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Introduction 
Image manipulation can be divided into three categories: 
 

l Image Processing  image in → image out 
l Image Analysis  image in → measurements out 
l Image Understanding  image in → high-level description out 

 
This primer will focus on the concepts of image processing, restricting ourselves to two-dimensional 
(2D) image processing. 
 
An image defined in the “real world” is considered to be a function of two real variables, for example, 
a(x,y) with a as the amplitude (e.g. Brightness) of the image at the real coordinate position (x,y).  An 
image may be considered to contain sub-images sometimes referred to as regions-of-interest, ROIs.  
The amplitudes of a given image will almost always be either real numbers or integer numbers.  The 
latter is usually a result of a quantization process that converts a continuous range (say, between 0 and 
100%) to a discrete number of levels. 
 

Digital Image 
A digital image a[m,n] described in a 2D discrete space is derived from an analog image a(x,y) in a 2D 
continuous space through a sampling process that is frequently referred to as digitization.  The 2D 
continuous image a(x,y) is divided into N rows and M columns.  The intersection of a row and column 
is termed a picture element, image element or pixel.  The value assigned to the integer coordinates 
[m,n] with {m=0,1,2,...,M-1} and {n=0,1,2,...N-1} is a[m,n]. 

 
There are standard values for the various parameters encountered in digital image processing.  These 
values can be caused by video standards, by algorithmic requirements, or by the desire to keep digital 
circuitry simple.  Quite frequently we see cases of M=N=2K where {K=8,9,10} 

Color Space 
The use of color in image processing is motivated by two principal factors.  First, color is a powerful 
descriptor that often simplifies object identification and extraction from a scene.  Second, humans can 
discern thousands of color shades and intensities, compared to about two dozen shades of gray.  Most 
color models in use today are oriented either toward hardware (such as for color monitors) or toward 
applications where color manipulation is a goal (such as in the creation of color graphics for 
animation).  In terms of digital image processing, the hardware-oriented models most commonly used 
in practice are the RGB (red, green, blue); the CMY (cyan, magenta, yellow); CMYK (cyan, magenta, 
yellow, black); and the HSI (hue, saturation, intensity) model which corresponds closely with the way 
humans describe and interpret color.  The HSI model also has the advantage that it decouples the color 
and gray-scale techniques. 

In the RGB model, each color appears in its primary spectral components of red, green, and blue.  The 
number of bits used to represent each pixel in RGB space is called the pixel depth.  Consider an RGB 



   
 
image in which each of the red, green, and blue images is an 8-bit image.  Each RGB color pixel 
(triplet value of (R,G,B) ) is said to have a depth of 24 bits.  Cyan, magenta and yellow are the 
secondary colors of light, or, alternatively, the primary colors of pigments. 

When humans view a color object, we describe it by its hue, saturation, and brightness.  Hue is an 
attribute associated with the dominant wavelength in a mixture of light waves.  When we call an object 
red, orange, or yellow, we are specifying its hue.  Saturation refers to the relative purity or the amount 
of white light mixed with a hue.  The pure spectrum colors are fully saturated.  Colors such as pink (red 
and white) and lavender (violet and white) are less saturated, with the degree of saturation being 
inversely proportional to the amount of white light added.  The HSI color model decouples the intensity 
component from the color-carrying information (hue and saturation).  Figure 1 shows an example of 
RGB and HIS color separation. 
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Figure 1:  Color Space showing RGB and HSI 

Characteristics of Image Operations 
There is a variety of ways to classify and characterize image operations.  The reason for doing so is to 
understand what type of results we might expect to achieve with a given type of operation or what 
might be the computational burden associated with a given operation. 



   
 
Types of operations 
The types of operations that can be applied to digital images to transform an input image a[m,n] into an 
output image b[m,n] (or another representation) can be classified into three categories:  Point – the 
output value at a specific coordinate is dependent only on the input value at the same coordinate.  Local 
– the output value at a specific coordinate is dependent on the input values in the neighborhood of that 
same coordinate.  Global – the output value at a specific coordinate is dependent on all the values in the 
input image. 

Types of neighborhoods 
A pixel p at coordinates (x,y) has four horizontal and vertical neighbors whose coordinates are given 
by: 

(x+1, y), (x-1,y), (x,y+1), (x,y-1) 

This set of pixels, called the 4-neighbors of p , is denoted by N4(p).  Each pixel is a unit distance from 
(x,y), and some of the neighbors of p lie outside the digital image if (x,y) is on the border of the image. 

The four diagonal neighbors of p have coordinates 
(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1,y-1) 

These points, together with the 4-neighbors, are called the 8-neighbors of p, denoted by N8(p).  As 
before, some of the points in the neighborhood fall outside the image if (x,y) is on the border of the 
image.  An example of each is shown in Figure 2. 

4-connected 8-connected  

Figure 2:  4 and 8 connected neighborhoods 

Video Parameters 
We do not propose to describe the processing of dynamically changing images in this introduction.  It 
is appropriate, given that many static images are derived from video cameras and frame grabbers, to 
mention the standards that are associated with the three standard video schemes that are currently in 
worldwide use:  NTSC, PAL and SECAM.  The information is summarized in Table 1. 
 

Table 1. Various video schemes 

 NTSC PAL SECAM 
Images / second 29.97 25 25 



   
 
ms / image 33.37 40.0 40.0 
Lines / image 525 625 625 
Aspect ratio 4:3 4:3 4:3 
µs / line 63.56 64 64 
 

In an interlaced image the odd numbered lines (1,3,5,...) are scanned in half of the allotted time (20 ms 
in PAL) and the even numbered lines (2,4,6,...) are scanned in the remaining half.  The image display 
must be coordinated with the scanning format.  The reason for interlacing the scan lines of a video 
image is to reduce the perception of flicker in a displayed image.  If one is planning to use images that 
have been scanned from an interlaced video source, it is important to know if the two half-images have 
been appropriately “shuffled” by the digitization hardware or if this should be implemented in 
software.  Further, the analysis of moving objects requires special care with interlaced video to avoid 
“zigzag” edges. 

Tools 
Certain tools are central to the processing of digital images.  These include mathematical tools such as 
convolution, Fourier analysis, and statistical descriptions. 

Convolution 
The principal approach in defining a neighborhood about a point (x,y) is to use a square or rectangle 
subimage area, T, centered at (x,y).  The center of the subimage is moved from pixel to pixel starting at 
a known location, i.e. at the top left corner.  The operator T is applied at each location (x,y) to yield the 
output at that location.  The process utilized only the pixels in the area of the image spanned by the 
neighborhood.  Although other neighborhood shapes, such as approximations to a circle, sometimes are 
used, square and rectangle arrays are by far the most predominant because of their ease of 
implementation. 

Fourier Transforms 
The French mathematician Jean Baptiste Joseph Fourier found that any function that periodically 
repeats itself can be expressed as the sum of sines and/or cosines of different frequencies, each 
multiplied by a different coefficient (the Fourier series).  Even functions that are not periodic can be 
expressed as the integral of sines and/or cosines multiplied by a weighting function (the Fourier 
transform).  Both representations share the important characteristic that a function can be reconstructed 
(recovered) completely via an inverse process, with no loss of information.  They allow us to work in 
the “Fourier domain” and then return to the original domain of the function without losing any 
information.   

Given an image a and its Fourier transform A, then the forward transform goes from the spatial domain 
(either continuous or discrete) to the frequency domain which is always continuous. 

}{aFA =  

The inverse Fourier transform goes from the frequency domain back to the spatial domain. 
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Statistics 
In image processing it is quite common to use simple statistical descriptions of images and sub-images.  
These can include the mean, median, and standard deviation.  The average brightness of a region is 
defined as the sample mean of the pixel brightness within that region.  The standard deviation is an 
estimate of the underlying brightness probability distribution.  The mode of the distribution of pixels is 
the most frequent brightness value. 

Noise 
Images acquired through modern sensors may be contaminated by a variety of noise sources.  By noise 
we refer to stochastic variations as opposed to deterministic distortions such as shading or lack of 
focus.  We will assume the use of modern, charge-coupled device (CCD) cameras where photons 
produce electrons that are commonly referred to as photoelectrons.  Nevertheless, most of the 
observations we shall make about noise and its various sources hold equally well for other imaging 
modalities. 

Photon Noise 
When the physical signal that we observe is based upon light, then the quantum nature of light plays a 
significant role. A single photon at λ = 500 nm carries an energy of E = hν = hc/λ = 3.97 × 10–19 Joules. 
Modern CCD cameras are sensitive enough to be able to count individual photons.  The noise problem 
arises from the fundamentally statistical nature of photon production. We cannot assume that, in a 
given pixel for two consecutive but independent observation intervals of length T, the same number of 
photons will be counted. Photon production is governed by the laws of quantum physics which restrict 
us to talking about an average number of photons within a given observation window.  If the 
appropriate formula for the SNR (in dB) is: 

TSNR ρ10log10=  

where ρ is the rate or intensity parameter measured in photons per second.  It is critical to understand 
that even if there were no other noise sources in the imaging chain, the statistical fluctuations 
associated with photon counting over a finite time interval T would still lead to a finite signal-to-noise 
ratio (SNR). 

Thermal Noise 
An additional, stochastic source of electrons in a CCD well is thermal energy.  Electrons can be freed 
from the CCD material itself through thermal vibration and then, trapped in the CCD well, be 
indistinguishable from “true” photoelectrons. By cooling the CCD chip it is possible to reduce 
significantly the number of “thermal electrons” that give rise to thermal noise or dark current. As the 
integration time T increases, the number of thermal electrons increases. The probability distribution of 
thermal electrons is also a Poisson process where the rate parameter is an increasing function of 
temperature. There are alternative techniques (to cooling) for suppressing dark current and these 



   
 
usually involve estimating the average dark current for the given integration time and then subtracting 
this value from the CCD pixel values before the A/D converter. While this does reduce the dark current 
average, it does not reduce the dark current standard deviation and it also reduces the possible dynamic 
range of the signal. 

On-Chip Electronic Noise 
This noise originates in the process of reading the signal from the sensor, in this case through the field 
effect transistor (FET) of a CCD chip. 

KTC Noise 
Noise associated with the gate capacitor of an FET is termed KTC noise and can be 
non-negligible, The output RMS value of this noise voltage is given by: 

CkTKTC /=σ  
 
where C is the FET gate switch capacitance, k is Boltzmann's constant, and T is the absolute 
temperature of the CCD chip measured in K.  This value is a “one time” noise per pixel that occurs 
during signal readout, and thus independent of the integration time. Proper electronic design that makes 
use, for example, of correlated double sampling and dual-slope integration can almost completely 
eliminate KTC noise. 

Amplifier Noise 
The standard model for this type of noise is additive, Gaussian, and independent of the signal. In 
modern well-designed electronics, amplifier noise is generally negligible. The most common exception 
to this is in color cameras where more amplification is used in the blue color channel than in the green 
channel or red channel leading to more noise in the blue channel. 

Quantization Noise 
Quantization noise is inherent in the amplitude quantization process and occurs in the analog-to-digital 
converter (ADC).  Quantization noise can usually be ignored as the total SNR of a complete system is 
typically dominated by the smallest SNR. In CCD cameras this is photon noise. 
 

Cameras 
The cameras and recording media available for modern digital image processing applications are 
changing at a significant pace.  Nevertheless, the techniques that are used to characterize the CCD 
camera remain “universal” and the presentation that follows is given in the context of modern CCD 
technology for purposes of illustration. 

Linearity 
It is generally desirable that the relationship between the input physical signal (e.g. photons) and the 
output signal (e.g. voltage) be linear. In practice the relationship between input a and output c is 
frequently given by: 



   
 

offsetagainc +×= γ  
 
where γ is the gamma of the recording medium. For a truly linear recording system we must have γ = 1 
and offset = 0. Unfortunately, the offset is almost never zero and thus we must compensate for this if 
the intention is to extract intensity measurements. 

Sensitivity 
There are two ways to describe the sensitivity of a camera. First, we can determine the minimum 
number of detectable photoelectrons. This can be termed the absolute sensitivity. Second, we can 
describe the number of photoelectrons necessary to change from one digital brightness level to the next, 
that is, to change one analog-to-digital unit (ADU). This can be termed the relative sensitivity. 

SNR 
As described previously, in modern camera systems the noise is frequently limited by: 

l amplifier noise in the case of color cameras 
l thermal noise which, itself, is limited by the chip temperature K and the exposure time, T 

l photon noise which is limited by the photon production rate and the exposure time 

Thermal noise (Dark current) 
Using cooling techniques based upon Peltier cooling elements it is straightforward to achieve chip 
temperatures of 230 to 250 K. This leads to low thermal electron production rates. As a measure of the 
thermal noise, we can look at the number of seconds necessary to produce a sufficient number of 
thermal electrons to go from one brightness level to the next, an ADU, in the absence of 
photoelectrons. This last condition—the absence of photoelectrons—is the reason for the name dark 
current. 

Photon noise 
It should be possible to increase the SNR by increasing the integration time of the image and thus 
“capturing” more photons. The pixels in CCD cameras have, however, a finite well capacity. 

Shading 
Virtually all imaging systems produce shading. This means that if the physical input image a(x,y) = 
constant, then the digital version of the image will not be constant. The source of the shading might be 
outside the camera such as in the scene illumination, or the result of the camera itself where gain and 
offset might vary from pixel to pixel. 

Pixel Form 
It is important to know the geometry for a given camera/digitizer system. In Figure 3 we define 
possible parameters associated with a camera and digitizer and the effect they have upon the pixel. 
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Figure 3: Pixel geomtery 

 
The parameters X0 and Y0 are the spacing between the pixel centers, and represent the sampling 
distances.  The parameters Xa and Ya are the dimensions of that portion of the camera surface that is 
sensitive to light. 

Square pixels 
Square sampling implies that X0=Y0 or X0/Y0=1.  It is not uncommon, however, to find frame grabbers 
where X0/Y0=1.1 (4:3).  The risk associated with non-square pixels is that isotropic objects scanned 
with non-square pixels might appear isotropic on a camera-compatible monitor, but analysis of the 
objects (such as length-to-width ratio) will yield nonisotropic results. 
 
The ratio X0/Y0 can be determined for any specific camera/digitizer system by using a calibration test 
chart with known distances in the horizontal and vertical direction. These charts are straightforward to 
make with modern laser printers. The test chart can then be scanned and the sampling distances X0 and 
Y0 determined. 

Spectral Sensitivity 
Sensors, such as those found in cameras and film, are not equally sensitive to all wavelengths of light. 
The spectral sensitivity for the CCD sensor is given in . 



   
 

 
The high sensitivity of silicon in the infra-red means that, for applications where a CCD (or other 
silicon-based) camera is to be used as a source of images for digital image processing and analysis, 
consideration should be given to using an IR blocking filter. This filter blocks wavelengths above 750 
nm. Thus, it prevents “fogging” of the image from the longer wavelengths found in sunlight. 
Alternatively, a CCD-based camera can make an excellent sensor for the near infrared wavelength 
range of 750 nm to 1000 nm. 

Shutter Speeds (Integration Time) 
The length of time that an image is exposed (that photons are collected) may be varied in some 
cameras, or may vary on the basis of video formats. For reasons that have to do with the parameters of 
photography, this exposure time is usually termed shutter speed although integration time would be a 
more appropriate description. 
 

Algorithms 
In this section we will describe operations that are fundamental to digital image processing.  These 
operations can be divided into four categories:  operations based on the image histogram, on simple 
mathematics, on convolution, and on mathematical morphology.  Further, these operations can also be 
described in terms of their implementation as a point operation, a local operation, or a global operation. 

Histogram-Based Operations 
An important class of point operations is based upon the manipulation of an image histogram or region 
histogram. 

Contrast stretching 

Figure 4: Spectral Sensitivity 
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Frequently, an image is scanned in such a way that the resulting brightness values do not make full use 
of the available dynamic range.  This can be easily observed in the histogram of the brightness values 
shown in Figure 5.  By 
stretching the histogram over the 
available dynamic range we 
attempt to correct this situation.  
If the image is intended to go 
from brightness 0 to brightness 
2B-1 (where B is the number of 
bits quantifying the brightness) 
then one generally maps the 0% 
value (or minimum) to the value 
0 and the 100% value (or 
maximum) to the value 2B-1. 

Equalization 
When comparing two or more 
images on a specific basis, such 
as texture, it is common to first 
normalize their histograms to a 
“standard” histogram.  This can 
be especially useful when the 
images have been acquired 
under different circumstances.  
The most common histogram 
normalization technique is 
histogram equalization where 
one attempts to change the 
histogram through the use of a 
function b=f(a) into a histogram that is constant for all brightness values, see Figure 5.  This would 
correspond to a brightness distribution where all values are equally probable.  Unfortunately, for an 
arbitrary image, one can only approximate this result. 
 

Mathematics-Based Operations 
In this section binary arithmetic and ordinary arithmetic are distinguished.  In the binary case there are 
two brightness values “0” and “1”.  In the ordinary case we begin with 2B brightness values or levels 
but the processing of the image can easily generate more levels.  For this reason many software systems 
provide 16 or 32 bit representations for pixel brightness in order to avoid problems with arithmetic 
overflow. 

Binary operations 
Operations based on binary (Boolean) arithmetic are the basis for a powerful set of tools called 

Figure 5: Contrast stretching & Histogram equalization 



   
 
mathematical morphology.  The operations are point operations and thus admit a variety of efficient 
implementations including simple look-up tables.  The basic set of binary operations include NOT, OR, 
AND, and XOR (exclusive OR).  Each operation is applied on a pixel-by-pixel basis. 

Arithmetic-based operations 
The gray-value point operations that form the basis for image processing are based on ordinary 
mathematics and include those in Table 2. 

Table 2. Arithmetic-based image processing 

Operation Definition Preferred data type 
ADD c = a + b Integer 
SUB c = a - b Integer 
MUL c = a●b Integer or floating point 
DIV c = a / b Floating point 
LOG c = log(a) Floating point 
EXP c = exp(a) Floating point 
SQRT c = sqrt(a) Floating point 
TRIG. c = sin/cos/tan(a) Floating point 
INVERT c = (2B – 1 ) - a Integer 

Convolution-based Operations 
Convolution, the mathematical, local operation is central to modern image processing.  The basic idea 
is that a window of some finite size and shape is scanned across the image.  The output pixel value is 
the weighted sum of the input pixels within the window where the weights are the values of the filter 
assigned to every pixel of the window itself.  The window with its weights is called the convolution 
kernel.  The convolution is performed by sliding the kernel over the image, generally starting at the top 
left corner and moving the kernel through all the positions within the boundaries of the image.  Each 
kernel position corresponds to a single output pixel, the value is which is calculated by multiplying 
together the kernel value and the underlying image pixel value for each of the cells in the kernel, and 
then adding all these numbers together, as shown in Figure 6. 
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Figure 6: Convoluting an image 

Smoothing Operations 
These algorithms are applied in order to reduce noise and/or to prepare images for further processing 
such as segmentation.  We distinguish between linear and non-linear algorithms where the former are 
amenable to analysis in the Fourier domain and the latter are not.  We also distinguish between 
implementations based on a rectangular support for the filter and implementations based on a circular 
support for the filter. 

Linear Filters 
Several filtering algorithms will be presented together with the most useful supports. 

l Uniform filter – The output image is based on local averaging of the input filter where all the 
values with the filter support have the same weight.  See Figure 7 

l Gaussian filter – The use of the Gaussian kernel for smoothing has become extremely popular. 
This has to do with certain properties of the Gaussian distribution as well as several application 
areas such as edge finding and scale space analysis.  See   Figure 7 

l Other – The Fourier domain approach offers the opportunity to implement a variety of 
smoothing algorithms.  The smoothing filters will then be lowpass filters.  In general it is 
desirable to use a lowpass filter that has zero phase so as not to produce phase distortion when 
filtering the image. 

Non-Linear Filters 
A variety of smoothing filters have been developed that are not linear.  While they cannot, in general, 
be submitted to Fourier analysis, their properties and domains of application have been studied 
extensively. 

l Median filter – A median filter is based upon moving a window over an image (as in a 



   
 

convolution) and computing the output pixel as the median value of the brightness within the 
input window.  If the widow is (J, K) in size we can order the J●K pixels in brightness values 
from smallest to largest.  If J●K is odd, then the medial will be the (J●K+1)/2 entry in the list of 
ordered brightness.  Unlean a mean filter, the value selected will be exactly equal to one of the 
existing brightnesses (the output of integers will be an integer, and not a float that is generated 
by the mean).  See Figure 7 

l Kuwahara filter – Edges play an important role in our perception of images as well as the 
analysis of images.  As such it is important to be able to smooth images without disturbing the 
sharpness and, if possible, the position of edges.  A filter that accomplishes this goal is termed 
an edge-preserving filter and one particular example is the Kuwahara filter.  Although this filter 
can be implemented for a variety of different window shapes, the algorithm will be described 
for a square window of size J = K = 4L + 1 where L is an integer.  The window is partitioned 
into four regions.  In each of the four regions (i=1, 2, 3, 4), the mean brightness mi and the 
variancei, are measured.  The output value of the center pixel in the window is the mean value 
of that region that has the smallest variance. 

Original

15x15 31x31

Average

Gaussian

Median
 

Figure 7: Linear, Gaussian and Median filter using a 15x15 and 31x31 kernel 



   
 
Derivative-Based Operations 
Just as smoothing is a fundamental operation in image processing, so is the ability to take one or more 
spatial derivatives of the image.  The fundamental problem is that according to the mathematical 
definition of a derivative, this cannot be done.  A digitized image is not a continuous function a(x,y) of 
the spatial variables, but rather a discrete function a[m,n] of the integer spatial coordinates.  As a result 
the algorithms we will present can only be seen as approximations to be true spatial derivative of the 
original spatially-continuous image. 
Taking the derivative multiplies the signal spectrum.  This means that high frequency noise will be 
emphasized in the resulting image.  The general solution to this problem is to combine the derivative 
operation with one that suppresses high frequency noise, in short, smoothing in combination with the 
desired derivative operation. 

First Derivatives 
As an image is a function of two (or more) variables it is necessary to define the direction in which the 
derivative is taken.  For the two-dimensional case we have the horizontal direction, the vertical 
direction, or an arbitrary direction which can be considered as a combination of the two. 

l Gradient filters – It is possible to generate a vector derivative description as the gradient of an 
image. 

l Prewitt gradient filters – Both directions (horizontal and vertical) are separable.  Each filter 
takes the derivative in one direction and smooths in the orthogonal direction using a one-
dimensional version of a uniform filter.  See Figure 8 

l Sobel gradient filter – These filters are separable.  Each filter takes the derivative in one 
direction and smoothes in the orthogonal direction using a one-dimensional version of a 
triangular filter.  See Figure 8 

l Gaussian gradient filters – In modern digital image processing one of the most common 
techniques is to use a Gaussian filter to accomplish the required smoothing and one of the 
gradient filters. 
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Figure 8: First order derivative functions 

Second Derivatives 
It is possible to compute higher-order derivatives of functions of two variables.  In image processing 
the second derivatives or Laplacian play an important role. 

l Basic second derivative filter. 
l Frequency domain Laplacian.  See Figure 9 

l Gaussian second derivative filter – This is the straightforward extension of the Gaussian first 
derivative filter described above and can be applied independently in each dimension.  We first 
apply Gaussian smoothing.  Then the desired second derivative filter is applied.  See Figure 9 
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Figure 9: Second order derivative functions 

Other Filters 
A large number of filters, both linear and non-linear, are possible for image processing.  It is therefore 
impossible to describe more then the basic types in this section.  The description of other filters can be 
found in the reference literature as well as in the applications literature.  It is important to use a small 
consistent set of relevant test images to understand the effect of a given filter or class of filters.  The 
effect of filters on images can be frequently understood by the use of images that have pronounced 
regions of varying sizes to visualize the effect, or by the use of test patterns such as sinusoidal sweeps 
to visualize the effects in the frequency domain. 

Morphology-Based Operations 
We defined an image as an (amplitude) function of two, real (coordinate) variables a(x,y) or two, 
discrete variables a[m,n].  An alternative definition of an image can be based on the notion that an 
image consists of a set (or collection) of either continuous or discrete coordinates.  In a sense the set 
corresponds to the points or pixels that belong to the objects in the image.  For the moment we will 
consider the pixel values to be binary (0 or 1). 

Fundamental definitions 
The fundamental operations associated with an object are the standard set operations, union, 
intersection and complement plus translation. 



   
 
Dilation and Erosion 
Dilation, in general, causes objects to dilate or grow in size; erosion causes objects to shrink.  The 
amount and the way that they grow or shrink depend upon the choice of the structuring element.  The 
two most common structuring elements (given a Cartesian grid) are the 4-connected and 8-connected 
sets, N4 and N8.  They are illustrated in Figure 10. 
 

It is not necessary to process all the pixels in an object in order to compute a dilation or an erosion. We 
only have to process the boundary pixels.  A number of “fast” algorithms can be found in the literature 
that are based on this result.  The simplest dilation or erosion algorithms are frequently described as 
follows 

l Dilation – Take each binary object pixel (with value “1”) and set all background pixels (with 
value of “0”) that are C-connected (the two most common structuring elements are the 4-
connected and 8-connected sets)  to that object pixel to the value “1”. 

l Erosion – Take each binary object pixel (with the value “1”) that is C-connected to a 
background pixel and set the object pixel value to “0”. 

Opening and Closing 
We can combine dilation and erosion to build two important higher order operations.  The opening 
operation (erosion then dilation) can separate objects that are connected in a binary image.  The closing 
operation (dilation then erosion) can fill in small holes and gaps.  Both operations generate a certain 
amount of smoothing on an object’s contour.  See Figure 10 for some examples. 
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Figure 10: Examples of Morphological operations 

Skeleton 
Skeletonization is a process for reducing foreground regions in a binary image to a skeletal remnant 
that largely preserves the extent and connectivity of the original region while throwing away most of 
the original foreground pixels.  The informal definition of a skeleton is a line representation of an 
object that is: 

l one-pixel thick 

l through the “middle” of the object 
l preserves the topology of the object 

One technique is to implement a thinning, an erosion that reduces the thickness of an object without 
permitting it to vanish.  The alternative method is to first calculate the distance transform of the image.  
The skeleton then lies along the singularities in the distance transform.  Figure 11 shows the original 
object and the skeleton represention in red. 



   
 

 

Figure 11: Skeletonization 

Techniques 
The algorithms presented can be used to build techniques to solve specific image processing problems.  
Without presuming to present the solution to all processing problems, the following examples are of 
general interest and can be used as models for solving related problems. 

Basic Enhancement and Restoration Techniques 
The process of image acquisition frequently leads to inadvertent image degradation.  Due to 
mechanical problems, out-of-focus blur, motion, inappropriate illumination, and noise, the quality of 
the digitized image can be inferior to the original.  The goal of enhancement is – starting from a 
recorded image c[m,n] – to produce the most visually pleasing image â[m,n].  The goal of restoration 
is – starting from a recorded image c[m,n] – to produce the best possible estimate â[m,n] of the original 
image a[m,n].  The goal of enhancement is beauty; the goal of restoration is accuracy. 

Noise suppression 
The techniques available to suppress noise can be divided into those techniques that are based on 
temporal information and those that are based on spatial information.  By temporal information we 
mean that a sequence of images are available that contain exactly the same objects and that differ only 
in the sense of independent noise realizations.  If this is the case and if the noise is additive, then simple 
averaging of the sequence will produce a result where the mean value of each pixel will be unchanged. 
If temporal averaging is not possible, then spatial averaging can be used to decrease the noise.  This 
generally occurs, however, at the cost to image sharpness. 

Segmentation 
In the analysis of the objects in images it is essential to distinguish between the objects of interest and 
“the rest.”  This latter group is also referred to as the background.  The techniques that are used to find 
the objects of interest are usually referred to as segmentation techniques – segmenting the foreground 



   
 
from background.  In this section we will look at two of the most common techniques – thresholding 
and edge finding – and we will present techniques for improving the quality of the segmentation result.  
It is important to understand that: 

l there is no universally applicable segmentation technique that will work for all images, and 
l no segmentation technique is perfect. 

Thresholding 
This technique is based upon a simple concept.  A parameter Θ called brightness I is chosen and 
applied to the image a[m,n] as follows: 

 
 IF a[m,n] ≥  Θ  a[m,n] = object = 1 

 ELSE    a[m,n] = background = 0 
 

This version of the algorithm assumes that we are interested in light objects on a dark background. 
The output is the label “object” or “background” which can be represented as a Boolean variable “1” or 
“0”.  In principle, the test condition could be based upon some other property than simple brightness 
(for example, If (Redness{a[m,n]}≥ Θred), but the concept is clear. 

The central question in thresholding then becomes:  How do we choose the threshold Θ?  While there is 
no universal procedure for threshold selection that is guaranteed to work on all images, there are a 
variety of alternatives. 

l Fixed threshold – One alternative is to use a threshold that is chosen independently of the image 
data.  If it is known that one is dealing with very high-contrast images where the objects are 
very dark and the background is homogeneous and very light, then a constant threshold might 
be sufficiently accurate.  By accuracy, we mean that the number of falsely-classified pixels 
should be kept to a minimum. 

l Histogram-derived thresholds – In most cases the threshold is chosen from the brightness 
histogram of the region or image that we wish to segment.  A variety of techniques have been 
devised to automatically choose a threshold starting from the gray-value histogram. 

l Background-symmetry algorithm – This technique assumes a distinct and dominant peak for the 
background that is symmetric about its maximum. 

Thresholding does not have to be applied to entire images but can be used on a region by region basis.  
In each region, a threshold is calculated and the resulting threshold values are put together 
(interpolated) to form a thresholding surface for the entire image.  The regions should be of 
“reasonable” size so that there are a sufficient number of pixels in each region to make an estimate of 
the histogram and the threshold. 

Edge finding 
Thresholding produces a segmentation that yields all the pixels that, in principle, belong to the object or 
objects of interest in an image.  An alternative to this is to find those pixels that belong to the borders of 



   
 
the objects.  Techniques that are directed to this goal are termed edge finding techniques.  There is an 
intimate relationship between edges and regions. 

l Gradient-based procedure – The central challenge to edge finding techniques is to find 
procedures that produce closed contours around the objects of interest.  For objects of 
particularly high SNR, this can be achieved by calculating the gradient and then using a suitable 
threshold.  A variety of smoothing techniques can be used to reduce the noise effects before the 
gradient operator is applied. 

l Zero-crossing based procedure – A more modern view to handling the problem of edges in 
noise images is to use the zero crossing generated in the Laplacian of an image.  The rationale 
starts from the model of an ideal edge, a step function, that has been blurred.  The edge location 
is, according to the model, at that place in the image where the Laplacian changes sign, the zero 
crossing.  As the Laplacian operation involves a second derivative, this means a potential 
enhancement of noise in the image.  To pervent enhanced noise from dominating the search for 
zero crossings, a smoothing is necessary.  Gaussian smoothing is usually used, and produces the 
technique of the Laplacian of Gaussian or LoG. 

Binary mathematical morphology 
The various algorithms that we have described for mathematical morphology can be put together to 
form powerful techniques for the processing of binary images and gray level images.  As binary images 
frequently result from segmentation processes on gray level images, the morphological processing of 
the binary image result permits the improvement of the segmentation result. 

l Salt-or-pepper filtering – Segmentation procedures frequently result in isolated “1” pixels in a 
“0” neighborhood (salt) or isolated “0” pixels in a “1” neighborhood (pepper) 

l Filling holes in objects – To fill holes in objects we use the following procedure: 
1. Segment the image to produce binary representation of objects 

2. Compute the complement of a binary image as a mask image 
3. Generate a seed image as the border of the image 

4. Propagate the seed into the mask 
5. Complement result of propagation to produce the final result 

l Removing border-touching objects – Objects that are connected to the image border are not 
suitable for analysis.  To eliminate them we can use a series of morphological operations: 

1. Segment the image to produce binary mask images of objects 
2. Generate a seed image as the border of the image 

3. Propagate the seed into the mask 
4. Compute XOR of the propagation result and the mask image as the final result 

l Exo-skeleton – The exo-skeleton of a set of objects is the skeleton of the background that 
contains the objects.  The exo-skeleton produces a partition of the image into regions each of 
which contains one object.  The actual skeletonization is performed without the preservation of 
end pixels and with the border set to “0”.  The procedure is described below: 



   
 

1. Segment image to produce binary image. 

2. Compute complement of binary image 
3. compute skeleton with border set to “0” 

l Touching objects – Segmentation procedures frequently have difficulty separating slightly 
touching, yet distinct, objects.  The following procedure provides a mechanism to separate these 
objects and makes minimal use of “magic numbers.”  The exo-skeleton produces a partition of 
the image into regions each of which contains one object.  The actual skeletonization is 
performed without the preservation of end pixels and with the border set to “0”.  The procedure 
is described below: 

1. Segment image to produce binary image 
2. Compute a “small number” of erosions with a 4-connected neighborhood 

3. Compute exo-skeleton of eroded result 
4. Complement exo-skeleton result 

5. Compute AND of binary image and the complemented exo-skeleton 
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