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Abstract—This paper describes the design of Georgia Tech
Marine Robotics entry for the 2018 Maritime RobotX Chal-
lenge. By focusing on consistency and reliability in both our
hardware and software, we look to build upon our experiences
from the 2016 competition. This strategy led to the decision
to make incremental improvements to the hardware platform
and significantly overhaul to the software used at the 2016
competition. The sensor package remains largely the same as
was used in 2016, with the removal of the mast used for the
detect and deliver task as the most major update. On the
software side we have transitioned to ROS in place of the
custom software environment used in previous competitions. This
decision was made for interoperability and integration reasons,
as the open source nature of ROS is expected to encourage
collaboration with other teams and ease the learning curve for
future team members. Additional software changes include a
focus on navigation capabilities in state estimation and a neural
network approach to modeling vehicle dynamics.

I. INTRODUCTION

The 2018 Maritime RobotX Challenge presents a difficult
challenge for engineering teams pushing themselves to further
the state of the art in autonomous marine systems. The Georgia
Tech Marine Robotics team is excited to once again take part
in this competition and test our system against the difficult
course. This challenge provides and opportunity for our stu-
dents to develop skills in systems thinking and design. The
students who partake in this competition take these experiences
and continue pursuing research in broad areas, from vehicle
design to artificial intelligence. The challenge also provides an
avenue to develop and test an autonomous surface platform,
ensuring the platform has autonomous capabilities necessary
to navigate complex environments and make decisions based
on sensor information. These aspects make participation in
RobotX an invaluable educational experience.

As the complexity of the challenge grows, it is necessary
to develop a strategy to ensure the effort of team members
results in maximum payoff during the competition. Our design
strategy focused around the consistency of the system and
is discussed further in Section II: Competition Strategy. The
implementation of this strategy towards our hardware and
software solutions is discussed in Section III: System Design.
Testing of our system to ensure its consistency is discussed in
Section IV: Experimental Results.

II. COMPETITION STRATEGY

The primary strategy we have taken in working towards
this year’s competition is consistency, consistency, consistency.

This strategy is born from observations made by members of
the team at past AUVSI marine robotics competitions. Namely,
the most successful teams are not those that do everything
halfway, but those who do a few things very well. This focus
on consistency can be seen throughout our design process,
from the development of our software to the testing of our
system. This strategy is also expected to yield large benefits
to at competition development. Because our focus has been
in increasing the reliability and robustness of the platform,
development efforts at competition can focus on increasing
capabilities of the system. This is a lesson taken directly from
the 2016 challenge, where much of our team’s time was taken
in debugging our hardware and basic operations instead of
enhancing the artificial intelligence required to complete the
tasks.

Because of this guiding focus, when faced with a trade
between reliability and complexity, we nearly always chose
reliability. As with many strategies, this was a guiding idea,
not a hard rule. In some cases, increasing complexity at the
cost of system reliability was required. Some specific cases
of this include navigation, discussed further in Section III:
System Design. These cases are definitely exceptions though.
In general, when faced with two possible solutions to a
problem, the simpler solution was accepted.

Our second guiding strategy for the competition was to
develop a robust navigation platform. While the tasks provided
by the technical staff require significant perceptual capabilities,
a robust navigation capability allows for the completion of
the majority of the tasks. Similarly, the addition of obstacles
throughout the competition area leads to the observation that
autonomous navigation is focus of the competition. Finally,
navigation capabilities are unlikely to have large changes
required at the competition. While the sea states at the
competition site are likely to be more severe than what is
possible to replicate at our primary testing location, we expect
these to minimally impact our navigation capabilities due to
our modeling approach and control design. These are both
dicussed in further detail in Section III-B: Software Design.

A third guiding strategy for the team was the elimination of
so called “black boxes” from the system as much as possible.
The idea is simply that the team should be able to access
and alter any hardware and software component used on the
vehicle as much as possible. A result of this goal was a
major change to the software architecture used on the system.
The team made the decision to shift from a software stack
developed at Georgia Tech, ARCS [1], to the open source
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architecture ROS [2]. This change is discussed further in
Section III-B: Software Design. Primarily, this change built
upon the positive experiences new team members had in
developing software in ROS for RoboSub 2018 compared to
developing in ARCS for RoboBoat 2018. Additionally, the
use of ROS brought our team in line with the larger robotics
community, allowing for reuse of libraries and the potential
for our advances to be shared as well.

A major exception to this guiding principle against black
boxes in the system is the selection of motors for our vehicle,
the Torqeedo Cruise 2.0. While these motors communicate
over RS-485 and provide significant information about their
current status, this communication is done over a proprietary
communications packaging protocol. As such, our ability to
communicate with the motors is limited to simple motor
commands that are handled by an on board controller. More on
this can be found in Section III-A: Hardware Design, but this
illustrates our final guiding principle: when there is no feasible
solution that avoids a black box, use what is familiar. We have
used these motors with the WAM-V platform since our first
work with the vehicle. Though not perfect, our familiarity with
these motors and their performance relative to others makes
adjustments not worth the effort required to develop a new
solution.

III. SYSTEM DESIGN

As required by the competition rules, our vehicle utilizes the
Wave Adaptive Modular Vessel (WAM-V) platform developed
by Marine Advanced Research Inc. This vehicle was outfitted
with two additional buoyancy pods at the rear of the pontoons
to provided additional safety margin for the motors, batteries,
and other equipment necessary to compete in the RobotX
challenge. The vehicle subsystems are discussed further in
Section III-A: Hardware Design. Compared with the incre-
mental hardware changes that have occurred since the 2016
competition, the software used by the team has been replaced.
The team decided to pursue the use of ROS as the backbone
of the system software, in place of in-house software, ARCS.
This decision, and further details on the software used in the
vehicle can be found in Section III-B: Software Design.

A. Hardware Design

The vehicle used for the competition is the 16° WAM-
V platform developed by Marine Advanced Research Inc., a
catamaran style surface vessel. A payload tray is supported
between the two pontoons of the vehicle and is used to
hold a Pelican case containing the computing hardware. Two
buoyancy pods are attached to the aft of the two pontoons.
Two Torgeedo Cruise 2.0 motors are used for propulsion, each
powered by a Torqeedo Power 26-104 lithium ion batteries.
An additional battery is used to power the main computer and
other sensors. With this configuration, we have been able to
test in excess of four hours at a time without recharging.

The main onboard CPU is an Intel NUC, with Arduino
Megas providing access to various sensors that cannot be
directly accessed over USB or Ethernet. A pictorial layout

Figure 1: Basic configuration of onboard sensors and comput-
ing equipment.

of the computing equipment used on the competition vehicle
can be found in Figure 1.

As was mentioned in the strategy section, our selection of
the Torgeedo motors breaks our guiding principle of “no black
boxes.” However, this choice was justified as their performance
was significantly greater than other feasible options. Many
teams at the 2016 competition attempted to use off the shelf
trolling motors, but struggled to provide enough propulsive
power. At the same time, these trolling motors would present
themselves in essentially the same way as the Torgeedos
currently do, providing a basic interface for simplistic control.
In this way, they would be no better than the Torqeedo motors.
Other teams either used custom built propulsion solutions, a
costly and time consuming effort that was not feasible for our
team. Due to our familiarity with the Torqeedo motors, we
decided to continue using them. To ensure safe operation of
the vehicle, a simple kill switch circuit was developed using
a solenoid to switch high current power to the motors using a
control signal from the Arduino connected to our R/C receiver.
If power to the main CPU is lost, the signal is forced to ground
and current cannot flow through the solenoid. The same occurs
if connection to our remote kill switch cannot be established, is
lost, or is set to the killed position. The circuit is completed by
the hardware kill switches placed around the vehicle, ensuring
they operate as expected.

Communication with the motors is handled over RS-485.
The packets transmitted by the Torgeedo motors provide a lot
of relevant data including motor temperature, battery voltage,
motor speed, and others, however this protocol is proprietary
to Torqeedo and we have not been able to access it. As such,
the only interface we currently have with the Torqeedo motors
is a request for a throttle value, with no feedback from the
motors. While this is frustrating, we are at a loss for how to
improve the system. As it stands, we are investigating reverse
engineering the protocol, but have had little success. It is hoped
that the dynamic modeling approach we have chosen, detailed
in Section III-B: Software Design, is sufficient to account for
this lack of feedback. Additional problems that are associated
with these motors include tight timing constraints on the
communications and a general lack of obvious debugging
capability. This problem was previously encountered during
the 2016 competition, and has continued to occur. Testing of
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this, detailed in Section IV-B: Lab Bench Testing, revealed
the timing issue was related to the RTS line of the RS-
485 breakout board between the Arduino and Torgeedo. It
is believed that this issue is due to the half-duplex nature of
RS-485 implemented both on our end at the breakout board
and on Torqeedo’s end in their controller, but this has not
been confirmed. This led to the implementation of a minor
delay before sending a response to the internal motor controller
providing a throttle command. While this seemed to resolve
the issue in the detailed stress testing of the motors, it is kept
in mind in case the issue appears again at the competition.

B. Software Design

Our approach to software took a more aggressive attempt to
improve the consistency of the system. The most significant
strategic shift was the change to using ROS as the backbone
of the software stack instead of the previous custom software
stack, ARCS. [1] This shift was taken for a few reasons, among
them integration with a more mature software community.
This is advantageous as it eases the learning curve when
bringing newer team members onto the project. This was
especially important, as the team is entering a phase of
significant turnover as much of the initial team behind the
custom software has moved on. This choice also brings our
software stack more closely in line with much of the rest of
the robotics community at large.

This process began in late January 2018, when the Georgia
Tech RoboSub began transitioning to ROS for exploratory
purposes while the RoboBoat 2018 team continued using
ARCS. As both of these teams largely consisted of students
that were not among the group that first developed ARCS,
it would provide for a interesting comparison of the learning
curve for each software stack. While ARCS has significant
performance advantages over ROS in its tight integration and
focused development, it was found that it was difficult for new
students to pick up and provide significant contributions at the
competitions. This can largely be attributed to a lack of doc-
umentation and somewhat ad-hoc nature of its development.
While unfortunate, this provides a cautionary lesson to other
teams developing custom software stacks. It doesn’t matter
how good your software is if others can’t learn and contribute
to it. The importance of documentation is difficult to overstate
for teams that will experience any sort of turnover.

ROS on the other hand was largely adopted easily, and new
students found the available documentation and community
useful in developing new contributions. With this positive
experience in mind, the decision was made to pursue ROS
as the primary software stack for the RobotX Challenge.

C. Navigation

Along with increased support, ROS has many ready-to-
use packages that can be implemented for robot control.
Among these libraries is the navigation stack, a foundational
component of ROS that has been very useful in developing
our navigation capabilities. The ROS navigation stack allows
for the relatively simple implementation of autonomous navi-
gation and localization using prebuilt ROS packages.

The navigation stack uses sensors information and goal
poses to generate a path to the intended goal using the Navfn
navigation function. Paths are generated using Dijkstra’s algo-
rithm, information from local and global costmaps, and current
sensor and localization information. Velocity commands are
developed using the Dynamic Window Approach (DWA)
local planner in ROS. The DWA planner generates several
trajectories, applies forward simulation to predict motion over
a short time period, and scores each trajectory on proximity to
path, goals, and obstacles. Initial implementation and testing of
the navigation stack was completed using the Virtual Maritime
RobotX Challenge Simulation environment. [3] These tests are
further detailed in Section IV-A: Simulation Based Testing.

In the current implementation, the velocity commands gen-
erated by the navigation stack are transformed into thrust com-
mands sent to each motor and controlled with a PID controller.
The primary purpose of this controller is to provide a tunable
interface to translate the desired trajectory into motion of the
robot. Initial testing has shown poor results in both real world
testing and simulation-based testing. These experiments and
past experience suggest that the system is simply too complex
to be appropriately controlled by a basic PID controller on
heading and velocity. These complexities are due in part to the
transfer function between command and action of the motors
involving significant non-linearities and a non-trivial ramping
implemented by the onboard controller within the Torgeedo.
A model-based controller that was previously used is being
ported from ARCS and improved to allow for more accurate
control. This controller uses a sampling based approach to
generate vehicle trajectories. Control trajectories are sampled
using a gridded approach and a dynamic model of the vehicle
is used to predict the resulting vehicle trajectories. Based on
these predictions, a near optimal control trajectory can be
chosen simply by choosing the trajectory with lowest cost.
This cost is defined by the required control effort and the
confidence the resulting vehicle trajectory will remain collision
free. While this implementation is ongoing, it is expected to
be completed by the beginning of the competition.

D. Dynamic Modeling

In the past, our approach to dynamic modeling has been
to assume a 2-dimensional model (ignoring pitch, roll, and
heave). Unknown model parameters for mass properties and
drag terms were inferred from raw data during an optimization
process that concurrently tuned the dynamic model and an
extended Kalman filter. Although this approach served us
well, it falls short in two important respects. First, our model
assumes nothing about wind or ocean currents - a factor
that led to significant difficulty during the 2016 competition.
Second, our thrusters have a noticeable ramping function and,
because of the proprietary communication protocol, the true
motor speed and thrust at any given time is unknown.

For the 2018 competition, we are taking a new approach
to address these issues: training a neural network to infer a
dynamic model from data collected during remote operations.
In general, neural networks are useful when 1) data is cheap
and abundant, 2) the form of the underlying model is not well
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Figure 2: Actual and predicted heading and angular velocity
from the neural network during a training run.

understood, and 3) the utility and accuracy of the trained model
is more important than its understandability. These criteria are
met in our case (although the form of the equations of motion
are described in [4], the ramping function for our motors is
unknown).

The question our dynamic model should answer is, “Given
an initial state and motor command at time t, what is the
predicted state at time t+6t?”, or

Z(k+1) = f(Z,mp, mg, dt) (D

In practice, there is considerable flexibility in assembling
input-output pairs for training from the raw data, and we found
that supplementing the initial state with motor commands from
the previous 0.5s and 1.0s was sufficient to capture the motor
ramping function. We implemented our dynamic model in
Keras (an extension of the popular TensorFlow library for
Python). Finding a suitable architecture for any neural network
can be a challenge, but after some experimentation, we settled
on a two-layer network that offered high accuracy, as shown
in Figures 2 through 5. The trained model can be saved for
execution in both Python and C++ for integration with our
state estimation and path planning modules.

E. State Estimation

The purpose of state estimation is to generate a hypothesis
for the current pose of the vehicle. In our case, the states
include position, velocity, heading, and angular velocity. For
estimating the state of the robot at any given time, the vehicle
will utilize an Unscented Kalman Filter to integrate predictions
from the neural network dynamic model and measurements
from onboard IMU and GPS. An Unscented Kalman Filter
(UKF) is used in this case due to the complexity and non-
linearity of neural network equations. A more popular ap-
proach, the Extended Kalman Filter (EKF), involves lineariza-
tion of non-linear dynamics using Jacobians. There are two
problems with this approach for our case. The first problem is
that the equation of the neural network is much too complex,
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Figure 3: Actual and predicted velocities from the neural

network during a training run.
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which means that analytically computing the Jacobean is not
feasible. Second, the neural network is highly non-linear,
which means that using a first order linear approximation could
possibly result in an inaccurate state estimate. On the other
hand, a UKF works by using a systematically sampled set of
points to approximate the state rather than linearization.

The UKF and dynamic model are tuned concurrently in an
optimization loop. First, the neural network is trained using
raw data. Next, the neural network model is used to tune the
UKEF. Finally, the filtered data from the UKF is used to re-
train the neural network and the process continues until both
the UKF and the neural network have converged.

F. Perception

Vision and perception are implemented on the boat using a
Velodyne Puck™ (VLP-16) 3D LiDAR and USB web camera.
The LiDAR sensor provides ranging information to populate
the navigation stack costmaps with obstacle information. A
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queries to the neural network over a dataset spanning half an
hour of remote operation.

method for buoy identification and classification is currently
being developed to enable further autonomous missions in-
volving decisions based on the type and color of buoy. Testing
and training of the classification methods will be conducted on
the simulation environment before deployment on the physical
system.

G. Mission Planning

The complex mission architecture required to carry-out
intricate autonomous tasks necessitates the use of a structured
mission planning system. The mission planning system utilizes
hierarchical state machines to track robot states and transitions
between states. The foundation of these state machines is the
SMACH ROS package that provides various debugging and
introspection tools for state machines. Using this architecture
complex missions can be broken into smaller components with
many possible states and sub tasks. A task specific interface
was defined in python based on the SMACH library to allow
for easy integration of new task models as they are developed
at competition.

IV. EXPERIMENTAL RESULTS

To ensure our designs are adequate to perform well at the
competition, a rigorous testing plan was laid out. This testing
plan included simulation based testing, lab bench testing,
and full system testing at Sweetwater Creek State Park near
Atlanta, Georgia. The results of these tests are discussed
below.

A. Simulation Based Testing

While ARCS included a simulation environment within the
control environment, this is not the case with ROS. As such,
the Virtual Marine RobotX Challenge (VMRC) environment
set up within Gazebo was used [3]. This was developed to
have an accurate representation of the vehicles hydrodynamic
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Figure 6: Motor commands are sent via UDP from the main
CPU to a pair of Arduino Megas, which communication with
the motors over RS-485 through a half duplex breakout board.

performance, propulsion performance, and relatively high fi-
delity sensor implementations. The environment has been used
to provide initial tuning of the PID controllers used for control
of the vehicle, as discussed in Section III-C: Navigation. This
has also been used to develop proof of concept algorithms for
perception as described in III-F: Perception. As our vehicle
has already shipped at the time of writing, we plan to con-
tinue using the VMRC environment to further develop these
algorithms.

B. Lab Bench Testing

Our success in the 2016 competition was hindered by un-
predictable loss of one (and sometimes both!) of our thrusters.
This was a difficult issue for us to fix even after returning from
the competition as many factors were confounded to produce
the failure. Motor stress testing was conducting by setting
up an experimental test stand inside our lab environment.
This stand allowed the motors to be run simultaneously, fully
immersed in water, for extended periods of time. Stress testing
was conducted by varying the commands to the motors along
simulated control trajectories. Sinusoidal, step functions, and
randomized control trajectories were used to elicit and identify
failure modes.

After many hours of controlled motor testing in the lab,
we traced the problem to the communications between the
CPU and the motors. The failure was identified to be a
timing related issue in the response providing a command
to the internal Torqeedo controller. This controller follows
a master-slave architecture for connection to many possible
components, and so the failure of communications can be
very sensitive to the timing of a response. It appeared this
was causing the motor failures, and a simple delay before
sending response appeared to solve the problem. This solution
was verified with further bench testing. The communication
architecture we have now implemented is shown in Figure 6.
Motor commands generated from the controller module are
transmitted from the CPU to a pair of Arduino Megas over
UDP (one Arduino for each motor, assigned a static IP). The
Arduino will wait to receive a packet from the Torgeedo, then
transmit the motor command. Packets are converted through
an RS-485 transceiver in between the Arduino and motor.

C. Lake Testing

Due to the WAM-V’s size and complexity, it is difficult to
conduct live testing. Additionally, Atlanta is a land-locked city.
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The nearest body of water that the WAM-V can be deployed
in is a roughly 40-50 minute drive out of the city. This means
full system testing on the water is a rare resource. However,
it was a focus for this years competition to increase in-water
time to discover as many hardware issues as possible before
the vehicle was shipped to Hawaii. Prior the 2016 competition,
we had time to complete one three-hour fully integrated system
test before shipping the vehicle. At competition, we were
plagued with hardware failures. This year, the team logged
six trips to the lake, each lasting the better part of a workday.
This yielded a total of roughly 20-30 hours of in-water testing.
In addition to logging hours in an attempt to catch rare errors,
data was gathered to fit the neural network dynamic model,
evaluate control algorithms, and gather realistic perception
data for developing autonomous behavior algorithms. While
nowhere near the level required to root out all problems,
confidence in our system is much higher than it was in 2016.

V. CONCLUSION

The Georgia Tech Marine Robotics team is excited to
participate in the 2018 Maritime RobotX Challenge. This
challenge presents a difficult use case to further the state of the
art in autonomy and marine navigation. We have participated
in previous competitions including the 2016 Maritime RobotX
Challenge, and the 2016, 2017, and 2018 RoboBoat and
Robosub competitions. Each of these provides an opportunity
to build upon previous experiences and further engineering
skills. Each competition has brought about new challenges,
such as navigation in environments without the aid of GPS
in RoboSub, vehicle interoperability challenges in RoboBoat,
and the challenging dynamics of the large vehicles used in
RobotX. These challenges have pushed us as engineers to grow
and provide innovative solutions.

The experience we have gained has pushed us to value re-
liability in our systems, favor simple solutions when possible,
and avoid black boxes. We have taken these guiding principles
and applied them to our vehicle development for the 2018
RobotX competition, leading to a relatively simple hardware
system and the use of an open source software architecture.
Consistency also drove the testing of our system with in-
water time greatly increased relative to 2016, continued lab
testing, and substantial simulation-based development. We
look forward to seeing the results of all our hard work!
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