
WHY YES, THAT IS PLYWOOD 1

Why Yes, That is Plywood:
A Simulation Based Approach to RobotX 2016

Patrick Meyer, Samuel Seifert, Coline Ramee, Ethan Evans, William Roberts
Dr. Kenneth Cooksey, Dr. Kelly Griendling

Georgia Institute of Technology

Abstract—This paper describes the development of The
Wambulance, a Wave Adaptive Marine Vehicle (WAM-V)
adapted for participation in the AUVSI RobotX competition
by the Georgia Tech ADEPT Lab. A highly capable simulation
environment was developed in parallel to the hardware systems.
This simulation environment was critical in allowing the rapid
iteration of autonomous behaviors and other algorithms. This
approach was validated in our successful participation in both the
Roboboat and Robosub competitions earlier this year. Experience
gained from both of these competitions has been incorporated in
both the simulation and hardware systems. We have high hopes
that this process will lead to further success at this year’s RobotX
competition.

I. INTRODUCTION

RobotX is a biannual competition held over 9 days in
Honolulu, Hawaii. The final day of the competition is reserved
for the Final Round, with the preceding 6 used for practice
and qualifying time. Even if a team is fortunate enough to
average 3 hours per day of testing, teams will only have
roughly 18 hours of on water time. This is simply not enough
time to develop, debug, and tune an entire software stack for
all of the tasks outlined in the competition, let alone solve
hardware issues that may arise. To adequately prepare for
the competition, teams are left with three main options to
supplement this time: use of previous years’ data, additional
testing at a mock competition area, and software simulation.
The most successful approach would be to combine the three
options, though this is not always feasible. Unfortunately, data
from previous years’ competitions is limited. Additionally, the
nearest suitable testing location is a 40 minute drive from the
Georgia Tech campus. Collecting real world data at this site
requires a significant time investment, and would be impossi-
ble to test on a day to day basis. Due to these challenges, the
team has decided to augment our testing capabilities through
the development of a comprehensive simulation environment,
called the ADEPT Autonomous Vehicle Simulator (AAVS).
Using this environment, different autonomy and control al-
gorithms can be designed, implemented, and tested without
needing to be at the lake. This allows lake time to be used more
efficiently, verifying and tuning behaviors instead of creating
and debugging them.

The simulation environment has proved incredibly useful in
non-software aspects of the design process as well. Ambiguous
hardware questions, like what LIDAR should be used? and
where should the hydrophones be mounted?, can be answered

through virtual experimentation. By running the entire com-
petition in AAVS using different sensor configurations, the
performance of each configuration can be compared using the
scoring guidelines outlined by the RobotX rules as an objective
function. This technique ensures we get the most out of the
sensors we have, and can be used to determine which sensors
will actually help improve performance of competition tasks
before purchases are made. This same technique was employed
in our successful participation Roboboat and Robosub earlier
this year.

The remainder of this paper will outline the development
of the hardware and software used to compete in this year’s
RobotX competition. This begins with a discussion of our
overarching design philosophy in II. Design Strategy. Next,
the implementation of this strategy in the development of
AAVS and the vehicle hardware used is outlined in III. Vehicle
Design. Finally, preliminary results available at this time are
presented in IV. Experimental Results.

II. DESIGN STRATEGY

RobotX is ultimately an autonomous vehicles competition.
Though novel hardware systems can improve performance, the
most important factors in having a successful system are the
autonomous behaviors. With this in mind, the Georgia Tech
team adopted a software first approach to the design process.
This is similar to a common view in the UAV community,
where the vehicle itself is merely a ”truck” to get the payload
where it needs to be. In this case, the behavioral algorithms
themselves could be considered the payload. The ”truck” nec-
essary could be any maneuverable floating platform, provided
it supports the correct sensors. This is particularly relevant
for our team, as we are involved in other maritime robotic
competitions and research, which require to use different
classes of vehicles: a 16 foot WAM-V platform for RobotX, a
smaller than 6 feet boat for Roboboat, an underwater vehicle
for RoboSub. Each vehicle is capable of supporting a varied
suite of sensors and actuators and runs the same software.

To further this software first view, it was decided early
on that a fully featured simulation environment would be
developed to aid in rapidly designing, testing, and iterating
on behavioral algorithms. To further simplify the software
stack necessary for competition, the simulation would also be
used as the control software on the actual competition vehicle.
The intent behind this simulation environment was to have a
proving ground to test new ideas before going through the
efforts of implementing and testing them on the full system.

WHY YES, THAT IS PLYWOOD 2

This virtual testing capability greatly accelerated the behav-
ior development process, but it is important to note that the
simulation environment did not replace hardware testing. This
follows from following two points:

1) What does not work in simulation will not work in the
real world.

2) What does work in the real world will work in the
simulation.

A key takeaway from this is that an idea being successful
in simulation does not guarantee success in the real world.
As such, it is important to maintain a semi-regular testing
schedule that uses full system tests to validate and update the
simulation with new data and eliminate algorithms that may
only work in simulation.

It is also important to note the subtle differences between
these two points that highlight different strengths of our chosen
simulation based design approach. The first of these points
reinforces the usefulness of the simulator as a proving ground.
Though significant effort has been expended to accurately
model the on-board sensors and dynamics of the vehicle,
the simulator generally overestimates system performance.
As such, ideas that have been implemented in the simulator
without success are unlikely to perform any better in the
real world, where additional noise and non-optimal conditions
are constantly present. These ideas can then be eliminated
from consideration. The implications of the second point
are a little more subtle. One interpretation of this point can
be taken is that the performance of behavioral algorithms
that show success in the real world will show qualitatively
similar performance in both the real world and the simulator.
Therefore, ideas that have been implemented and validated in
the real world can be compared in the simulator to differentiate
their performance.

III. VEHICLE DESIGN

As the design philosophy described above is very much
software first, this section will largely discuss the development
and capabilities of AAVS. This includes a broad overview
of AAVS itself and it’s capabilities, the dynamic model and
state estimator used, and a sampling of the implemented
autonomous behavior algorithms. Following this will be a brief
description of the hardware systems used.

A. Simulation Environment

AAVS was built from scratch in C# and utilizes the OpenTK
library for graphics. Using data extracted from Google Maps,
knowledge retained from previous competitions, and the pre-
liminary rules for this year, the 2016 RobotX course has
been laid out in the simulation environment as shown in
Fig. 1. Using this environment to develop algorithms and the
overarching software stack has proved invaluable.

Initial analysis showed four sensor subsystems were re-
quired to gather adequate information from the environment
to complete the Roboboat tasks:

• GPS and IMU to determine vehicle state.
• LIDAR system to detect physical obstacles.

Figure 1: The 2016 Roboboat course in simulation.

• Camera system to recognize color and pattern.
• Sonar system to locate the pinger.

Models for sensors in each of these four categories have
been developed for use in AAVS. These models have been
validated against real world experiments to show they can
generate representative data. In the current version of the
simulator, simulated data for GPS, IMU, and LIDAR can be
realistically generated while camera and sonar models remain
at a lower level of fidelity. Figure 2 illustrates simulated
LIDAR data that has been projected onto the world frame
using simulated GPS and IMU data. Because of this, most of
the autonomy algorithms developed rely primarily on GPS,
IMU and LIDAR data, and only use the cameras and sonar
systems when specifically needed. However, this has proven
to be sufficient in real world tests. A suitable dynamic model
has been implemented to estimate the vehicle’s response to
command inputs as well as an Extended Kalman Filter and
will be described in further detail in the following section.

Figure 2: Simulated LIDAR, GPS, and IMU Data.

In Fig. 2 the ground truth location of the vehicle is repre-
sented by the transparent vehicle model. The EKF estimated
boat position (based off simulated GPS and IMU data) is
represented by the opaque vehicle model. The vehicle is
equipped with a 3D LIDAR unit. The cyan lines are the
simulated LIDAR data projected onto the world frame using
the estimated boat position, with the red cylinders represented
perceived buoys (with height). The LIDAR used in this project
does not pick up the surface of the water, so the return data

WHY YES, THAT IS PLYWOOD 3

is clean.

Figure 3: Sister image to Fig. 2, with the vehicle approaching
first speed gate.

B. System Dynamics

For the simulation environment to generate representative
training runs, a reasonable model for how the vehicle moves
through the water is needed. While there has been work on
three-dimensional dynamic models for small marine vehicles
[1], a two-dimensional model, considering yaw, surge, and
sway while ignoring pitch, roll, and heave has been imple-
mented. Ignoring pitch, roll, and heave is common practice
for small surface vehicles [2] in low sea states where affects
like broaching can be ignored. For propulsion, the vehicle
is equipped with two Torqeedo Cruise 2.0R thrusters in a
skid steering configuration. One thruster is attached to the
pontoons on either side of the vehicle, and can be used to
accelerate/decelerate in the longitudinal direction and apply a
torque to induce rotation. As such, the dynamic model consists
of these states:

• θ - angular position (yaw) in world frame
• ω - angular velocity in world frame
• x - position in world frame
• y - position in world frame
• u - linear velocity (surge) in vehicle frame
• v - linear velocity (sway) in vehicle frame

And the following inputs:

• ml - force applied by left motor
• mr - force applied by right motor

Integration of the Torqeedo motors into the software stack
allows for the recording of commanded input and actual motor
RPM. This data, combined with state estimation data, was
used to build a transfer function to estimate the applied forces
for given throttle inputs. The state update equations for the
dynamic model are dictated by the following equations:

(1)θk+1 = θk + ωt · dt

(2)
ωk+1 = ωk + dt ·

(
mr,k −ml,k

c1
− c2 · wk − c3 · wk

· |wk|+c9 ·
(
u2k + v2k

)
· sin (2 · atan2 (vk, uk))

)
(3)xk+1 = xk + dt · (uk · cos (θ) + vk · sin (θ))

(4)yk+1 = yk + dt · (vk · cos (θ) + uk · sin (θ))

uk+1 = uk · cos (ωk · dt)− vk · sin (ωk · dt) + dt

·
(
mr,k +ml,k + 2 ·mc,k

c4
− c5 · uk − c6 · uk · |u|

)
(5)

(6)vk+1 = vk · cos (ωk · dt) + uk · sin (ωk · dt)
+ dt · (−c7 · uk − c8 · vk · |vk|)

In all of the above equations, the kth state is the current
state, while the (k+1)th state is the updated state for the next
time step. dt is the time step between updates of the vehicle’s
state.

For the heading update equation, Eq. 1, only the first order
angular velocity term is considered. Higher order angular
acceleration terms are insignificant with a sufficiently small
time step.

The angular velocity update equation, Eq. 2, consists of
four terms to define the angular acceleration. The first part
term consists of the input torque mr − ml divided by the
vehicle rotational inertia c1. The length of the moment arm
for these torques is captured in the rotational inertia term.
The next two terms approximate the first (c2) and second (c3)
order angular damping of the vehicle. The final term represents
a straightening phenomena, designed to capture the vehicles
natural tendency to glide straight through the water.

The global position update equations, Eq. 3 and 4, only
contain the first order velocity terms without higher order
acceleration terms. This is done with the same assumption
of a sufficiently small time step. The sin(θ) and cos(θ) terms
transform the velocity terms u and v from vehicle frame to
world frame.

The surge update equation, Eq. 5, involves transforming the
velocity in vehicle frame as the vehicle frame rotates. The
next term is the linear force divided by the system inertia (c4).
The last two terms are first (c5) and second (c6) order drag
approximations. The sway update equation, Eq. 6, is identical
to surge with the exception of the removed force/inertia term.

For this model to be useful, values for the nine constants that
appear in the state equations need to be assigned, estimated,
or measured. Some of these constants (like mass) can be
measured directly, while other constants need to be estimated.
Initially, online parameter estimated with a recursive least
squares (RLS) estimator was attempted. However, the online
version proved unstable and an offline parameter estimator was
used to determine these coefficients. For the offline parameter
estimator, an hour’s worth of GPS and IMU data (of the
vehicle driving on the lake in a predetermined pattern) was

WHY YES, THAT IS PLYWOOD 4

recorded. GPS data consists of the vehicle global position
at a 4 Hz update rate, and the IMU data consists of 3D
Magnetometer, Gyroscope, and Accelerometer data at 100
Hz. 95% of the GPS data was withheld and used to train
and determine dynamic model coefficients. A gradient descent
optimizer was configured to minimize the mean-square-error
(MSE) of the withheld GPS data with the predicted model
location. In other words, we:

1) Split data into 5 second time intervals.
2) Withheld all the GPS data (except the very first data

point in each time intervals) from each interval.
3) Seed dynamic model with an estimate of what the boat

is doing at that very first point for each interval.
4) Evolve the dynamic model 5 seconds into the future,

using only the recorded input (motor voltages) for that
interval.

5) Compare the withheld GPS data with predicted path
from dynamic model.

6) Perform gradient descent on model parameters to mini-
mize the MSE between withheld and prediction data.

This approach was tried on several dynamic models before
settling on the model described above. Due to simplifying
assumptions (ignoring wind, waves, wakes), the training and
prediction data will not match perfectly. Figure 4 compares
the training and prediction data for a few samples of the
training set. In this clip, the vehicle is moving from left to
right. The grid lines correspond to meter increments. The
red arrows correspond to estimated vehicle locations at the
start of each interval, and the green path corresponds to the
predicted boat path from the dynamic model. Each black X is
a GPS data point that was withheld. Note that during the first
5 second interval the predicted (green) and withheld (black)
paths are nearly on top of each other. During the second 5
second interval, the two paths diverge after the boat makes
more abrupt maneuvers. However, even with this occasional
erratic behavior, the predicted coefficients perform sufficiently
well for our needs.

Figure 4: Withheld training GPS data vs dynamic model
prediction.

C. State Estimator

The dynamic model state equations were intentionally laid
out to be easily transitioned into an Extended Kalman Filter
(EKF). A Kalman Filter (KF) is an optimal estimator for linear
systems assuming both gaussian process and measurement
noise, and the EKF is a modified version of the KF that
can handle nonlinear systems. There is a significant amount
of literature on EKFs, with much of the work beyond the
scope of this paper. Only the most pertinent details of the
implementation used for this work are described below.

The quality of the EKF output is directly related to how well
the dynamic model, process noise (Q matrix) and measurement
noise (R matrix) represent the actual system. Typically, the
dynamic model, Q, and R are measured with available ground
truth data[3][4]. A novel process has been developed to
estimate the full Q and R matrices without ground truth data
for this project and is the subject of another paper to be
published at a future date.

The EKF uses Bayesian inference to combine information
from the dynamic model (priori) and from sensor measure-
ments to predict the vehicle state (posteriori). A good fitting
dynamic model is needed to maximize EKF performance.
Tuning our dynamic model, as described above, requires a
good estimate of what the vehicle is doing at the start of
each time interval. This is a chicken or egg conundrum, as
tuning the EKF requires a good dynamic model, and tuning
the vehicle model requires a good EKF. The problem can be
overcome by alternatively tuning the EKF, then the dynamic
model, then the EKF again in an iterative fashion.

D. Autonomy

The software developed conforms to the following ordered
structure:

1) Raw data from sensors (like LIDAR point clouds) is
transformed into usable data like global positions and
orientations of docks and buoys.

2) Buoys are identified from the list of obstacles and
labeled (i.e. which buoys are most likely to be speed
gates, or obstacle entrance and exit gates, or the buoy
with the active pinger).

3) Gate, dock, and pinger locations are transformed into a
destination based on the planner that takes into account
the current and completed tasks for the overall mission.

4) The arbiter takes the destination, obstacles list, and other
sensor data and determines how to get there without
hitting anything.

5) The controller transforms the arbiter command (direction
and heading) into motor voltages, keeping the vehicle on
course and stable.

Some specialized algorithms combine two more more of
these steps, but for most configurations the above list repre-
sents how data flows through the software. There are many
different moving parts, and many of these components have
multiple behavior algorithms implemented. It would be im-
possible to cover all of these in the space of this paper, so a
representative sample is presented here.

1) Acoustic Pinger Localization: The vehicle is equipped
with the same three hydrophone layout as was used on the
vehicle used for the Roboboat Competition in July. The
hydrophone layout for the Roboboat vehicle is shown in Fig.
2, with the blue cylinders representing hydrophone locations.
Each hydrophone returns a raw audio signal which, when
filtered and amplified, can be turned into a series of timestamps
that correspond to when the hydrophone detected a ping. There
are several ways to use these timestamps to estimate pinger
location. The best performing algorithm that has been imple-
mented is a RANSAC locator[5]. As such, this algorithms

WHY YES, THAT IS PLYWOOD 5

was used in simulated testing to determine the placement
of the hydrophones on the WAM-V. What follows is a brief
description of the pinger localization algorithm.

If two hydrophones recorded the same event at the same
time, the pinger must be equidistant from both hydrophones.
This is illustrated in Fig. 5, with the red circles representing
hydrophones and the blue line representing the continuous set
of possible pinger locations.

Figure 5: Continuous set of pinger locations (blue) given that
some event was recorded by two hydrophones (red) at the
same time.

This blue line is also called a contour line, signifying that
for any point on the line, the time difference between when
the sound reaches both hydrophones is constant. A nonzero
time difference, would correspond to a different contour line,
as shown in Fig. 6. The increment in time difference values
between adjacent contour lines in this graph is also constant.
The nonlinear behavior of the angular resolution highlights the
fact that relative accuracy of an estimated pinger position is
highly sensitive to the orientation of a given hydrophone pair.

With multiple hydrophone pairs, it is possible to combine
the information from the contour lines to triangulate the
position of the pinger. Alternatively, a single hydrophone
pair could estimate the position of a stationary pinger by
moving through space and using the hysteresis of contour
lines as additional virtual hydrophone pairs. For either of these
methods, an accurate estimate of the vehicles state, and the
relative orientation of the hydrophones to the vehicles frame is
necessary. In practice, it helps to both have more than two hy-
drophones, and move the vehicle while data is being recorded.
This is illustrated using the simulation environment in Fig. 7
and Fig. 8. Finding an optimal configuration for hydrophone
placement analytically, especially considering the coupling
with the EKF and autonomous behavior, is impossible. Using
the simulation environment, however, a local optimal solution
can be found.

2) DAMN Arbiter: Distributed architecture for mobile nav-
igation or (DAMN) is a reactive architecture that arbitrates

Figure 6: Contour lines for a two hydrophone sonar array.

Figure 7: RANSAC for single ping on a three hydrophone
vehicle. The system misses (green cross) the pinger (red buoy)
because the contour lines are almost all parallel.

through voting [6]. The local region around the vehicle is
broken up into smaller sub regions, and each behavior (in
this case both go to waypoint and avoid obstacles) votes on
how willing that behavior is to travel to that region. These
regions are illustrated in Fig. 9; where color corresponds
to vote total. Green indicates a high vote, or a willingness
for the vehicle to head to that region. Red indicates a low
vote or an unwillingness to head to that region. Different
behaviors have a different voting weight. The avoid obstacles

WHY YES, THAT IS PLYWOOD 6

Figure 8: RANSAC for three pings on a three hydrophone
vehicle. The system returns (green cross) a much better
estimate for pinger (red buoy) location because the contour
lines are not all parallel.

behavior has the strongest vote, which is why the regions near
perceived obstacles (indicated by red circles) are dark red. To
avoid situations where the goal point is directly behind an
obstacle, the avoid obstacle behavior also negatively votes for
any areas that are obstructed by known obstacles. An easy way
to visualize this is to think of the vehicle as a light source,
with obstacles casting shadows. Anywhere a shadow is cast
is heavily downvoted. The orange cross indicates the current
destination, and, as expected, is surrounded by the greenest
regions. The arbiter commands the vehicle to head toward
the region with the highest vote total, with a speed that’s
proportional to how far the region is from the vehicle.

3) Potential Fields Arbiter: Another arbiter that has been
implemented and tested is arbitration through a potential field
abstraction. Each behavior now acts as either a source, such
as avoiding obstacles, or a sink, a waypoint destination. A
weighted average of the resulting fields is taken, again with
avoid obstacles having the dominant weight, and heading and
velocity is returned. This return is produced via a simple gra-
dient descent through the potential space. Figure 10 illustrates

Figure 9: DAMN arbiter.

the average vector returned by the arbiter at various locations,
indicated by the white arrows. The orange cross denotes the
waypoint sink and red circles denote perceived obstacles acting
as sources in the potential field.

Figure 10: Potential fields arbiter.

These two arbiter implementations highlight the useful-
ness of the simulation environment for behavior comparisons.
Not only can the performance of competing behaviors be
compared, visualizations within the software allow for the
algorithm performance to be understood in a more concrete
way.

E. Hardware Description

The Wambulence utilizes the WAM-V platform. Propulsion
is provided by two Torqeedo Cruise 2.0R electric motors
arrayed in a skid steering configuration. Onboard computing
is handled by an Intel NUC with a Core i7 processor running
Windows 10. The computer is connected directly to the
Torqeedo motors to provide control through a proprietary API.
A Velodyne PUCK VLP-16 3D LIDAR is used for 3D obstacle

WHY YES, THAT IS PLYWOOD 7

detection and classification. A Microstrain 3DM-GX3-45 INS
is used for an onboard GPS and IMU system. All electronic
components are housed in a waterproof Pelican Storm iM2400
case. The case has been outfitted with a modular component
rack and custom power rail system. The motors and other elec-
tronics are decoupled on separate circuits, with a 2 Torqeedo
LiPo battery used for motor power, and a 1 Torqeedo LiPo
battery used for the computer and sensor systems.

IV. EXPERIMENTAL RESULTS

Much of this paper has discussed the value of the AAVS
environment. One of the key features of this environment
is the integrated stack used for simulation, hardware-in-the-
loop testing, and control of the competition vehicle. This has
allowed for testing of algorithms, design choices, and hard-
ware implementation on multiple levels. Software simulations
are being run near constantly to further refine and compare
behavioral algorithms. Hardware-in-the-loop simulations are
largely done at the Georgia Tech ADEPT Lab and around the
Georgia Tech. Various tests are done multiple times a week,
including motor control, manipulator actuation, and object
identification/classification. Full system tests are conducted
at Sweetwater Creek State Park on a self constructed mock
mission course, and have been done on a roughly monthly
basis. Previous sections have covered the uses of pure software
testing, while this section will focus mainly on the hardware-
in-the-loop simulation and the playback of real world testing
data.

A. Hardware in the Loop

As previously discussed, the simulation environment is also
the software used to control the actual competition vehicle.
This means that all sensing and actuator systems aboard the
vehicle have been interfaced with the simulation software. This
allows for these sensors, and the data returned by them, to
be used to accurately model, predict, and validate real world
performance. This has been an invaluable asset in debugging
the implementation of the software-hardware interfaces.

An example of this is in the motor controller interface.
By allowing the vehicle to actively actuate its real systems
in a simulated mission run, their performance and potential
faults can be identified before planning, or in preparation for,
a lake trip. During early testing, an unacceptable amount of
lag was present in the initial implementation of the motor
controller interface. This was partially due to motor control
through mimicry of components in a separate Torqeedo motor
controller. By identifying this lag using hardware-in-the-loop
testing, the effort required to proceed with a direct control
interface with the motors themselves could be justified without
wasting any precious lake testing time. This hardware in the
loop testing also allowed for verification of the new control
system it progressed. Many hours have been spent using
similar simulations of other components to debug and improve
their implementations before even getting to the lake.

B. Playback & Visualization

This integrated software stack also allows for another ad-
ditional capability: the playback of real world testing data.
By logging data taken during real world tests, whether at the
lake or in a hardware-in-the-loop simulation, this recorded
data can be used instead of simulated sensor data in play
backs of the test. This capability allows for the visualization
of what the vehicle was thinking as it went through a test.
Figure 11 shows both a frame from a video taken during a
lake training run of the Roboboat vehicle, and the cumulative
sensor data up to that point for that run. During this run
the vehicle found and navigated the speed gates successfully,
which is not surprising given the two distinct LIDAR point
clouds that have been picked up on the right. In this case,
the visualization is interesting but not useful. However, when
the system fails to navigate through the speed gates (or do
any other task), the visualization is incredibly useful. By
observing what goes on and what the behavior algorithms
were planning, the problem can be diagnosed (was it a sensor
blind spot error? sensor filtering error? arbiter error? or
controller error?). This information can be used to solve the
underlying problem and ultimately improve the vehicle instead
of just alleviating the symptoms of the problem with ad-hoc
debugging methods.

Figure 11: Playback capability of simulation environment.
Left is part of a video from one training run. Right is the
visualization of the cumulative sensor data up to that point for
that training run.

V. CONCLUSION

At the beginning of this year, the team decided that we
were going to win this competition with software. A highly
capable simulation environment was developed to aid in the
rapid development, implementation, and iteration of various
autonomous behavior algorithms. This software stack was
developed to also be used on-board the vehicles such that a
single software stack could be used for simulation, testing,
and control of the vehicle during competition. This software
stack has seen incredible growth throughout this process.
Through the use of the AAVS integrated software simulation,
hardware-in-th-loop testing, and full tests at the lake, our
ability to consistently perform the necessary tasks for the

WHY YES, THAT IS PLYWOOD 8

RobotX challenge has grown. Now we’re excited to see our
system compete on the actual RobotX course.

REFERENCES

[1] A. W. Browning, “A mathematical model to simulate small boat be-
haviour,” Simulation, vol. 56, no. 5, pp. 329–336, 1991.

[2] H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, “Sliding-
mode tracking control of surface vessels,” Industrial Electronics, IEEE
Transactions on, vol. 55, no. 11, pp. 4004–4012, 2008.

[3] C. Goodall and N. El-Sheimy, “Intelligent tuning of a kalman filter using
low-cost mems inertial sensors,” in Proceedings of 5th International
Symposium on Mobile Mapping Technology (MMT’07), Padua, Italy,
pp. 1–8, 2007.

[4] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Dis-
criminative training of kalman filters.,” in Robotics: Science and systems,
vol. 2, p. 1, 2005.

[5] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[6] J. K. Rosenblatt, “Damn: A distributed architecture for mobile naviga-
tion,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 9,
no. 2-3, pp. 339–360, 1997.

