the task has been completed.

F. Identify Symbols and Dock

The identify symbols and dock challenge logic begins with

the ready check for the challenge. The ready check function

contains the following checks:

1. Check the object list for a dock bay detection.

2. The ASV then sets a transition waypoint that is 20

meters out from the dock bay, facing into the bay.

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. The ASV sets a waypoint a configurable distance

(typically 10 meters) from the entrance to the dock

bay and pointing such that the port or starboard

camera (configurable) to have the dock sign fully in

frame.

2. The ASV is commanded to hold heading at the

previous heading and waypoint.

3. Minion Task signals the Vision Module to begin

scanning the dock symbol. The methodology for

determining the dock symbol can be found in

Appendix K.

4. The platform will wait for either Vision to return the

dock symbol or for a configurable amount of time

(usually 1 minutes) to elapse.

5. If the symbol was returned and is the correct symbol

to deliver dock at, then the ASV prepares to dock at

that bay.

6. If the returned symbol is not the one to be docked at

or the timeout elapses:

a. If the other docking bay has been detected,

then a waypoint that is 20 meters from the

bay and pointing towards the bay will be

set.

b. If the second docking bay has not been

detected, then an intermediate waypoint

will be set 180° from the current docking

bay to a point that would be approximately

20 meters from where the bay would be

expected.

7. If the ASV has the second bay detected, then it runs

through steps 1-4 again.

8. If the symbol was returned and is the correct symbol

to deliver dock at, then the ASV prepares to dock at

that bay.

9. If the returned symbol is not the one to be docked at

or the timeout elapses:

a. Assume that you are at the correct docking

bay to save time in transiting again.

b. Prepare to dock at this bay.

c. Reduce the expected score for this task.

10. If the second bay is not detected by the time the

ASV reaches the expected second bay location:

a. Assume the first bay was the one to dock

at.

b. Prepare to dock there.

c. Reduce the expected score for this task

further to reflect the even lower chance of

being in the correct bay.

11. To dock in a bay, the ASV will use one of the

following modes, which is configurable:

a. The ASV will set a waypoint within the

dock bay and send a specific message to

path planner, telling it that this waypoint

should be driven to in docking mode. More

information on this mode can be found in

Appendix L.

b. The ASV will enter ramming mode,

whereby the platform will drive forward

for a specified period of time, ignoring all

obstacles perceived to be in the way of the

ASV’s transit.

12. After docking, the ASV will reverse out of the bay

This task concludes by reporting back the expected

score and that the task has been completed.

G. Detect and Deliver

The detect and deliver task begins at the triggering of the

ready check. The ready check contains the following criteria:

1. Detect and deliver sign is in the object list.

The ASV then transitions to the starting waypoint before

entering the main function. For the main task function, the

ASV performs the following actions:

1. Move to a waypoint that is 5 meters from the tower.

ERAU Team Minion 7 of 9

a. The heading of the boat at this point is set

such that either the port or the starboard

camera has the tower fully in frame.

b. The side that the boat will point at the

tower is set in the configuration file.

2. After this point has been achieved, the boat is

commanded to heading hold at that waypoint.

3. The Vision module is signaled to begin scanning the

sign. The processes for determining the sign can be

found in Appendix K.

4. The platform will wait for either vision to return a

sequence or for a configurable amount of time

(usually 1 minutes) to elapse.

5. If a symbol was returned, a check is performed on

the result that was sent from Vision.

6. If the symbol is incorrect:

a. A waypoint is plotted to the other side of

the tower.

b. Steps 2-5 are repeated.

7. If an incorrect sign is returned or the timeout

elapses:

a. The expected score for the task will be set

to the minimum value.

8. If a correct sign is found:

a. The module signals to the Turret module

to begin searching for the target and to

deliver the racket balls when ready. The

methodology for doing so is found in

Appendix C.

b. Tasking waits for either the configurable

timeout (usually 2 minutes) or a signal that

the task has been completed.

9. If the Turret module responded with success:

a. The expected score is increased.

IV. EXPERIMENTAL RESULTS

The need for reliable mission execution lead to extensive

testing of both the MinionTask module and the tasks it would

run. This was initially performed in our simulation suite (see

Appendix J for details) and on the water. The use of the

simulator allowed for behavior primitives as well as full

tasks build ups to be tested and debugged before they ever

saw the water. It also allowed for edge case testing and

mission information testing to see the impact of unexpected

conditions on the task completion accuracy. Once on the

water, the system was tested in practice where information

such as timeout ranges and noise characteristics could be

observed and then corrected for to give better completion

accuracy.

A. Simulation

Testing for each task began in the simulator. Here all task

behavior primitives, such as circling buoys, finding specific

objects, looking for gates, etc. were tested to ensure high

repeatability and reliability of these behaviors. Following

this testing, the missions themselves were tested in the

simulator to debug logic errors, to test edge cases, and to

determine reliability when data was unavailable (like vision

or hydrophones). Additionally, four tasks that were outlined

above were able to be tested in MinionSim. The tasks that

were tested in the simulator were the Navigation and Control

Demonstration, Scan the Code, Start and End Gates, and

Obstacle Avoidance and Totem Circling tasks. The

following will detail the results of the simulation testing as

well as the test cases that were used for each task.

Table I

RESULTS OF SIMULATED MISSION TESTING

Mission Testing Hours

Demonstration of Navigation and Control 20

Scan the Code 20

Entrance and Exit Gates 10
Obstacle Field and Totem Circling 8

The navigation task was the most heavily tested task in the

simulator. Since it is the entry key to all testing that will need

to be done on the course, it was critical that this challenge

would be able to be robustly and reliably completed. In the

simulator, the team was able to test several edge cases such

as the gates being severely out of spec compared to the listed

dimensions in the task outline. This included gates that were

upwards of 40+ meters apart and in skewed configurations.

Testing in the simulator also allowed testing of the

platform’s ability to complete this challenge both with and

without color classification information being applied to the

buoys. Due to this extensive testing throughout the logic

development phase, this task was proven to be highly

reliable. The demonstration of navigation and control task

was able to accumulate approximately 20 hours of simulation

testing.

Testing of the scan the code challenge was fairly limited

in MinionSim. Without the ability to simulate the sequence

in a way that would allow the vision module to be tested,

simulation was limited to checking the movement routines of

the platform throughout the task. However, this did allow for

approximately 20 hours of behavior and waypoint logic

testing to occur in simulation.

Similar to the Scan the Code task, limitations in

MinionSim prevented the team from simulating pinger data,

which would be used to determine the start gate to cross

through. As a result, the platform would randomly guess and

then transit through one of the three gates before completing

the rest of the task.

Although the pinger could not be simulated, MinionSim

was more than capable of testing of edge cases and of

situations that would be out of spec for competition

requirements. Some of the edge cases tested included

unevenly spaced gates, gates with the start buoys positioned

above and below the line of fit, and elongated start gates. The

robustness of the module was also tested by simulating

objects with incorrect or missing classifications as well as

missing color identifications.

While testing this task, the circling of a specified totem

was also tested, which allowed for behavior validation for

the circling that would be done for the totem task. This also

included testing the behaviors of the platform when only one

buoy was detected in the region where a totem would be

ERAU Team Minion 8 of 9

expected for circling. In total, this task received around 10

hours of simulator testing.

Simulation testing also showed a clear correlation between

the amount of sensor data available and the successful

completion rates of a given task. For the Navigation

challenge, the availability of color data from vision to

supplement the perception classes drastically increases the

successful completion rate. Without this information

available, the module is highly susceptible to incorrectly

performing the task. Errors in execution include going

through the task backwards (i.e. going in through the end

gate and leaving through the start gate) or going in sideways.

The latter is an edge case that only occurs when the spacing

between the start and end gates is close to that of the spacing

between the tall buoys (including the tolerance). The first

problem is solved when color information is available

because the orientation of the red and green buoys is constant

for the start and end gate. The edge case of going through

sideways is also solved with color information since it would

not be able to be selected as a start gate since it would be a

red-red or green-green pair. Due to a limitation in the

simulation suite, the only element of the Scan the Code

mission that could be completed was having the boat go

through the motions of attempting to read the sequence from

the tower. It did, however, allow for robustness testing of the

failed return case whereby vision did not return a valid

sequence. In the event of a bad sequence, the system was

supposed to return a sequence that it generated on the spot,

which it did every time.

B. In-Water Testing

As was to be expected, in-water testing revealed logic

bugs and edge cases that were not initially considered when

testing each of the tasks. During the time that was available

for testing each challenge, four of the five tasks were

attempted on the water. These included the Demonstration of

Navigation and Control, Scan the Code, Entrance and Exit

Gates, and Docking challenges. Through all of this testing,

an impressive 13 hours of in-water tasks testing was

achieved.

Table II

RESULTS OF IN WATER MISSION TESTING

Mission Testing Hours

Demonstration of Navigation and Control 5

Scan the Code 5
Entrance and Exit Gates 2

Docking 1

1) Demonstration of Navigation and Control

In water testing of the navigation gates challenge showed

that a number of edge cases needed to be accounted for in the

task logic. The first of these edge cases discovered was when

the start gates were skewed. This was solved by adding a

check in the logic for possible skewed gate conditions.

However, after this fix was implemented, it was found

through in-water testing that it causes the boat to plot

waypoints away from the end gate location in an attempt to

correct for what it thought was a skewed gate when only one

of the end gate buoys had been classified. This problem was

then solved by making the skewed gate case toggleable in the

configuration file. Real world testing also showed that, due

to potentially slow classification times, there was a need for

this task to be able to find both the start and end gates with

limited, and in some cases incorrect, classification

information from Vision and Perception. After all of these

changes were made, the navigation gates challenge was

again attempted in the water. In total, the demonstration of

navigation and control challenge received 5 hours of

successful in-water testing.

2) Scan the Code

Testing of the scan the code challenge in real world

conditions proved to be highly successful. This testing

showed that scan angles which allowed the sun to appear in

front of or behind the ASV hindered the sequence accuracy.

The configuration files were changed to allow the platform

to approach the tower at more ideal angles. Testing of this

task also showed that the ideal scanning distance to get fast,

reliable sequence returns was anywhere from 10-15 meters

from the light tower, which was also edited in the

configuration file. Testing of this task proved to be extremely

successful with approximately 5 hours of successful in-water

testing.

3) Entrance and Exit Gates

The acoustic gates task in-water testing revealed that the

details about the ASV’s real-world handling characteristics,

primarily the turning radius of the ASV, that were not

accurately modeled in the simulation environment. As a

result, it was determined that the circling radius for the end

buoys was too tight, so this parameter was added into the

configuration file so it could be tuned. It was also discovered

that the intermittent that would be generated after the ASV

crossed through the gate, but before it went to search for the

buoy to circle, was too close to the gate buoys. This would

cause the ASV to make large, circular paths that would often

put the ASV back through one or more gates while

attempting to achieve the intermittent waypoint. This was

then corrected in the acoustic gate task code by making the

parameter for how far out the waypoint was placed past the

gates tunable and further out. Unfortunately, the only

element of this task that was unable to be tested on the water

was the gate detection via the hydrophones. However, even

without this element, the ASV was able to successfully detect

the gates, navigate through a randomly selected gate, find the

required buoy to circle, and circle that buoy in the correct

direction. As such, there was nearly 2 successful hours of in-

water testing.

4) Docking

 The docking challenge was one that was only able to be

simulated on the water through hardware-in-the-loop

simulation of the dock. However, this did allow the logic for

this challenge to be refined and tested. Through the in-water

testing that was done, it was determined that the object

growth that was done by the path-planner in order to ensure

the ASV did not ram into obstacles prevented the ASV from

being able to successfully complete the docking challenge.

ERAU Team Minion 9 of 9

Thus, it was noted that there needed to be a mode in the path

planner that would ignore obstacles in the way and simply

drive to a point. It was also noted that a fall back option that

would be able to directly command the controls module,

regardless of obstacles in the path, would need to be

developed or revived. This resulted in the re-emergence of

the ramming speed primitive, which overrides the path

planner and sends direct messages to the controls module.

Both additions would allow the ASV to successfully

complete the docking challenge. Unfortunately, this resulted

in only around an hour of in-water testing for the docking

challenge.

V. CONCLUSION

Through testing both in simulation and in-water has

allowed the tasking behaviors to be not only refined, but also

made more robust. Through these countless hours of testing,

many logic bugs, edge cases, and timeouts were able to be

accounted for in each mission’s structure. Additionally, by

allowing each task to be dynamically launched as the

required start conditions were met, the system was set to be

far more robust to emerging data that streamed in than a

traditional scripted mission framework would be. Together,

this allows the Minion Task module to successfully complete

both research and competition challenges with ease.

ERAU Team Minion 1 of 3

Appendix J: MinionSim Simulation Suite

Grady Delp

I. INTRODUCTION

During the 2016 Maritime RobotX Challenge, Team Minion

recognized its need for a software utility that would enable the

team to thoroughly tests its higher-level autonomy software,

without direct access to the Minion ASV. A preliminary version

of such a software module was developed over the course of the

competition week, albeit a version that was very limited in

scope and ability. Due to the utility and usefulness that the

rudimentary version of the software provided, it was

determined that a more featureful implementation of the same

concept would take priority among new additions to the Minion

ASV software stack.

II. DEVELOPMENT STRATEGY

MinionSim was developed with the role of aiding the

development of the other various software modules, including

but not limited to the path planner and mission planner. For

development, the authors for the other software modules were

considered as the customers for the MinionSim product, and

were polled for how they thought a bespoke simulation engine

for the Minion ASV should be implemented.

While other options for creating a simulation environment

for the Minion ASV were considered, including making use of

the publicly available RobotX Gazebo simulation, it was

decided that effort may be better utilized in creating a purpose-

built simulator for Team Minion. This was chosen over

developing a method to interface the Gazebo ROS environment

with the otherwise LabVIEW-developed MinionCore

messaging system.

The early consensus among team members is that MinionSim

should operate as a virtual source for the types of MinionCore

messages the sensors on the Minion ASV generate. These

messages include examples such as the State message,

containing position, heading, and velocity information, and the

ObjectList message, containing all objects discovered by the

LiDAR Perception module. By generating the same messages

that other modules are expecting to receive from the State and

Perception modules, MinionSim would effectively act as a

virtual manifestation of the physical ASV. The other modules,

MinionTask, Path Planner, and Controls, would then behave as

if they were being run on water or in a staged competition

scenario.

It was determined that the path of development for

MinionSim would seek to fulfill all necessary functionality, and

then move on to providing quality-of-life and user-experience

improvements. This would serve two purposes: first, function

would be prioritized over form, ensuring undue development

time and resources were not exhausted on an aesthetically

pleasing but ill-performing module. Second, it would ensure

that any problems encountered during development could be

addressed as core functionality issues, rather than as unintended

side-effects of what may have been believed to be cosmetic

tweaks. This prioritization was made on the part of the

developers who had experienced ill effects from not making

such a prioritization in the past.

To accelerate development, code-reuse was encouraged

when possible. For example, previous work had been done to

issue controls messages to the ASV’s thrusters utilizing a USB

gamepad plugged into a PC at the ground monitoring station.

This was used to simulate the remote-control functionality of

the ASV in the virtual environment. Other examples include the

use of subroutines that reorder points into the format of the

ObjectList message, and blocks of code used for loading XML

files from predetermined or user-chosen filepaths.

III. SOFTWARE ARCHITECTURE

The software architecture of the MinionSim Simulation Suite

contains two separate modules that are both necessary for

operation. The first of these modules is MapMaker, and the

second is the simulation engine, MinonSim.

A. MapMaker

MapMaker is used to create the maps that serve as

configurations of objects and obstacles that get loaded into the

environment of the virtual ASV. In the MapMaker, users are

able to select a position on a grid, select the type of object that

they wish to place there, and add it into the environment. The

MapMaker user interface (UI) is shown in Fig 1.

Fig 1: The default display for MapMaker.

Objects are placed into a list that is saved in memory, and

only committed to disk when the entirety of the map is saved.

This allows the user to modify or delete objects that may have

been mistakenly placed or configured. Parameters that may be

configured include the object’s heading, color, and a

randomization radius, which is used when loading the maps into

MinionSim. When exporting the objects from MapMaker, they

are stored to disk as an XML file containing all the parameters

previously mentioned, as well as Northing and Easting position,

in meters.

The objects themselves are also created using MapMaker,

ERAU Team Minion 2 of 3

using a “Object Class” called “Point”. Creating an object in this

manner is compliant with the way that the Perception module

handles objects, which is as a list of boundary points. The

boundary points must be created sequentially, to create objects

that are not self-intersecting. In the current implementation, this

responsibility lies on the user. Objects are also exported as

XML files only containing the center location of the object, the

list of bounding points, and the integer that assigns it to an

ObjectClass, which is standardized across all modules in the

Minion software stack.

A more recent development that was added to the MapMaker

module is the ability to generate an entire RobotX Challenge

course with a single button. This interface is shown in Fig 2.

Several parameters are available for configuring these courses,

including turning specific tasks on and off, the size parameters

for tasks that have dimensional parameters (Navigation Gates,

Pinger Gates), what object configuration files to use for each

task, and the overall course size to place the objects within.

Each task is randomly placed sequentially, with subsequent

tasks ensuring that they are placed outside of the bounds of a

previously placed task. To avoid scenarios with a small course,

many tasks, and oversized keep-out zones, these checks can

only run a preconfigured number of times, with the user being

notified of violations of the keep-out zones.

Fig 2: The Course Creation panel built into MapMaker.

B. MinionSim

MinionSim, shown in Fig 3, serves as the simulation engine

that performs the majority of the functions of the MinionSim

Simulation Suite. This software module is itself programmed in

a modular fashion, with each submodule running in parallel and

handling the processing and generation of different data. This

data is shared among the submodules where necessary and is

distributed to the other software modules operating in the

Minion software stack via the appropriate MinionCore

messages.

Fig 3: MinionSim Simulation Engine

1) State

The State MinionCore message was the first message to be

developed as part of the MinionSim module. The purpose of the

State message is to broadcast to all other modules the boat’s

current pose. While this typically includes three-dimensional

elements of the vehicle, including pitch and roll, and height

above sea level, the majority of customer modules disregard

this information as provided by the ASV’s GPS and IMU. As

such, MinionSim treats the vehicle as a two-dimensional object

operating on a two-dimensional plane. This served to reduce the

computational load.

The modules that performs generation of the synthetic State

message operate at a 100Hz refresh rate, similar to the update

rate from the physical ASV’s State module. The positional

information is generated by integrating the previous position

with the current velocity to determine what the new position of

the ASV should be. Similarly, the velocity is generated by

integrating the previous velocity and the current acceleration, to

determine the new velocity of the vehicle. Cartesian (XY) and

angular values for position and velocity are both handled

similarly in this manner.

The acceleration of the vehicle is determined by summing the

forces and moments acting on the vehicle, including thrust and

drag, and an overall external force which can be considered a

combination of wind and current. The thrust values also take

the azimuth angle of the thrusters into account. The external

force parameter is treated as a user-configured constant, to see

how the vessel would operate in a high-wind or high-current

situation.

2) Perception

Several MinonCore messages are associated with the broad

term ‘perception,” including the LiDAR object detection and

classification module, and the vision used to detect object color.

For programming simplicity, these are largely handled in the

same way in MinionSim.

When a map file is loaded into MinionSim, the series of

points associated with each object is loaded into memory.

Sequentially, each set of points is run through a point-in-

polygon algorithm, with the polygon being a seven-sided figure

ERAU Team Minion 3 of 3

that is configured to be the furthest bounds that the ASV can

reliably and confidently detect and classify objects. The

polygon is translated and rotated to always match the position

and orientation of the virtual ASV.

Objects that fall outside of the polygon are ignored and held

in memory to be checked against the polygon in the next

iteration as the virtual ASV continues to transit the world.

Objects that lie on the edge of the polygon continue to be

checked, but the vertices of the shapes that lie within the

polygon are forwarded to the next portion of this submodule.

Objects that lie fully within the perception polygon are removed

from the list of objects to repeatedly check and are also

forwarded to the next portion of the submodule.

Following detection within the perception polygon, objects

are assigned an unknown classification and color. If the object

is new to the list of objects that have been fully within the

perception polygon, they are also assigned the current

timestamp. Once an amount of time, configurable by the user,

has passed, the object is given its preassigned classification and

color, which was assigned to the object during the map-making

portion of the MinionSim workflow. This delay in classification

is similar to what occurs within the Perception module, as a

delay occurs before objects are classified, based on the time

required to classify the object with a degree of confidence. This

amount of time can be reconfigured based on how long the

Perception module is typically taking to classify objects; if the

Perception module is improved to be more robust and confident

more quickly in the future, this delay can be decreased.

Future developments of MinionSim intend to tie the addition

of color to an object’s classification to the heading of the boat,

as well as an independent range of color identification. This will

make the simulator more realistic and will not allow the virtual

ASV to detect color when the cameras are not facing towards

the object.

The randomization radius, applied to each object in

MapMaker, comes into play in the section of MinionSim that

loads objects into memory prior to checking them against the

perception polygon. This serves to mildly adjust the parameters

of the map each time the same file is loaded into MinionSim,

similarly to how buoys on the water may slightly drift in

relation to each other between autonomous runs of the ASV.

Functionally, this requires the thresholds that object positions

are tested against to be more robust than they might otherwise

be.

3) Hardware-in-the-Loop

The hardware-in-the-loop function of MinionSim serves the

specific purpose of being able to perform on-water tests with

more course elements than may otherwise be possible to test

with. This includes allowing the ASV’s control module to be

tested on-water against multiple virtual docks without needing

to deploy large numbers of floating platforms, testing heading-

and position-hold functions when working with a stationary

virtual object such as the light tower, or creating large virtual

obstacle fields to test the robustness of the path-planning and

obstacle-avoidance subsystems. Hardware-in-the-loop mode

disables the synthesis of state and status messages, and reduces

MinionSim to a perception ObjectList message broadcaster.

Other information necessary to operate the simulator is received

from the applicable sources rather than being generated by the

simulation itself.

4) Simulator Automation

One feature of MinionSim that has not seen much use in 2018

is the ability to trigger it to run automatically, with a specific

MinionCore message that contains several parameters for

operation. These include all the user-configurable parameters

that can be set at run-time, as well as the map that should be

loaded prior to running the simulator. The intention of this

functionality is to permit unattended batch-testing of many

simulations that could be analyzed for success rates and

determine what parameters of other modules may require

tweaking. However, the module necessary to run batch-testing

that would trigger this functionality in the simulator was not

finished during the 2018 competition cycle. This functionality

will likely be revived in preparation for future RobotX

competitions.

5) On-Rails Path Following

When testing the mission planning software, it was

discovered that the virtual ASV did not behave exactly as the

physical ASV did on-water. This is likely due to the

simplifications that were made to the physics model that the

virtual ASV operates on. Because of this, it was seen necessary

to implement a no-error path-follower in MinionSim. This

feature, togglable by the user on a per-run basis, causes the

virtual ASV to follow the path generated by the path-planner on

a node-by-node basis. This speed is also tunable, allowing

testing of long-duration operations, such as search patterns, to

be condensed, quickening the pace of development.

IV. EXPERIMENTAL RESULTS

Throughout the preparations for the 2018 RobotX Challenge,

MinionSim has achieved strong positive feedback and high

levels of use, proving it was a worthwhile addition to the

Minion software stack.

For the purposes of testing Mission Planner, it achieved close

to 250 hours of testing. This resulted in the statistics and success

rates listed in Appendix

For the purposes of testing and debugging the path-planning

and controls modules, MinionSim achieved close to 50 hours of

testing. This resulted in higher confidence in the simulator,

more robust path-planning algorithms, and more productive on-

water controls and path-planner testing.

ERAU Team Minion 1 of 5

Appendix K: Vision

James B. Near III, David J. Thompson

I. INTRODUCTION

The 2018 vision module was desired to integrate deep

learning in a manner that would allow users to rapidly deploy

trained network models to the Minion platform, as well as

other GPU-enabled Windows machines. This is due in part

to the difficulties integrating deep learning into the 2016

platform, particularly with providing a real-time pipeline for

image capture and inference. The prior implementation was

also only capable of running a single neural network and

could not be easily deployed to other machines. The 2018

implementation utilizes a number of networks for

completing the scan the code, circle the totem, detect and

deliver, and docking challenges.

A. Design Strategy

The Minion ASV was designed to support multi-modal

approaches for object detection and classification. Minion

uses the its array of LiDAR sensors for initial object

detection. LiDAR is subject to low amounts of noise and has

high position accuracy relative to the camera, making it a

more reliable sensor for object detection. Furthermore, it is

more computationally efficient to detect objects with the

LiDAR than using a deep neural network.

However, to support classification, it is necessary to add

cameras to retrieve color and shape information. To enable

the use of cameras as a secondary sensor, it is necessary to

allow multiple neural networks to run simultaneously. For

example, the LiDAR may detect a totem in the course, but

must rely on the camera to determine the color to be red. One

network may be assigned solely to determine color given a

cropped image of an object. Similarly, a different neural

network may be used to determine the shape and color of the

docking bay signs. Lastly, in order to support a failure of the

LiDAR sensors, it is desired to have a large object detection

neural network for determining object position and

classification.

To that end, Team Minion has chosen to train several deep

neural networks with the TensorFlow framework to enable

object detection and classification. A neural network may be

turned on or off depending on the current state of the vehicle

in the course or the current failure mode of the LiDAR

sensors. The following sections will explain the individual

network or networks used to complete each of the tasks in

the 2018 challenge.

II. PROCESS

A. Overview

Vision was used on three main tasks: determining the

sequence of a light tower, classifying different colored

buoys, and classifying instructional signs on the dock. All

benchmarked tasks in this section were achieved by using the

software and hardware listed in Table I.

Table I

VISION HARDWARE AND SOFTWARE

Software Hardware

Cudnn 7.5.1 CPU Intel Xeon E5-2620v3 6-Core

2.4Ghz

TensorFlow 1.5 GPU Nvidia GTX 1080

Cuda 8.0 RAM 32GB DDR4 ECC Memory

Opencv 3.4.1 Camera FLIR Blackfly BFLY-PGE-

31S4C-C

Visual Studio C++ 2015 Lens Theia Technologies ML410M

B. Convolutional Neural Networks

Convolutional neural networks (CNN) are a subset of

neural networks that accept an input as an image and are used

extensively in image recognition and classification.

Conventional neural networks cannot handle the size of an

image, as the weights start to increase exponentially as the

image size increases. CNNs address this issue by using

convolutions to reduce the size of the output layer. At the

output layer, the size will have been reduced such that there

is one node for each output class. This output layer may then

be used to determine final class, most often by using the

output node with the highest value. The basic approach is

shown in Fig 1.

Fig 1. CNN Architecture

A convolutional neural network has many operations to

consider. The first of these operations is creating a feature

map through convolutions. This is controlled through the

tunable parameters of depth, stride, and padding [1]. Once

the feature maps are created, a Rectified Linear Unit (ReLU)

is applied to the image. This applies an absolute value

ERAU Team Minion 2 of 5

function to all values. The next step after the ReLU is

pooling. Pooling reduces the complexity of the model.

Different methods and sizes of pooling can be used such as

max, min and average pooling. The specific kind depends on

the network [2].

After the first convolution, ReLU, and pooling phase are

completed, the task is run again on the previous layer. This

can be once or many times. The exact number depends on

the specific model. The final step is to run the final pooled

results into an n number of fully connected layers that will

then predict the class [3]. This architecture allows neural

networks to run efficiently and accurately on images of many

sizes with numerous features and complexity.

For this project, the CNNs that were chosen were based

upon the ability to retrain already tested networks. This was

largely because creating specific networks for these tasks

would provide little benefit for the time it would take to

design and program the network. Since TensorFlow offers

the ability to easily retrain and test neural networks, as well

as provide a C-API for deployment it was chosen over other

frameworks.

Two different types of network training methods were

chosen: one for object detection and one for object

classification. These methods were selected based upon the

number of networks available and the retraining ability.

Object detection uses the TensorFlow Object Detection API

[4], and object classification uses the TensorFlow Image

Feature Extraction Module [5].

C. Training Neural Networks

Once the software used on Minion was determined, the

training method had to be selected. The training method had

to allow for different networks to be trained using the same

data and preprocessing to enable comparing different

networks against each other on the water. Because of this

need, transfer learning was used for training. Transfer

learning is slower than creating custom networks for a

specific task but benefits from already being proven to work.

The TensorFlow Object Detection API [4] was used to

train detection networks. This method allowed for different

networks to be trained and tested using the same data with

just changes to a configuration file and a pretrained frozen

inference graph. It took around 5-10 hours for a network to

converge once training was started. For the classification

networks, the TensorFlow Hub classification retainer

method [5] was used. This method allowed for quick

classification retraining in about 30 minutes on the system

specified in Table II.

Table II

HARDWARE SPECIFICATIONS OF TRAINING SYSTEM

CPU 2 Intel Xeon E5-2670v3 12-Core 2.3Ghz

GPU Nvidia Quadro M6000 24GB

RAM 128GB DDR4 ECC Memory

D. Light Tower

1) Task Description

The light tower task involves accurately detecting and

identifying the sequence of a changing light tower (greater

than 90 percent accuracy on panel color) in real time (greater

than or equal to 5 frames per second) using hardware and

software available to Minion. Fig 2 shows the competition

light tower below.

Fig 2: Competition Light Tower

The light tower can change between four different colors.

These are black, blue, red, and green. The sequence is

generated by displaying the black panel for 1 second, then

three colored panels (green, red, or blue) for 1 second each,

and finally, the black panel again for 1 second. The only

caveat for the three middle colors is that a single color cannot

be repeated consecutively but may be used multiple times in

a sequence. For example, a sequence of Blue-Blue-Green is

not allowed but Blue-Green-Blue is allowed. Due to these

rules there are only 12 possible sequence combinations, as

shown in Table III.

Table III

VALID LIGHT TOWER SEQUENCES

Seq. Color 1 Color 2 Color 3

1 Blue Green Blue

2 Blue Green Red

3 Blue Red Blue

4 Blue Red Green

5 Red Green Red

6 Red Green Blue

7 Red Blue Red

8 Red Green Blue

9 Green Red Green

10 Green Red Blue

11 Green Blue Red

12 Green Blue Green

From this task description, the below self-imposed

requirements were derived:

• The time to complete a single-color classification

and loop through the sequence detector shall be no

ERAU Team Minion 3 of 5

more than 200ms.

• The sequence detector shall be robust enough to not

give a false positive in more than 1 percent of tests.

• The sequence detector shall correctly identify the

sequence more than 90 percent of the time in one

attempt.

• The sequence detector shall correctly identify the

sequence more than 99 percent of the time in two

attempts.

• The sequence detector shall identify a sequence in a

minute or less.

2) Task Methodology

To start the task, MinionTask and Perception are used to

classify the light tower and position one of Minion’s cameras

in frame of the light tower at a distance between 5 to 15

meters. Once this has been accomplished, vision is activated

to determine the sequence. This is accomplished in five main

steps:

1. Use the Inception V2 object detection neural

network to identify and crop the light tower from

the raw camera image.

2. Use the Coco Mobilenet V1 object detection neural

network to crop the light panel from the light tower

image.

3. Use the Inception V3 object classification neural

network to determine the color of the light panel.

4. Feed the color result into the sequence detector to

determine the light tower sequence.

5. If a sequence is not found in one minute, position

the boat 180 degrees on the other side of the tower

and try again.

For step one, a full camera image (~2MP) is given as an

input to detect the sequence. This step utilizes the Inception

V2 object detection network to find the light tower in the

frame and crop it out of the raw image. The Inception V2

network was chosen, along with the other networks in this

paper, based on an accuracy and speed tradeoff. This task

was determined to be the most important because all other

networks depended on this result being correct. Because of

this dependency, a larger, more accurate network was chosen

for increased accuracy. After testing the speed of different

networks running on Minion, the Inception V2, Mobilenet

V1, and the Faster RCNN Resent were the only networks that

could keep the framerate above 5 FPS. The general results of

these networks are shown in Table IV below using the same

training data.

Table IV

LIGHT TOWER CROPPING NETWORK COMPARISON

Network Speed [ms] Accuracy [%]

Inception V2 100-150 100

Coco Mobilenet V1 20-40 81.3

Faster RCNN Resnet 120-185 99.2

As can be seen from the table, the Mobilenet does not

work reliably due to its small size. The inception V2 and the

Faster RCNN Resnet both provide near perfect accuracy but

the inception V2 is faster, thus it was chosen in this

application. The region of interest (ROI) from the Inception

V2 network is shown in Fig 3 below.

Fig 3: ROI of Light Tower

Once the tower was cropped, the second network could be

initiated. This network could be smaller and lightweight

compared to the Inception V2 because by this point, every

image should be similar with the light panel in the same

location, orientation, and size. The only difference between

the different images is the background and the light panel

color. Due to the similarities between these images the

Mobilenet was tested again. The Mobilenet gave close to 100

percent accuracy at a speed of 20-40ms per image, which is

the fastest of all available networks. Therefore, the

Mobilenet was chosen to further crop the light tower down

to the light panel. The ROI from the Mobilenet is shown in

Fig 4.

Fig 4: ROI of Light Panel

After the panel is cropped, the color is determined using a

classification neural network as identified in step three. The

same process for determining the detection network was used

for the classification network. A comparison of networks

was conducted. These results are displayed in Table V.

ERAU Team Minion 4 of 5

Table V

PANEL COLOR CLASSIFICATION NETWORK COMPARISON

Network Speed [ms] Accuracy [%]

Inception V3 20-40 98.2

Mobilenet (Full) 20-35 78.6

Mobilenet (Half) 10-15 76.2

Resnet V2 50-70 87.3

It can be seen from Table V that the Inception V3 network

offers the best combination of speed and accuracy and thus

was chosen as the classification network for this task. This

network feeds the color result into the sequence detector.

Once the sequence detector receives a color from the

Inception V3 network, it will attempt to vote on a sequence.

The sequence detector works by using a moving mode over

a range of the last 5 colors detected. The mode will vote for

a color, which is appended to the color list matrix. This

matrix is then run through template matching to detect if a

valid sequence is present over each range of the last five

colors. If a sequence is detected it will vote for that sequence

as a possible correct sequence. If a sequence is voted as a

possible candidate three times, then that sequence is reported

as the correct sequence, and is sent to MinionTask.

In the case where a sequence is not found, or a sequence

is not voted for three times in the one-minute allotted time,

then the boat will be repositioned 180 degrees from the

current position. This is done because most of the time the

boat cannot determine the sequence, it is due to the boat’s

orientation relative to the sun’s light. If Minion cannot

recognize the sequence on the second attempt, then

MinionTask will move onto the next task and come back to

the light tower task if time is left in the competition.

III. RESULTS AND DISCUSSION

The overall speed and accuracy of the combined networks

are tabulated in Table VI.

Table VI

COMBINED SPEED AND ACCURACY OF LIGHT TOWER NETWORKS

Network Purpose Type
Speed

[ms]

Accuracy

[%]

Inception

V2
Crop Tower Detect 100-150 100

Coco

Mobilenet

V2

Crop Panel Detect 20-40 99.7

Inception

V3
Identify color Classify 20-40 98.2

Combined All Both 140-230 97.9

These results meet the requirements for the accuracy and

almost always meet the requirements for the speed. The only

time that speed is not met at 5 FPS is when the boat is sharing

its resources with other tasks at the same time as the neural

networks are running. This causes a drop to 4.34 FPS at the

lowest, but the sequence detector was still able to correctly

identify the sequence due to the robust nature of the

algorithm. Furthermore, to get a sequence wrong, a color

must be classified wrong three out of the five times in the

moving mode. The probability of this occurring is calculated

using Formula 1.

∑ (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑛

𝑘=𝑥 (1)

The probability of a color being classified wrong at least

three times in 5 as less than 1E-4 percent which almost

guarantees that a single color will not be misclassified using

the sequence detector. If this is extrapolated over the chance

of a single sequence having a single-color wrong, there is still

less than a 1E-2 percent chance this occurring. The sequence

detector, along with the overall accuracy rate of the light

tower detector code, can correctly detect a given sequence

under the given requirements and constraints. The only

caveat for this statistical analysis is when the light panel is

being washed out by the sun. In this circumstance the

classifier cannot reliably differentiate between green and

blue.

 The individual performance of the Mobilenet and

Inception V2 network results are tabulated in Table VII.

Table VII

LIGHT TOWER AND PANEL DETECTION NETWORK RESULTS

Network Speed [ms]

Median

Proposal

Confidence

Mean

Proposal

Confidence

Actual

Accuracy

Light

Tower
100-150 100% 100 % 100%

Light Panel 20-40 100% 99.70% 100%

From this table, these two networks were nearly perfect in

identifying the light tower and panel, respectively. This was

true through all lighting and weather conditions.

The results of the classification network are shown in

Table VIII below as a confusion matrix.

Table VIII

LIGHT PANEL CLASSIFICATION NETWORK RESULTS

This table shows that the classification network worked

well in classifying all the colors except for the occasional

switch of the blue and green under bad lighting conditions.

Black Blue Red Green

Black 100.0%

Blue 96.4% 3.0%

Red 100.0%

Green 3.6% 97.0%

Test Class

Predicted

Class

ERAU Team Minion 5 of 5

These conditions are shown in Fig 5.

Fig 5: Bad Lighting Condition Examples

The image on the left shows an example of an image that

is impossible to classify at all, as the entire panel is whited

out by the sun’s reflection. The second image is barely

discernable as blue. Other than these conditions, which

MinionTask corrects for by repositioning Minion, the entire

light tower sequence detector task performs at or above the

given requirements. This implementation of the task shows a

huge improvement over the 2016 implementation. During

water testing, the sequence was identified right at over a 90%

rate, while in 2016, the sequence was not correctly identified

once.

A. Object Classification

The other use of vision for Minion was classifying the

different colored buoys and the signs for docking. Both tasks

were also completed using the Inception V3 classification

network. These networks were retrained individually for the

different tasks they were applied to.

The requirements for both these tasks were:

1. The object classification networks shall run at a

speed of 10 frames per second or better.

2. There shall be no more than 1 false positive in 100

classifications attempts.

3. A classification attempt shall be attempted every

two second or less.

For the buoys, the network was segmented into classifying

the buoy as either red, green, blue, yellow, white, or black.

For this task, only color was of importance, so the type of

buoy did not matter and was not accounted for in the

classification because the LiDAR is generally accurate

enough to determine the difference between the gate buoys

with retro-reflectors and the totem buoys. The data was used

on any task that required knowing the buoy color.

A confusion matrix is shown below in for the general

performance of this network. For this task, if a color could

not be assigned with over a 70 percent accuracy over a range

of 10 images, the color would be returned as unknown. This

was done because a false positive is almost always worse

than having an unknown color, as other logic can be applied

to determine the corrective action to take. Table IX shows a

confusion matrix for the buoy color classification.

Table IX

CONFUSION MATRIX FOR BUOY COLOR CLASSIFICATION

As can be seen from this testing data set, the classifier

worked within the given requirements. This test was

performed in an area where the sun did not wash out or dilute

any colors. When the buoys are washed out, the accuracy

drops into the 80 percent range. An exact number was not

obtainable since all data from these cases was used for

training, to increase the accuracy in this scenario.

The second classification network that was trained was for

the docking signs. This network was used to detect the shape

and color of the different docking signs. The same process

was used for this task as was for the buoys. The network

identified the color (red, green, or blue) and the shape

(cruciform, circle, or triangle) using the Inception V3

network. Due to time limitations, there was no available data

for testing this network. Furthermore, as a secondary option

to LiDAR, an Inception V3 network was trained to crop

down a raw image containing the dock sign in a similar

manner in comparison to the scan the code challenge.

REFERENCES

[1] A. M. Saleh Albelwi, "A Framework for Designing the

Architectures of Deep Convolutional Neural Networks," Entropy,

vol. 19, no. 6, 2017.

[2] W. Z. J. Y. W. L. a. L. H. Yuguo Qian, "Comparing Machine

Learning Classifiers for Object-Based Land Cover Classification

Using Very High Resolution Imagery," Remote Sensing, vol. 7, pp.

153-168, 2015.

[3] Schuber R. Carvalho, "A Deep Learning Approach for

Classification of Reaching Targets from EEG Images," Immersive

Interaction Group (IIG), Ecole polytechnique f ´ ed´ erale de

Lausanne (EPFL), Switzerland, 2017.

[4] TensorFlow, "TensorFlow Object Detection API," Github, 31

March 2018. [Online]. Available:

https://github.com/tensorflow/models/tree/master/research/object

_detection.

[5] TensorFlow, “How to Retrain an Image Classifier for New

Categories,” 20 November, 2018. [Online]. Available:

https://www.tensorflow.org/hub/tutorials/image_retraining.

Red Green Blue Yellow White Black

Red 99.9%

Green 99.5%

Blue 0.2% 100.0%

Yellow 100.0%

White 0.1% 0.2% 100.0%

Black 0.2% 100.0%

Test Class

Predicted

Class

ERAU Team Minion 1 of 9

Appendix L: Controls and Autonomy Operations

Marco A. Schoener, Timothy A. Zuercher

I. INTRODUCTION

In RobotX 2016, controls performance was a weakness that
Team Minion elected to address for 2018. The development
was split into two fronts. First, the team wanted to develop a
strong dynamic model for the WAM-V platform that could be
used to develop and test new controls methods, and to improve
mission simulations. Second, the team wanted to develop a new
control system that would provide a much greater degree of
reliability and robustness.

Previously, Minion was a differentially-steered vehicle due
primarily to the available propulsion system. The new
azimuthing capabilities brought a need for an actual solver to
determine the thrust/angle solutions. A nonlinear equation
optimizer system was developed to use the available motor
configurations to find the closest solution to the thrust
configuration settings.

This appendix is organized into several sections. Section II
discusses the approaches used for modeling and estimating
vehicle parameters. Section III describes the approach to
vehicle controls. Section IV presents results from using the
control system insitu. Lastly, Section V provides a summary of
the Appendix.

II. BOAT ESTIMATION

The first goal of the 2018 controls overhaul plan was to
develop a robust model of the WAM-V’s dynamic
performance. The generic model for the dynamics of a maritime
platform is described in [1]. The team choose to implement a
model using the dynamic equations from several sources [1] [2]
[3] [4], combining the generic model from [1] with models for
disturbances and actuators. A grey box estimation technique
would then be applied using the model to estimate the model
parameters [5]. After the parameters are determined, the model
could be used for simulation, control, and planning.

Table I

MEASURABLE BOAT PARAMETERS
Parameters Value
Length, 𝑚 4.5

Length on Water Line, m 4
C.G. (x,y), 𝑚 (-0.01, 0.05)

Mass, 𝑘𝑔 254.50
Moment of Inertia, 𝑘𝑔𝑚ଶ 303.50

Beam Length, 𝑚 2.00

A. Frames

For modeling and control there are two coordinates frames
that are important. The first coordinate frame is the body-fixed
frame. This right-handed cartesian frame in ℝଷ is aligned with
the principal axes of inertia, generally resulting in the x-axis

positive forward (bow), the y-axis positive to the right
(starboard), and the z-axis positive downward (towards the
water). This is also known as the Front-Right-Down (FRD)
frame. Velocities, forces, and moments are usually represented
using this body-fixed frame.

The second frame is the inertial frame, which uses the NED
frame representation. The NED frame is a transformation of the
Earth Centered Earth Fixed (ECEF) frame, so the origin is on
the surface of the earth and located nearby. NED is also a
cartesian frame in ℝଷ with the x-axis positive toward north, the
y-axis positive towards the east and the z-axis positive down.
NED only approximates an inertial frame. The approximation
gets worse the further from the origin you travel. The relatively
small operating area of the vessel makes this approximation
unnoticeable. The NED frame is used to represent the positions
and velocities of a system.

In a full six degree of freedom (6-DOF) model, a complete
rotation matrix or quaternion would need to be used to
transform between the FRD and NED frames. However,
because the model will be simplified to a three degree of
freedom (3-DOF) planar representation, only a singular rotation
needs to be applied, Eqn. (1(4.

 𝒗ሬሬ⃗ ௕ = (𝑢, 𝑣) (1)
 𝒗ሬሬ⃗ ௡ = (𝑣ே , 𝑣ா) (2)

𝑅௕
௡ = ൥

cos(𝜑) − sin(𝜑) 0

sin(𝜑) cos(𝜑) 0
0 0 1

൩ (3)

 𝒗ሬሬ⃗ ௡ = 𝑅௕
௡𝒗ሬሬ⃗ ௕ (4)

In this rotation, 𝑢 and 𝑣 are surge (forward) and sway
(sideways) velocities respectively; 𝑣ே and 𝑣ா are velocity in the
northing and easting directions respectively; and 𝜓 is the yaw
(heading) angle of the vehicle, measured off true north. An
example diagram showing these frames is in Fig 1.

ERAU Team Minion 2 of 9

B. Equations of Motion

The general equations of motion are given in [1]. Using this
general form, the following subsections break the model into
four components: rigid-body motion, hydrodynamic motion,
disturbances, and actuator forces. Each section describes that
aspect of the model’s construction in detail and can be
combined into a complete parameterized model of the vehicle.

1) Rigid-Body Motion

A 6 DOF model as given by [1] is shown in Eqn. (5(10.
 𝑋 = 𝑚൫𝑢̇ − 𝑣𝑟 + 𝑤𝑞 − 𝑥஼ீ(𝑞ଶ + 𝑟ଶ)

+ 𝑦஼ீ(𝑝𝑞 − 𝑟̇)

+ 𝑧஼ீ(𝑝𝑟 + 𝑞̇)൯
(5)

 𝑌 = 𝑚൫𝑣̇ − 𝑤𝑝 + 𝑢𝑟 − 𝑦஼ீ(𝑟ଶ + 𝑝ଶ)

+ 𝑧஼ீ(𝑞𝑟 − 𝑝̇)

+ 𝑥஼ீ(𝑞𝑝 + 𝑟̇)൯
(6)

 𝑊 = 𝑚൫𝑤̇ − 𝑢𝑞 + 𝑣𝑝 − 𝑧஼ீ(𝑝ଶ + 𝑞ଶ)

+ 𝑥஼ீ(𝑟𝑝 − 𝑞̇)

+ 𝑦஼ீ(𝑟𝑞 + 𝑝̇)൯
(7)

 𝐾 = 𝐼௫௫𝑝̇ + ൫𝐼௭௭ − 𝐼௬௬൯𝑞𝑟 + (𝑟̇ + 𝑝𝑞)𝐼௫௭

+ (𝑟ଶ − 𝑞ଶ)𝐼௬௭

+ (𝑝𝑟 − 𝑞̇)𝐼௫௬

+ 𝑚൫𝑦஼ீ(𝑤̇ − 𝑢𝑞

+ 𝑣𝑝)

− 𝑧஼ீ(𝑣̇ − 𝑤𝑝 + 𝑢𝑟)൯

(8)

 𝑀 = 𝐼௬௬𝑞̇ + (𝐼௫௫ − 𝐼௭௭)𝑟𝑝 − (𝑝 + 𝑞𝑟)𝐼௫௬

+ (𝑝ଶ − 𝑟ଶ)𝐼௫௭

+ (𝑞𝑝 − 𝑟̇)𝐼௬௭

+ 𝑚൫𝑧஼ீ(𝑢̇ − 𝑣𝑟

+ 𝑤𝑞)

− 𝑥஼ீ(𝑢̇ − 𝑢𝑞 + 𝑣𝑝)൯

(9)

 𝑁 = 𝐼௭௭𝑟̇ + ൫𝐼௬௬ − 𝐼௫௫൯𝑝𝑞 − (𝑞̇ + 𝑟𝑝)𝐼௬௭

− (𝑞ଶ − 𝑝ଶ)𝐼௫௬

+ (𝑟𝑞 − 𝑝̇)𝐼௫௭

+ 𝑚൫𝑥஼ீ(𝑣̇ − 𝑤𝑝

+ 𝑢𝑟)

− 𝑦஼ீ(𝑢̇ − 𝑣𝑟 + 𝑤𝑞)൯

(10)

Where 𝑋, 𝑌, and 𝑊, are surge sway, and heave (vertical)
forces respectively; 𝐾, 𝑀, and 𝑁 are roll, pitch, and yaw
moments respectively; 𝑤 is the vertical speed (heave) and 𝑝, 𝑞,
and 𝑟 are the roll, pitch, and yaw rates respectively; 𝑚 is the
mass in kg and I is the mass moment of inertia.

As in [1], this can be represented in a vector form as
 𝑀ோ஻ 𝑣̇⃗ + 𝐶ோ஻(𝑣⃗)𝑣⃗ = 𝜏 (11)

where 𝑀 is the mass matrix, 𝐶 is the Coriolis matrix, 𝜏 is the
actuator forces and moments, and 𝜈 is the state vector in the
FRD frame.

To simplify this initial set of equations three assumptions are
applied:

 The roll, pitch, and heave states are neglected. This
results in a horizontal plane model. Wave motion is
not properly captured with this assumption.

 The x and y center of gravity do not necessarily sit
at the boat’s center of origin (C.O.)

 A coupling exists between the surge and yaw states
Applying these assumptions leads to the following form of
the model:

 𝑣⃗ ≔ (𝑢, 𝑣, 𝑟) (12)
 𝜏 = (𝑋, 𝑌, 𝑁) (13)

𝑀ோ஻ = ൥

𝑚 0 −𝑚𝑦஼ீ

0 𝑚 𝑚𝑥஼ீ

−𝑚𝑦஼ீ 𝑚𝑥஼ீ 𝐼𝑧𝑧
൩

(14)

𝐶ோ஻ = ቎

0 0 −𝑚(𝑥஼ீ𝑟 + 𝑣)

0 0 −𝑚(𝑦஼ீ𝑟 − 𝑢)

𝑚(𝑥஼ீ𝑟 + 𝑣) 𝑚(𝑦஼ீ𝑟 − 𝑢) 0

቏
(15)

2) Hydrodynamic Motion

The addition of hydrodynamic terms into the equations
allows the description of the rigid-body motion to include the
effects of interacting with the water. These effects are described
as added mass terms in both the mass and Coriolis matrices as
well as a drag matrix. Eqn. (16 is the new 3-DOF vectorized
equations of motion. The additional parameters are the added
mass coefficients and the drag coefficients. These coefficients
are nonlinear and can vary based on velocity. This model
assumes that they are constants.

 𝑀𝑣̇⃗ + 𝐶(𝑣⃗)𝑣⃗ + 𝐷(𝑣⃗)𝑣⃗ = 𝜏 (16)

𝑀, the mass matrix, is an inertia tensor that includes both the
rigid-body, 𝑀ோ஻, and added mass matrix, 𝑀஺ெ.

 𝑀 = 𝑀ோ஻ + 𝑀஺ெ (17)

𝑀஺ெ = ൥

𝑋௨̇ 0 0
0 𝑌௩̇ 𝑌௥̇

0 𝑁௩̇ 𝑁௥̇

൩ (18)

Fig 1. Diagram of FRD frame on a marine vessel. Retrieved from [1]

ERAU Team Minion 3 of 9

𝐶, the Coriolis matrix, is a tensor that describes the Coriolis
effects in the EOM.

 𝐶(𝑣) = 𝐶ோ஻ + 𝐶஺ெ (19)

𝐶஺ெ =

⎣
⎢
⎢
⎢
⎡ 0 0 𝑌௩̇𝑣 + 𝑟

(𝑌௥̇ + 𝑁௩̇)

2
0 0 −𝑋௨̇

−𝑌௩̇𝑣 − 𝑟
(𝑌௥̇ + 𝑁௩̇)

2
𝑋௨̇ 0 ⎦

⎥
⎥
⎥
⎤

 (20)

The drag matrix D approximates the hydrodynamic drag the
vessel experiences. The drag model is constructed of a set of
linear terms, D_L, and nonlinear terms, D_NL. This results in a
second order drag model cross-coupling surge to yaw and sway
to yaw. This drag model assumes that sway motion does not
affect surge motion.

 𝐷(𝑣) = 𝐷௅ + 𝐷ே௅ (21)

𝐷௅ = ൥

𝑋௨ 0 𝑋௥

0 𝑌௩ 𝑌௥

𝑋௥ 𝑁௩ 𝑁௥

൩ (22)

𝐷ே௅ = ቎

𝑋௨௨|𝑢| 0 𝑋௥௨|𝑢|

0 𝑌௩௩|𝑣| + 𝑌௩௥|𝑟| 𝑌௥௥|𝑟| + 𝑌௥௩|𝑣|

𝑋௥௥|𝑢| 𝑁௩௩|𝑣| + 𝑁௩௥|𝑟| 𝑁௥௥|𝑟| + 𝑁௥௩|𝑣|
቏ (23)

3) Disturbances

Disturbances affect the vessels motion through water and
ultimately its controllability. There are three disturbances that
are of potential concern: currents, wind, and waves. The full 3-
DOF equation of motion, including disturbances, is given by

 𝑀𝑣̇⃗ + 𝐶(𝑣⃗)𝑣⃗ + 𝐷(𝑣⃗)𝑣⃗ = 𝜏 + 𝜏ௗ (24)

a) Current

Current can create extra drag on the vessel that either hinders
its motion (against the current) or boosts it (with the current).
Both situations can be detrimental to controllability. This can
be accounted for in the model by considering current to be
uniform in the water. This assumption means that there is a
relative velocity between the NED frame and a frame aligned
with the NED frame but traveling with the current. This relative
velocity effects the hydrodynamic terms of Eqn. (24. And can
be modeled as seen in Eqn. (25-(26 .

 𝜈௥ = 𝑣⃗ − 𝑣⃗௖௨௥௥௘௡௧ (25)

𝑀ோ஻ 𝑣̇⃗ + 𝐶ோ஻(𝑣⃗)𝑣⃗ + 𝑀஺ெ𝑣⃗௥
̇ + 𝐶ோ஻(𝑣⃗௥)𝑣⃗௥ +

𝐷(𝑣⃗௥)𝑣⃗௥ = 𝜏 + 𝜏ௗ

(26)

b) Wind

Wind disturbances affect vessels with larger surface areas
by adding a drag term. This can be estimated by calculating
the relative velocity of the wind with respect the vehicle and
using the resulting velocity to calculate aerodynamic drag.
This drag can be added as a term in 𝜏ௗ.

c) Waves

Waves were not considered as a disturbance for this model.
For a 3-DOF model, waves can be accounted for using several
different methods. Commonly an adaptive notch filter is used

to remove the wave disturbance from the sensor signals which
allows the system to operate as if waves are nonexistent.

4) Actuator Forces

The output of thrusters is often characterized as either a linear
relation to the throttle percentage or a general curve based on
power input to the system. These methods give a base estimates
for where the vessel should be but do not take into account the
flow or physical propeller properties. Several alternative
methods were explored to address this weakness.

a) Linear Regression

The simplest method of motor modelling is to have a known
relationship of input to output. A commonly used method is a
linear regression between the input throttle and the output
forces/speeds.

The force is either based on datasheets from the thruster’s
specifications or related to command versus force from
different throttles. The relationship can be determined by surge
drag tests where the throttle command is related to the force
which then relates to the vehicle’s speed. This assumption is
valid under the thrust equals drag assumption and sets a basis
for modelling under controlled, simple cases.

The issues from this model is that it does not handle the
dynamics due to flow effects from the propellers. The cross-
correlation between states of motion are not directly gathered
accurately, but the model can approximate gross characteristics
of the propulsion system.

b) Open-Water Motor Model

A commonly used model for general marine vessel is the
open-water motor model. This model generates the thrust and
torque of a thruster using a coefficient known as the advance
ratio (𝐽଴). This model is used for keeping a minimum speed to
the water with respect to control surfaces [2] and encompasses
the regions of motion where the thrust is related to its direction
of travel as shown in Eqn. (27(29.

 𝐽଴ =
𝑣௔

𝑛𝑑

(27)

 𝑇 = 𝜌𝑑ସ𝑘்(𝐽଴)𝑛ଶ

 (28)

 𝑄 = 𝜌𝑑ହ𝑘ொ(𝐽଴)𝑛ଶ (29)

where: 𝑣௔ (vessel’s advance speed), 𝑛 (propeller rotational
speed), d (propeller diameter), 𝑘 (coefficient in relation to
thrust/torque), 𝜌 (density of water), 𝑇 (Thrust), and 𝑄 (Torque).

ERAU Team Minion 4 of 9

The issue with this model is that it is not suited for operations
around maneuvers that require fast turns or sudden changes of
motion. To gather that sort of data, more regions (or quadrants)
of operation need to be available (Figure Fig 2).

c) Four-Quadrant Motor Model

This motor model has been around since at least the 1950s to
1960s. This model takes into consideration the four regions (or
quadrants) of motion for thruster or motor.

The quadrants operate similarly to a DC motor. Quadrant 1
defines forward speed (advance) versus positive torque
(rotation). The motor is attempting to accelerate through this
configuration. Quadrant 3 performs the same operation, but
with both operations moving negatively, thus accelerating
backwards while remaining in reverse. The other two regions
handle braking and changes in direction. Quadrant 2 is moving
at a forward speed while resisting that motion using the motor,
similar to a car braking. Quadrant 4 is then reversing with the
intention of moving to a stop or forward. These extra modes
define what the thrusters are actually doing in cases of quick
turn, station-keeping, and any other sudden motion.

The equations of motion for the four-quadrant model still
defines the thruster thrust and torque based on coefficients. The
added information that separates these models is the advance
angle (𝛽) value that defines which quadrant is being operated

in. The two speeds considered are the advance velocity and the
propeller velocity.

𝑇 = ൬

1

2
൰ 𝜌𝑐்(𝛽)൫𝑣௔

ଶ + 𝑣௣
ଶ൯𝜋 ൬

𝐷

2
൰

ଶ

 (30)

𝑄 = − ൬

1

2
൰ 𝜌𝑐ொ(𝛽)൫𝑣௔

ଶ + 𝑣௣
ଶ൯𝜋 ൬

𝐷

2
൰

ଶ

𝐷 (31)

 𝛽 = 𝑎𝑡𝑎𝑛2(𝑣௔ , 𝑣௣) (32)
 𝑣௣ = 0.7𝜋𝑛𝑑 (33)
 𝑣௔ = 0.5 ൬𝑢 ± ൬

𝐵

2
൰ 𝑟൰ (34)

The model was approximated to represent more idealized

curves for more ideal cases in use of optimization of motor
coefficient solutions. Healey [2] shifted the frames from the
thrust and torque models to the lift (L) and drag (D) frame of
the propeller. Since the torque is tangential to the thrust, the
same can be said about the lift and drag and it transforms the
equation in the following Eqns. (35)-(36).

𝐿 = ൬
1

2
൰ 𝜌൫𝑣௔

ଶ + 𝑣௣
ଶ൯ ൬

𝑑

2
൰

ଶ

ቌ𝑐்(𝛽) cos(𝛽)

+ ቌ
𝑑

0.7 ቀ
𝑑
2

ቁ
ቍ 𝑐ொ(𝛽) sin(𝛽)ቍ

(35)

𝐷 = ൬

1

2
൰ 𝜌൫𝑣௔

ଶ + 𝑣௣
ଶ൯ ൬

𝑑

2
൰

ଶ

ቌ−𝑐்(𝛽) sin(𝛽)

+ ቌ
𝑑

0.7 ቀ
𝑑
2

ቁ
ቍ 𝑐ொ(𝛽) sin(𝛽)ቍ

(36)

The lift and drag coefficients are transformed into the angle

of attack (𝛼) frame to determine maximum coefficients (Eqns.
(37)-(39)). Finding the maxima of the thrust—torque
coefficient in relation to the lift-drag coefficients (Eqn. (40)-
(41) defines the original coefficients in terms of the lift—drag
frame.

 𝑐௅
ு(𝛼) = 𝑐௅

௠௔௫ sin(2𝛼) (37)

𝑐஽
ு(𝛼) =

𝑐஽
௠௔௫(1 − cos(2𝛼))

2
 (38)

 𝛼 = 𝜑 − 𝛽 (39)
 𝑐்

ு(𝛽) = 𝑐௅
ு cos(𝛽) − 𝑐஽

ு sin(𝛽) (40)

𝑐ொ
ு(𝛽) = −

0.7

2
(𝑐௅

ு(𝛽) − 𝑐஽
ு cos(𝛽)) (41)

where: 𝛼 (angle of attack) and 𝜑 (propeller pitch angle).

This model gives simple, yet continuous sinusoidal functions

to gather torque and thrust values. Given that the motor is
instrumented, the torque can be solved for and ultimately the
thrust can be solved for as well based on sensor readings and
not on throttle commands.

This model takes in more complexity of propeller physics,
but takes some assumptions as ignoring induced vorticities and
exact transformation on the induced angles rather than solely Fig 2. Open-water operation regions of motion [4].

Fig 3. Four-quadrant regions of motion for a thruster setup [4]

ERAU Team Minion 5 of 9

the physical propeller. The results give an answer for any
maneuver based on propeller and water flow.

5) System Identification

To determine the parameters and desired motions of the
USV, a standard set of maneuvers are performed. A set of
marine standards [3] define the maneuvers and what physical
quantities come of these tests. The tests are as follows: turning
circle, zig-zag, and stopping.

The turning circle test is used to determine the vessel’s
turning radius at constant speed and steering angle.

Fig 4. Turning circle test example [3].

The zigzag test is designed to test vessel course-keeping and
heading overshoot. The vessel starts moving forward at a
constant heading, then the rudder is diverted to an angle and
remains there until the vessel crosses that angle difference.
Once the vessel changes heading, the rudder is commanded to
the same heading change on the opposite side of the initial
heading. Repeating this maneuver catches the hydrodynamics
between the surge and yaw motions.

Fig 5. Zig-zag maneuvering test [3].

The stopping test is the total time it takes the vessel to stop
dead in its track. The vessel moves at a constant speed forward
and then suddenly commands a stopping speed to halt all
motion. This is helpful with a known motor model, but similar
results can be retrieved by moving at a constant forward speed
and letting the vessel drift to a stop. This can give the 2nd-order

drag curves for the vessel and different speeds tests can
determine the added mass coefficient for surge.

Fig 6. Stopping maneuver test example [3].

Required tests for getting good estimates on drag and motor
forces are bollard-pull and measured drag tests. The bollard-
pull tests tie the vessel stationary to a dock or fixed object with
a force gauge in series with the holding line. The vessel begins
thrusting at different commands and the force gauge returns the
force exerted. Depending on levels of instrumentation can lead
to more complex models. A measured drag test is letting the
boat attached to a chase boat and letting the chase boat drag the
vessel around. If the vessel can keep steady in the surge and
sway directions, the forces read will be accurate to generate a
drag model at steady speeds.

III. PATH PLANNING

A. Architecture

The path planner’s architecture (Fig. 7) spans between 3
modules: MinionTask, Path Planner, and Controls. MinionTask
begins by generating a desired target for the Path Planner to
follow. The target definition consists of an entire set of modes
that span to more than just waypoint travelling. Current input
modes are Stop, Waypoint, Path with Heading Hold, Station-
keep, Circle, Dock, Heading Hold, Point Hold, and Direct.

All the input modes fit into 3 categories to describe overall
autonomy control types: Path, Direct, and Stop. Path modes
describe Minion driving a path with specific qualifiers and
include Waypoint, Path with Heading Hold, Circle, and Dock.
Direct modes describe a more direct command to Minion to
perform specific tasks and include Station-keep, Heading Hold,
Point-Hold and Direct. Stop mode demands that Minion stops
all motor motion completely.

The target is then received by the Path Planner and triggers
the algorithms to find the best path to the target that avoids
obstacles. The Path Planner has five states in order to ensure the
target calculation finishes. The states are Stopped, Calculate,
Recalulate, Update Path, and Done.

Stop is the default state that tells Controls to stop all motion.
The Calculate state attempts to find a viable path using a

ERAU Team Minion 6 of 9

constrained A* search before the user-defined timeout. If the
path is found and valid, it is sent to Controls. If the Calculate
fails, the Recalculate state occurs and reattempts the path given
the previous path nodes and cost and attempts to change some
path parameters to find the path more effectively.

After either the Calculate or Recalculate states are found to
be valid, the Update Path state queues up the path to send to
Controls. After the Update Path leads the planner to be in the
Done state which waits for a new target or any path error
reported back to the planner from Controls.

While a valid path exists, a separate thread is searching the
path for any new obstacles that have intersected the path and
triggers a replan accordingly. Each target mode has an inherent
end mode case to distinguish the small differences in the modes.
The end cases are Stop, Heading-Hold, and Station-keep and
define the behavior when the end of the path is reached.

After the path nodes and modes are sent to Controls, a path
error message is sent back to the Path Planner. The path error
defines if Minion is following the path as intended. Minion’s
path-following algorithm in Path mode is defined as Minion not
keeping up with the time-based path for a certain amount of
time or exceeded a cross-track error threshold. If Minion is off
path for a specified time, this message triggers Path Planner to
Stop and trigger a replan of the last target available.

IV. CONTROL SYSTEM

The second phase of development for Minion’s controls team
was the design and implementation of a new control system
software stack. This involved redesigning both the Controls
software module and the algorithms that are used inside the
module. There were also a series of hardware modifications that
modified the Minion’s capabilities and methods for control.

In the 2016 configuration, Minion was a differentially driven
vehicle [6]. The 2018 configuration expanded Minion’s
capabilities by azimuthing the thrusters (see Appendix D). This

enabled control over sway motion. In addition the thrusters
were upgraded and the electrical system was migrated to 48V
(see Appendix K). This greatly increased the achievable control
forces and moments.

The control system design for Minion consists of three levels:
Trajectory, PID, and Control Allocation. The first level,
trajectory control, is a leader follower type trajectory control
system that operates in Minion’s NED frame. It takes inputs
from the Path Planning modules and outputs targets for the level
2 PID (Proportional-Integral-Derivative) system. Level 2, PID,
is a parallel set of PID controllers that control surge, sway, yaw,
and yaw rate and produce force and moment targets for the
control allocator in Level 3. Level 3, Control Allocation,
optimizes a cost function to distribute forces and moments to
the various actuators. The optimizer is a nonlinear optimizer
based on the sequential quadratic programming method. Level
3 outputs desired thrust level and azimuth angles.

A. Level 1: Trajectory Control

The trajectory controller has been revamped from 2016 to use
a time-based leader-follower control scheme. The control
algorithm utilizes the NED coordinate frame allowing for
global disturbance rejection.

Paths are generated by the Path Planning module. These
paths consist of a control type, a list of nodes, and an end type.
There are three possible control types: Stop, Direct, Path. Stop
and Direct control types cause the path controller to be skipped
and the commands to be forwarded to the PID controller.

In Path mode, the nodes are a list of position, heading, and
speed commands at a path time 𝑡. This allows a NED frame
trajectory consisting of

 𝑆(𝑡) = [𝑁(𝑡), 𝐸(𝑡), 𝜓(𝑡)]ᇱ (42)

and their derivatives to be constructed

𝑆̇(𝑡) =
𝑑

𝑑𝑡
𝑆 (43)

 𝑇௥(𝑡) = ൣ𝑆(𝑡), 𝑆̇(𝑡)൧ (44)
.

This trajectory is fed into the trajectory controller along with
the current path time 𝑡௖. The current path time tacks how long
we have been following the current trajectory, and subsequently
where we should be on the trajectory. The controller is
segmented into four sections: Setpoint generator, Feedforward,
Proportional-Integral, Output. A diagram of the path control
system can be seen in Figure 8

Fig 7. Control and path planning stack. Objectives are transformed
and communicated between MinionTask Path Planner, and
Controls.

Fig 8. Depiction of the processing done by the trajectory controller. The
target trajectory and vehicle state are used to produce surge, sway and yaw
targets by applying a PI controller and a feedforward controller.

ERAU Team Minion 7 of 9

The setpoint generator takes in the vehicles current state,
the trajectory data, and the current path time to generate a set
of targets and projected states. The targets and states are
projected by a lead time 𝑡௟.

 𝑡௙ = 𝑡௖ + 𝑡௟ (45)

 𝑇𝑎𝑟𝑔𝑒𝑡@௧೎
= 𝑇௥(𝑡௖) (46)

 𝑇𝑎𝑟𝑔𝑒𝑡@௧೑

= 𝑇௥൫𝑡௙൯ (47)

The current state is projected forward by the lead time using
forward Euler.

 𝑆൫𝑡௙൯ = 𝑆(𝑡௖) + 𝑆̇𝑡௟ (48)

Other methods of projection are possible including using the
dynamic model to predict the future state. The forward Euler
method is suitable for this case because the time projection is
usually small (1 – 2 seconds) in comparison to the timescales of
vehicle motion (5 – 10 seconds). An example of these setpoints
and states can be seen in Figure 9.

The feedforward section in Figure 10 performs a weighted

average of the velocities and heading of the current and
projected targets. The velocities and heading are fed forward in
the controller as these are the targets that the PID’s in Level 2
are trying to achieve. This reduces reliance on the integral term
in the PI controller and produces an initial level for the output.

The PI term can then modify this output appropriately, so the
trajectory is tracked,

 𝑇𝑎𝑟𝑔𝑒𝑡௙௙ = 𝑇𝑎𝑟𝑔𝑒𝑡@௧೑

+ (1 − 𝑤)𝑇𝑎𝑟𝑔𝑒𝑡@௧೎

(49)

The PI section of the trajectory controller, Figure 11

implements a PI controller on the error of the current trajectory
target.

 𝑒@௧೎
= 𝑇𝑎𝑟𝑔𝑒𝑡@௧೎

− 𝑆(𝑡௖) (50)

𝑇𝑎𝑟𝑔𝑒𝑡௉ூ = 𝐾௜

𝑒@௧೎
+ 𝑒@௧೎ିଵ

2
∆𝑡 + 𝐾ଶ𝑒@௧೎

(51)

The projected target error is including as an additional

proportional term.
 𝑇𝑎𝑟𝑔𝑒𝑡௉ோை௃ = 𝐾ଶ ቀ𝑒@௧೑

ቁ (52)

The resulting targets are then

 𝑇𝑎𝑟𝑔𝑒𝑡ௌ௎ெ = 𝑇𝑎𝑟𝑔𝑒𝑡௉ூ + 𝑇𝑎𝑟𝑔𝑒𝑡௉ோை௃

+ 𝑇𝑎𝑟𝑔𝑒𝑡௙௙
(53)

This form allows for the controller to look forward to future

control actions and start reacting to upcoming changes. The
integral action allows the controller to reject disturbances such
as wind and current. When combined with the output stage this
often results in a tacking motion during high winds.

The output section, Figure 12, converts the output of the
controller into the desired targets for the PID level. Different
conversions are necessary depending on end of path type and
drive mode. There are three drive modes of concern: full
(velocity), differential forward, differential reverse. The
difference between modes is whether heading is coupled in the
modes.

In full mode, surge, sway, and yaw can be controlled pseudo
independently. In differential mode yaw is not independent.
Forward and reverse reflect yaw to follow the path in the correct
direction.

Fig 9. Current and future and targets. Future states and targets are
generating by projecting forward by the lead time, t_l.

Fig 10. Diagram of feed forward system. A weighted average between the
current and future targets is performed.

Fig 11. The PI control system for the trajectory controller. The error is
calculated for both the current and projected targets. The integral is only
calculated on the current target.

ERAU Team Minion 8 of 9

B. Level 2: PID Control

The controllers are set in parallel for the surge, sway, and
yaw rate states with the yaw controller feeding into the yaw rate
setpoint. The surge and sway controllers produce the boat’s
forces and the yaw rate controller produces the boat’s turning
moment about the center of mass.

The controllers have been modified to ensure safe and proper
control during the tuning phase (Fig. 13). All of the controllers
are input and output rate limited to maintain the boat’s
acceleration rate and avoid jerky behaviors. The PID gains for
each controller is gain-scheduled based on known states of
operation to ensure the controllers are properly limited to
handle the given states. And the controller’s integrals have anti-
windup when a fault occurs such as switching to RC mode or
not reaching a valid solution for the particular state.

The outputs of the surge, sway, and yaw rate controllers are
directly fed into the optimizer to allocate control forces to the
actuators.

C. Level 3: Control Allocation

The optimizer takes the target forces and a moment and
attempts to find a setpoint for each of the four actuators that
satisfies these forces and moments. The generic nature of the
optimizer allows for arbitrary constraints to be met, such as
maximum or minimum thrust values, maximum or minimum

azimuthing angles, or actuator failure. This allows for a well-
defined actuator envelope (Fig. 14).

This allows us to have different drive modes for different

situations. There are currently a set of eight configured drive
modes (Table II).

Table II

LIMP MODES AVAILABLE TO MINION. THESE ARE ALTERNATE CONFIGURATION

OF ACTUATORS IN THE CASE OF AN ACTUATOR FAILURE.

Limp Mode Actuators Forces/Moments
Full Port Thr./Azi, Star. Thr./Azi. Fx, Fy, Mz

Differential Port Thr., Star. Thr. Fx, Mz
Left Limp Port Thr./Azi. Fx, Mz

Right Limp Star. Thr./Azi. Fx, Mz
Left Crutch Port Thr./Azi, Star Thr. Fx, Fy, Mz

Right Crutch Star Thr./Azi., Port Thr. Fx, Fy, Mz
Left Twerk Port Thr. Mz

Right Twerk Star. Thr. Mz

If the optimizer fails to find an exact solution it puts out a

best fit solution based on weighting. Each of the objectives is
weighted (surge, sway, yaw, change in value) the objectives
with higher weights are given precedence in finding a best fit
solution. If a best fit solution is found instead of an exact
solution, then the integrators affected by that best fit are
unwound.

V. SUMMARY

Minion has a completely redesigned control system. The
desired result of parameter estimation was not accomplished,
but he new control system is multi-tiered and has shown
robustness in actual testing. In-water testing has shown that
trajectories can be followed within 0.5 – 1.5m and station-
keeping is accurate to 1m.

The result of in water testing shows that the problems
experienced in 2016 were overcome and that the new system is
capable of being successful in 2018.

Fig 12. The output section of the trajectory controller converts the
generated target velocities into the body frame. The output also detects
different drive modes and the end of path condition and modifies the
targets using this information.

Fig 13. The level 2 PID system consists of a set of parallel PID controllers that
control surge, sway, yaw, and yaw rate.

Fig 14. The optimizer produces a best fit of the control allocation while
remaining constrained to the achievable region.

ERAU Team Minion 9 of 9

REFERENCES

[1] T. I. Fossen, Handbook of Marine Craft Hydrodynamics

and Motion Control, John Wiley & Sons Ltd., 2011.

[2] A. S. J. H. Andreas J. Häusler, "Four-Quadrant Propeller
Modeling: A Low-Order Harmonic Approximation," in
IFAC Conference on Control Applications in Marine
Systems, Osaka, 2013.

[3] I. M. ORGANIZATION, "EXPLANATORY NOTES TO
THE STANDARDS FOR SHIP
MANOEUVRABILITY," NTERNATIONAL
MARITIME ORGANIZATION, 2002.

[4] J. Carlton, Marine Propellers and Propulsion, Waltham:
Elsevier Ltd., 2010.

[5] J. L. Mask, "SYSTEM IDENTIFICATION
METHODOLOGY FOR A WAVE ADAPTIVE
MODULAR UNMANNED SURFACE VEHICLE,"
Florida Atlantic University, Boca Raton, 2011.

[6] C. Hockley, H. Patel and T. Zuercher, "Development of
the Minion ASV for the Maritime RobotX Challenge,"
Embry-Riddle Aeronautical University, Daytona Beach,
2016.

[7] E. I. Sarda, "Development of a USV Station-Keeping
Controller," IEEE.

[8] W. B. Klinger, "Adaptive Controller Design for an
Autonomous Twin-Hulled Surface Vessel with Uncertain
Displacement and Drag," Florida Atlantic University,
Boca Raton, 2014.

