
Team MIT-Olin

T��Ã MIT-O½®Ä

RobotX Journal Paper
Student Team Members:

Arthur Anderson, Thom Howe, Nicholas Rypkema, Erin Fischell, Arturo Parrales, Tom Miller,
Jonathan Garcia, Allan Sadun, Michael Defilippo, Victoria Coleman, Victoria Preston, Devynn

Diggins, Mindy Tieu, Shivali Chandra, Nikolay Lapin, Paul Titchener, Alex Kessler, Madeline Perry,
Jay Woo, Zoher Ghadyali, William Warner

Supervisor Team Members:
Michael Benjamin, David BarreƩ, Alon Yaari, Liam Paull

Abstract

TheMIT/Olin RobotX team is comprised of students from theMITDepartment ofMechan-
ical Engineering and Olin College. IniƟal mechanical development took place at Olin with later
mechanical and soŌware development at MIT. For the propulsion system, two fixed-posiƟon
Min Kota trolling motors are used. The sensor system consists of a single forward-look cam-
era and a Velodyne-32 lidar and a Hemisphere Vector 102 GPS. The soŌware system uses the
MOOS-IvP middleware-autonomy architecture along with OpenCV libraries for vision process-
ing.

1 IntroducƟon

Figure 1: Athena-Nike: The MIT/Olin vehicle.

In 2013, the Office of Naval Research an-
nounced a compeƟƟon, for 15 university teams
from 5 different countries to compete in an
Autonomous marine robot compeƟƟon called
RobotX in Singapore in October 2014. The goal
of the compeƟƟon is to complete 5 separate

tasks without any human control or interven-
Ɵon. To compete, MIT partnered with Olin to
create a compeƟƟve vehicle with advanced sen-
sors and autonomy soŌware architecture devel-
oped at Oxford and MIT called MOOS-IvP. The
vehicle's namewas named Athena-Nike, named
aŌer the Greek goddesses of wisdom and vic-
tory.

The vehicle is a 12 foot, double pontooned
hull with a dynamic suspension system that sup-
ports a plaƞorm for the vehicle's sensors and
electronic components above. The bareboat,
not including the electronics, propulsion and
power, was provided by the compeƟƟon so that
all RobotX compeƟƟon teams are starƟng from
the same baseline. This paper describes the
design process and approach used for develop-
ing the propulsion and power, electronics, and
sensing systems for Team MIT-Olin.

Team MIT-Olin 1



Team MIT-Olin

2 Technical Approach

Design decisions were driven by aminimalist ap-
proach to hardware and through leveraging ex-
isƟng soŌware. Hardware decisions were gov-
erned by reducing the number of waterproof
connectors, the number of individual compo-
nents, and power requirements. Sensor inter-
face, datamessage transport, and user interface
operate within MOOS, a freely-available roboƟc
middleware. Autonomy is achieved through IvP,
a public open source behavior-based autonomy
package [2].

2.1 CompuƟng, Mechanical Systems

Hardware and mounƟng decisions are based on
insƟtuƟonal experience of marine vehicle as-
sembly. MulƟple methods of achieving propul-
sion were modeled using soŌware tools and
a 1/10th scale model of the vehicle. Azimuth
thrusters, front-mount motors, and a quad-
motor design were invesƟgated. Trade studies
narrowed our selecƟon of thrusters, baƩeries,
and other on-board hardware components.

The physical relaƟonship and important
data connecƟons between major system com-
ponents is presented in Figure 2. With the
excepƟon of the acousƟc acquisiƟon systems,
all compuƟng and electronics systems are con-
tained within a single waterproof enclosure. Ex-
ternal sensors are cabled to the main enclosure
for processing. In addiƟon, a wifi radio connects
to a shoreside computer where a user interface
provides deployment control and monitoring of
autonomous navigaƟon progress.

2.1.1 CompuƟng and Support Systems

Three main computers (supplied by sponsor
American Technology Portwell, Inc.) operate
the vehicle control and autonomy system. Au-

tonomous decision-making, localizaƟon, state
machine, and vision processing run on the main
system computer. The second computer is ded-
icated to processing the Velodyne point cloud
and extracƟon of features from the cloud. The
third auxiliary computer is used exclusively for
acousƟc processing. The on-board enclosure
also houses power condiƟoning circuitry, an Eth-
ernet switch, and the Velodyne sensor’s con-
troller board.

2.1.2 Thrusters

The propulsion system consists of two RipƟde
Transom 80 Saltwater Transom Mount Trolling
Motors. These motors were selected for their
affordability and ease of use. Most impor-
tantly, their low weight precluded the need for
installing hull extensions. The motors are at-
tached to a mount system affixed to each of
the pontoons. The mount system conveniently
allows for retracƟng the motors during deploy-
ment and retrieval and allows the vehicle to rest
on a floor when on the dock. During water op-
eraƟon, the motor shaŌs are lowered such that
themotors are posiƟoned completely below the
pontoons. Themotor shaŌs are fixed anddonot
rotate in place, so control is managed via differ-
enƟal drive.

2.1.3 BaƩeries

The baƩeries selected are two Torqeedo Power
26-104 baƩeries. The Power 26-104 is a top of
the line lithium baƩery that is specifically de-
signed for marine applicaƟons. These baƩer-
ies are IP67 waterproof and have a built in au-
tomaƟc shutoff in case of flooding for added
safety and protecƟon. Besides built in safety
of the Torqeedo, the most important feature of
these baƩeries is that they have superior energy
density toweight over that of a comparable lead
acid marine baƩery. Each Power 26-104 has

Team MIT-Olin 2



Team MIT-Olin

2685Wh of energy and only weighs 55 lbs. They
provide sufficient power for the RipƟde motors
for a full day of tesƟng on the water.

CompuƟng power was designed with flex-
ible power inputs. Lithium or nickel-metal-
hydride baƩeries may be installed inside the
compuƟng case or a lead-acid baƩery can be
connected externally. The emergency-stop sys-
tem is also powered by a separate, dedicated
baƩery.

2.2 Networking Design

The system design is fairly simple, and can be
seen in the diagram presented in Figure 2. The
heart of the system is the main computer box,
which houses the majority of the electronics.
Themain computer box serves as a hub through
which all the important informaƟon travels This
computer box receives inputs from the the
three main sensing systems - the LIDAR, cam-
era, and GPS systems, and also connects to the
acousƟcs box, which houses its own computer
that talks to the hydrophones used for acousƟc
sensing. The main computer box also communi-
cates through awifi antenna to a shoreside com-
puter, which is used to control the vehicle, as
well as monitor it's autonomous state when op-
eraƟng autonomously.

The main computer ulƟmately outputs two
engine orders to each of the engines to direct
the vehicle, but before those orders given the
the engines, they need to pass through a safety
mechanism: the Emergency stop, or E-stop, box.
The E-stop box severs as an intermediary be-
tween themotors on computers. The E-stop box
overrides the computers when it receives any
other orders from the the Operator Control Unit
(OCU), or any of themanual emergency stop sys-
tems installed. More details of the emergency
stop system are described in SecƟon /refsec:e-
stop.

Figure 2: Overall System Design: The major hard-
ware components on and off the vehicle, and how
they connect with one another.

2.3 Emergency Stop System

The main objecƟve of the on-board emergency-
stop system is to stop the motors with fault con-
diƟons or when commanded to do so. Power
for motor thrust is regulated by a Roboteq mo-
tor controller. Thrusters and drive baƩeries are
connecteddirectly to the controller outputs con-
tacts and engaged in a differenƟal-thrust mode.
Roboteq controllers include sophisƟcated and
field-proven logic for cuƫng power to the mo-
tors. On-board e-stop buƩons and pull-cords
are wired directly to dedicated inputs on the
Roboteq.

An addiƟonal level of safety is achieved
with an Arduino micro-controller. Thrust com-
mands to the Robtoteq are commanded over
serial line only from the Arduino. The Arduino
receives commands from the on-board auton-
omy computers or preferenƟally from manual
control on the dockside OCU. Watchdogs in the
Roboteq and Arduino will stop the thrusters
when communicaƟons is lost in any link be-

Team MIT-Olin 3



Team MIT-Olin

tween the Roboteq, Arduino, or dockside OCU.
In addiƟon, the OCU contains an e-stop buƩon
that stops the thrusters when engaged.

Figure 3: E-Stop BuƩon: One of two E-stop buƩons
on the boat that cut power to the engines.

2.4 Sensing Systems

The key sensor components used to complete
the taste are shown in Fig. 4. The GPS is the
main navigaƟon sensor and provides us with re-
liable global posiƟon and orientaƟon of the ve-
hicle. Objects in the environment such as obsta-
cles and buoys are detected with the Velodyne
HDL-32E 3D laser scanner that produces a dense
point cloud at 2Hz. Consequently detecƟng ob-
jects on the surface fairly straighƞorward and
robust. The final sensor used is a standard RGB
camera mounted below the laser. The camera
is used for idenƟfying buoy color, the placard
shapes for the docking task, and the LED panel
sequence on the light buoy.

2.4.1 Object DetecƟon

The Velodyne HDL-32E lidar is the vehicle's pri-
mary sensor for buoy and obstacle detecƟon.
Object detecƟon from the 3D point clouds takes
place in the ddConsoleApp app (Sec. 2.5.5).

Figure 4: Sensor Tower: The sensor tower holds the
camera, Velodyne, and GPS sensors.

Point-cloud culling is the first stage of the
pipeline. In this stage, points are removed
based on three criteria: firstly, points that are
too close or too far from the lidar are removed
(typically points within 4-30m are kept) , in or-
der to mask out returns from the vehicle; sec-
ondly points that are outside an arcsweep are
removed (typically only the points within an arc
in front of the lidar are kept); and finally points
that are outside a specified intensity range are
removed, in order to remove low intensity re-
turns from the water surface, which typically oc-
cur due to the formaƟon of bubbles.

The second stage of the pipeline is cluster-
ing. In this stage, the points that remain af-
ter culling are down-sampled using a voxel grid
with a user-specified leaf size, so as to reduce
the clustering computaƟon Ɵme. These down-
sampled points are then grouped into clus-
ters using Euclidean clustering, whereby points
within a specified distance of each other are
grouped together. In this stage, clusters with
too few or too many points are removed. The
centroid of the remaining clusters are then com-
puted and stored for persistence checking.

Team MIT-Olin 4



Team MIT-Olin

Figure 5: Point Cloud Object DetecƟon: Top: Point
cloud from 3D laser with buoy idenƟfied. BoƩom:
Corresponding image from camera used for buoy
color detecƟon GPS sensors.

Once these clusters are obtained, the fi-
nal stage of the pipeline is persistence checking.
During this stage, the cluster centroids from the
ten most recent lidar sweeps are compared to
the latest sweep in order to determine whether
or not a cluster within the current sweep is a
staƟonary object. If the centroid of a cluster in
the current point-cloud sweephas a correspond-
ing cluster centroid (their centroids are within
a specified radius of one another) in each of
the previous ten sweeps, then it is flagged as
a true obstacle. This final stage is important
for removing noisy lidar returns which may be
grouped and incorrectly idenƟfied as an obsta-
cle. An example of a successful buoy detecƟon
is shown in Fig. 5. The point cloud is shown
on top where the the points that remain af-
ter culling are shown in red and the final per-
sistent feature is shown indicated. The corre-

sponding image from the camera is shown be-
low is subsequently sub-windowed around the
detected object for color detecƟon as described
in Sec. 2.4.2.

2.4.2 Vision

The system comprises three main vision pro-
cessing tasks: 1) idenƟfying buoy colors, 2) find-
ing the correct placard feature for docking and
3) correctly determine the sequence of colors
from the lighted buoy.

Buoy Color DetecƟon The buoy color detec-
Ɵon system is triggered upon the detecƟon
of a feature from the object detecƟon system
(Sec. 2.4.1). Upon recepƟon of a new image
detecƟon, a frame is requested from the cam-
era. The locaƟon of the detected image is con-
verted from global coordinates to image pixel
coordinates and then a sub-windowing opera-
Ɵon takes place to grab only small region of the
image around the detected feature. This was es-
senƟal in pracƟce to remove false color detec-
Ɵon parƟcularly for the white colored buoy.

Figure 6: Buoy Color DetecƟon: LeŌ: Raw im-
age from camera aŌer sub-windowing based on de-
tected locaƟon laser. Right: Output from "red":
color segmentaƟon filter showing a correct red color
detecƟon.

Team MIT-Olin 5



Team MIT-Olin

The sub-windowed image is then converted
to the Hue-SaturaƟon-Value (HSV) color space
and undergoes a set of thresholding operaƟons
to idenƟfy colors. The HSV colorspace is bene-
ficial for color detecƟon in images because it is
less sensiƟve to lighƟng condiƟons as themajor-
ity of the color informaƟon should be contained
within the hue channel.

Placard Feature IdenƟficaƟon The key design
of our placard detector is 1) robust to degrada-
Ɵon caused by moƟon, scale and perspecƟve
transformaƟon from different viewing posiƟons,
warp and occlusion caused by wind, and vari-
ants of color from light condiƟon, and 2) fast and
accurate enough to support real-Ɵme decision-
making. We tackle this problem by detecƟon
and decoding stages. Our pipeline aims at high
recall rate in detecƟon stage, and then rejects
false posiƟves by decoding.

Figure 7: Placard DetecƟon: The three placards
were made and hung from a railing. Here we show
correct detecƟon of all three placards even though
one of the (the circle) is parƟally obscured and an-
other (the cruciform) is significantly distorted.

The detecƟon is based on Maximally Sta-
ble Extremal Regions (MSER) [4], which is fast
and robust to blur, low contrast, and illumina-
Ɵon. In the decoding stage, we detect SIFT [3]
and FAST [5] keypoints in each candidate region,

which is then encoded using a juncƟon-style de-
scriptor. A rotaƟon-invariant histogram of junc-
Ɵons is used to compare each candidate region
with target placards. Fig. 7 demonstrates the
candidate regions (red rectangles), which are
rejected by decoding stage; the placards are
shown in green, yellow, and pink rectangles, re-
specƟvely. The computaƟon runs at 2 frames
per second for an imagery of 1280 X 720 pixels.

LED Light Sequence The LED sequence detec-
Ɵon from the lighted buoy requires a similar ca-
pability as the buoy color detecƟon except that
there is an added temporal component required
to detect the sequence. Color detecƟon is done
in the same way (with different thresholds for
the color segmentaƟon)with an example shown
in Fig. 8.

Figure 8: Light Buoy PaƩern DetecƟon: LeŌ: Origi-
nal RGB image. Middle: Image transformed to HSV
colorspace. Right: DetecƟon of green color resulƟng
from addiƟon of several subsequent images.

In order to detect the sequence, the detec-
tor follows a flow of operaƟons:

1. Wait unƟl first detecƟon is made
2. Wait unƟl no detecƟon is found for 2 sec-

onds
3. Record color of detecƟon

Team MIT-Olin 6



Team MIT-Olin

4. If color detected is different from previ-
ous frame add it to the sequence

5. If no detecƟon return to Step 2
6. If sequence is length 3, report and end

This system requires the lighted buoy to
be within the field of view of the camera for
at least 4 seconds. If no detecƟons are being
made the segmentaƟon thresholds are adapted
automaƟcally to bemore admissive. Similarly, if
the pause in the sequence is never being found
(caused by false detecƟons) then the thresholds
are adapƟvely made more restricƟve.

2.4.3 AcousƟcs

The acousƟc system, used for compleƟng Task
2, consists of 4 HTI-96-MIN hydrophones, an
amplificaƟon/filtering board, and a PC104 stack.
The PC104 stack contains a Eurotech CPU-1484
computer, a 24DSI12-PLL analog to digital con-
verter, and a HE-104 DX power supply. This sys-
tem takes in raw data from the hydrophones,
performs filtering/amplificaƟon on each chan-
nel, then does the signal processing and track-
ing required to localize a pinger.

The hydrophone elements are arranged in a
"T" shape, to give both bearing and elevaƟon in-
formaƟon on acƟve pingers. Each hydrophone
goes into one of the 5 channels in the custom
amplificaƟon and filtering board. Each board
channel contains a Sallen-key high-pass filter, 2x
amplifier, then low-pass filter.

The amplified and filtered signals from
the hydrophone elements are passed into the
24DSI12-PLL analog to digital converter. The
24DSI12-PLL is triggered in data acquisiƟon at
the start of each second, and exactly a second of
data is collected each second by a daemon run-
ning on the computer, 24dsi12_boardread. The
acousƟc data is recorded synchronously from

the four channels.
MOOS-IvP is used for the acousƟc signal

processing chain. Array processing is used to de-
termine the bearing and elevaƟon to a pinger
at a specified frequency, and a bearing-only
tracker is used to determine the pinger locaƟon
from a sequence of bearings.

2.5 Autonomy and SoŌware
The soŌware architecture used on the MIT
boat is based on the MOOS-IvP autonomy ar-
chitecture MOOS-IvP is an open source project
consisƟng of the MOOS middleware from the
University of Oxford and the IvP Helm auton-
omy architecture from MIT, www.moos-ivp.
org. TheMOOS-IvP distribuƟon is designed and
distributed with a nested or layered soŌware
concept - MOOS is a subset of MOOS-IvP con-
sisƟng of the MOOS middleware architecture
and core MOOS applicaƟon. MOOS-IvP consists
of many addiƟonal MOOS applicaƟons and the
Helm behavior-based architecture with several
core helm behaviors. TheMIT RobotX codebase
is a further layer of soŌware with MOOS-IvP as
a subset. AddiƟonal RobotX MOOS applicaƟons
and Helm behaviors were wriƩen to provide the
addiƟonal capabiliƟes needed by the WAM-V
vehicle and RobotX mission goals.

Figure 9: Nested SoŌware: The RobotX codebase
can be viewed as an addiƟonal layer on top of the
public MOOS-IvP codebase with addiƟonal MOOS
applicaƟons and Helm behaviors for theWAM-V and
RobotX mission.

Team MIT-Olin 7



Team MIT-Olin

Figure 10: SoŌware Architecture: The diagram above shows the general structure of the dataflow and
relaƟonship between the different processes.

The general idea behind the RobotX soŌ-
ware was for each task to be controlled as a sub-
set of a larger task. A MOOS applicaƟon called
uTaskManager serves as the overall structure.
This app sends and receives signals to enter and
exit each of the individual tasks. This app also
reports the status of the vehicle to the judges,
such as the heartbeat and task reports.

In addiƟon, An app was built for use in each
task, as well, labeled pTask1, pTask2, etc. These
apps take in inputs from a plug file, with in-
formaƟon such as course boundaries and gen-
eral course set-up, and perform any calculaƟons
necessary for their respecƟve tasks. The pro-
cesses keep track of informaƟon such as indi-
vidual task-specific object locaƟons, and update
them accordingly as new sensor informaƟon be-
comes available and is reported through pFea-
tureTracker (Sec. 2.4.1). These apps will also
feed this informaƟon into a number of standard
and custom MOOS-IvP behaviors which deter-
mine the next set of direcƟons the boatwill take.
These behaviors are mostly waypoint behaviors,

but it also includes obstacle avoidance behav-
iors, pose-keeping behaviors (see Sec. 2.5.2),
and behaviors for backing up.

The soŌware modules used on the
MIT/Olin RobotX vehicle are comprised of (a)
public MOOS applicaƟons from Oxford (b) pub-
lic MOOS applicaƟons from MIT with the IvP
Helm and behaviors, and (c) newly created or
non-public applicaƟons specific to RobotX.

The public MOOS applicaƟons from Oxford are:
MOOSDB, pLogger, pShare.

The public MOOS applicaƟons from MIT are:
pHelmIvP, pNodeReporter, pMarinePID, pE-
choVar, pHostInfo, uProcessWatch, uFldNode-
Broker.

The public IvP Helm behaviors from MIT are:
Waypoint, AvoidObstacles, StaƟonKeep, OpRe-
gion.

The non-public or RobotX new apps are:

• pDeadManPost
• pPoseKeep

Team MIT-Olin 8



Team MIT-Olin

• pObstacleMgr
• uTaskManager
• pGeoTracker
• pFeatureTracker
• pFeatureVision
• pTask1
• pTask2
• pTask3
• pTask4
• pTask5
• pMergeArrayData
• pManageAcousƟcVars
• pRobotXBF
• iVeloPy
• ddConsoleApp

The public MOOS applicaƟons and behav-
iors are well documented at http://oceanai.
mit.edu/ivpman and are not covered in detail
here. The non-public or RobotX new applica-
Ɵons are the focus of the next secƟons.

2.5.1 The pDeadManPost ApplicaƟon

The pDeadManPost app may be used to queue
one or more posƟngs to the MOOSDB that will
NOT be made so long as a named MOOS vari-
able conƟnues to be wriƩen to. It is a general-
izaƟon of a physical "dead man switch" which
must be conƟnuously pressed or held by a hu-
man operator, otherwise cuƫng the power to
an engine or other physical device.

On the RobotX vehicle, this applicaƟon ran
in the MOOS community with hearbeat mes-
sages sent conƟnually from the shore. On the
shore a simple script (the uTimerScript MOOS
app) posted heartbeat messages shared over
WiFi with the pShare app to the vehicle MOOS
community running pDeadManPost. This en-
sured that if the shoreside command and con-
trol computer went down, or if WiFi went down,
the pDeadManPost appon the vehiclewould im-

mediately post commands to either all-stop or
staƟon-keep in place.

2.5.2 The pPoseKeep ApplicaƟon

The pPoseKeep applicaƟon is used on theWAM-
V vehicle to directly talk to the leŌ and right
thrusters to maintain a desired direcƟon. The
basic idea is shown below.

Figure 11: PoseKeeping: A vehicle with differ-
enƟal thrust applies opposing thrust of equiva-
lent magnitude to turn a vehicle in place unƟl it
achieves a desired hold_heading, with a given
hold_tolerance.

The applicaƟon was designed to be invoked
at any Ɵme during the mission, effecƟvely over-
riding temporarily the Helm when it is acƟve.
It's sole purpose is to rotate the vehicle to a
given goal direcƟon for a period of Ɵme. This
is used in the mission to (a) posiƟon the vehicle
to look at the light buoy, (b) posiƟon the vehicle
to look at secƟons of the course where docking
placards may be prior to docking, and (c) to per-
haps rotate the vehicle prior to backing out of
the docking staƟon.

The applicaƟon is configured accept goal
direcƟons either through a direct MOOS mes-
sage such as HOLD_HEADING=45, or indirectly by
specifying a point in local coordinates, such as
HOLD_POINT=10,-90. In the laƩer case, the vehi-
cle's own local coordinates are used to derived
the goal direcƟon from the specified point. The
applicaƟon may be configured to run (a) indefi-

Team MIT-Olin 9



Team MIT-Olin

nitely unƟl deacƟvated by another MOOS mes-
sage, (b) for a fixed duraƟon aŌer which it may
be automaƟcally deacƟvated, or (c) unƟl the
present vehicle direcƟon is within a threshold
tolerance of the goal direcƟon, aŌer which it
may be automaƟcally deacƟvated.

2.5.3 The pObstacleMgr ApplicaƟon

ThepObstacleMgr app accepts TRACKED_FEATURE
reports from the pFeatureTracker app and in
turn generates OBSTACLE_ALERT messages to
the helm that spawn an avoid obstacle behavior
for each obstacle.

The tracked features are grouped by pFeature-
Tracker and are posted as a point in the x-y space
with a cluster ID. The obstacle manager simply
keeps track of the clusters and maintains a con-
vex hull for each cluster.

Figure 12: Obstacle Manager Flow of InformaƟon:
The obstacle manager receives detecƟons from the
feature tracker, and alerts the helm to spawn a ob-
stacle avoidance behavior for each new obstacle.

The obstacle manager uses the convex hull
to generate an alert, containing the polygon, re-
ceived by the helm. The helm is configured with
an obstacle avoidance behavior template that
will spawn a new behavior with each new alert
with a unique ID.

Figure 13: Conversion of Cluster to Convex Hull: As
newpoints (tracked features) arrive, they cluster and
convex hull are updated.

2.5.4 The Helm Obstacle Avoidance Behavior

An obstacle avoidance behavior is spawned by
an alert from the obstaclemanager described in
SecƟon 2.5.3. The alert contains a convex poly-
gon and unique ID. Subsequent updates from
the obstacle manager may change the shape
of the polygon represenƟng the obstacle. For
each obstacle, a dedicated behavior is launched.
The behavior is configured in the helm as a tem-
plate to allow unlimited spawning. The behav-
ior template names a buffer distance to be ap-
plied around the original obstacle polygon as
shown in Figure 14.

Figure 14: Obstacle Avoidance: The vehicle pro-
ceeds around known obstacle polygons with a given
safety zone.

The actual vehicle trajectory is a result of
the helm's mulƟ-objecƟve opƟmizaƟon engine

Team MIT-Olin 10



Team MIT-Olin

running [1], conƟnuously balancing the objec-
Ɵve funcƟons from obstacle avoidance against
the objecƟve funcƟon for transiƟng through the
obstacle field, finding a buoy, or other primary
tasks.

2.5.5 The ddConsoleApp Python ApplicaƟon

The program 'ddConsoleApp' provides the func-
Ɵonality to interface with the HDL-32E lidar,
as well as to process and visualize the HDL-
32E's point cloud data and is not a MOOS ap-
plicaƟon. 'ddConsoleApp' leverages soŌware
from the MIT DARPA RoboƟcs Challenge Team,
and is essenƟally a C++ based program with
bindings to Python; it provides direct access
to the point-cloud generated by the HDL-32E,
which can then be manipulated within a Python
script passed as an argument to the program,
and which can also be visualized using a VTK-
based viewer. Processing of the point-cloud
is achieved using VTK filters, which include a
wrapped subset of PCL algorithms; in addiƟon,
since manipulaƟon of the point-cloud is per-
formed within a Python script, Numpy/Scipy
funcƟons are available for use. In the con-
text of the MIT/Olin RobotX vehicle, 'ddCon-
soleApp' operates on a single Python script
that defines the point-cloud processing pipeline
that performs buoy detecƟon. This processing
pipeline is fairly simple, and consists of three
main stages: the point-cloud is first culled to
isolate points within a region of interest; the
isolated points are then grouped into clusters;
and finally clusters are filtered so that only those
which do not move over a given number of lidar
sweeps are kept. its posiƟon is stored in an LCM
message and relayed to the iVeloPy MOOSApp
for use by the vehicle in buoy detecƟon and ob-
stacle avoidance. More details of the object de-
tecƟon pipeline were given in Sec. 2.4.1.

In addiƟon to buoy detecƟon, the Python

script also performs a secondary funcƟon for
placard detecƟon. When a placard is detected
by the camera, the azimuth and elevaƟon from
the lidar to the placard are relayed to the Python
script via LCM. The azimuth and elevaƟon are
used to obtain points within a spherical pyramid
defined by those angles, which are then aver-
aged so as to esƟmate the locaƟon of the plac-
ard.

2.5.6 The iVeloPy ApplicaƟon

The iVeloPy moos applicaƟon is essenƟally a
MOOSwrapper applicaƟon designed tomarshal
data between ddConsoleApp and the MOOSDB.
When an object detecƟon is received from dd-
ConsoleApp a new feature is instanƟated and
published to theMOOSDB containing aƩributes
such as the locaƟon of the object in global co-
ordinates and its size (e.g. FEATURE="x=20.3,
y=14.2, size=10").

During the placard detecƟon task, the
iVeloPy app also receives PLACARD_RAY detec-
Ɵons from pFeatureVision and sends a re-
quests ddConsoleApp for the range associ-
ated with this ray. The result is published
(e.g. PLACARD_FEATURE="x=10.2, y=7.5,
placard=triangle) which triggers the system
to begin parking if it corresponds to the correct
placard.

2.5.7 The pFeatureVision ApplicaƟon

pFeatureVision is the MOOS applicaƟon respon-
sible for interfacing with the camera using an
OpenCV VideoCapture. It is also responsible for
distribuƟng the grabbed frames to the various
image processing tasks which are triggered in
different ways:

• Buoy Color DetecƟon: Each Ɵme fea-
ture detecƟon is received (from iVeloPy)

Team MIT-Olin 11



Team MIT-Olin

the current frame and feature informa-
Ɵon are passed to the buoy color detec-
Ɵon algorithm to try and idenƟfy a color
to the feature. Following this the fea-
ture is republished with color included
(e.g. COLOR_FEATURE="x=20.3, y=14.2,
size=10, color=red").

• Placard detecƟon: Once the placard de-
tecƟon begins, each frame is passed to
the placard feature detecƟon. If a de-
tecƟon is made, the pixel locaƟon of the
center of the placard is used to gener-
ate a PLACARD_RAY that indicates the an-
gle from the camera to the placard. This
is required since we only have 1 camera
and we do not know the size of the plac-
ard beforehand, therefore we cannot re-
solve the distance to the placard, only the
bearing. The range is subsequently deter-
minedby querying the laser sensor for the
corresponding ray.

• Light buoy detecƟon: Once the light buoy
task is reached, all frames are passed
to the light buoy detector (see Sec 2.4.2
for details) unƟl a sequence is deter-
mined, at which Ɵme it is published as a
LIGHT_BUOY_SEQUENCE variable.

2.5.8 The pFeatureTracker ApplicaƟon

The main task of the pFeatureTracker applica-
Ɵon is to associate the colored features re-
ceived from the output of the vision system.
To accomplish this, a list of acƟve features
is maintained. Each Ɵme a new feature de-
tecƟon is received, the locaƟon is checked
against all acƟve features. If it is sufficiently
close (in terms of Euclidean distance) to any
of the features in the list, then a new fea-
ture is not instanƟated. The list is periodi-
cally published as set of tracked features (e.g.

TRACKED_FEATURE="x=20.3, y=14.2, label=a,
size=10, color=red") which is ulƟmately what
is used for buoy gate traversal and obstacle de-
tecƟons.

2.6 Failure and Recovery

In late August during on-water tesƟng, team
MIT-Olin suffered a catastrophic failure in one of
the WAM-V's joints while the vehicle was float-
ing in the water dockside. The recovery effort
took approximately 45minutes, all thewhile the
electronics on board were submerged underwa-
ter. Some components did work and could be
salvaged, but others, including all the comput-
ers, did not make it.

Figure 15: Boat Failure: In late August, on one of the
iniƟal water tests, the boat suffered a catastrophic
failure, and many of electronics were ruined.

Fortunately, the team was able to make
a full recovery. The failed boat part (see
Fig. 16) was quickly replaced by the WAM-V
manufacturer, the damaged hardware compo-
nents including were replaced with extra fund-
ing from MIT's mechanical engineering depart-
ment. While this set back the tesƟng schedule
several weeks, the team was sƟll able to design

Team MIT-Olin 12



Team MIT-Olin

and create a fully capable, compeƟƟon-ready
robot.

Figure 16: Failed WAM-V part: The piece that failed
that caused the boat to flip upside-down.

3 CollaboraƟon
• Olin - Clearly delineated task where Olin

concentrated on hardware design for
vehicle components and ancillary parts
(light buoy, etc.). MIT concentrated on
system integraƟon and soŌware.

• Portwell - provided embedded compuƟng
soluƟons. Learned pracƟcal experience of
selecƟng and working with highly specific
technical pieces.

• Sea Grant - Provided equipment, access
to Sea Grant engineers, and support for
MIT research staff mentoring.

4 Conclusion
MIT and Olin have worked hard to create a ca-
pable, well-designed marine robot. There has

been much innovaƟve design throughout the
process, including 3D point cloud analysis to
find objects on the water, advanced vision pro-
cessing techniques applied to placard and light
buoy detecƟon, innovaƟve thinking in auton-
omy, and new methods developed for maneu-
vering, such as turning in place and backing up
to a goal point. With these innovaƟons and
a sound strategy, Team MIT-Olin will make a
strong showing in Singapore at the RobotX 2014
compeƟƟon.

References

[1] Michael R. Benjamin, Henrik Schmidt,
Paul M. Newman, and JohnJ Ȇ. Leonard.
Unmanned Marine Vehicle Autonomy
with MOOS-IvP, chapter 2, pages 1--100.
Springer, 2012.

[2] Mike Benjamin, Henrik Schmidt, and John J.
Leonard. http://www.moos-ivp.org.

[3] David G Lowe. DisƟncƟve image features
from scale-invariant keypoints. Interna-
Ɵonal journal of computer vision, 60(2):91-
-110, 2004.

[4] L. Neumann and J. Matas. Real-Ɵme scene
text localizaƟon and recogniƟon. 2012.

[5] Edward Rosten and Tom Drummond. Ma-
chine learning for high-speed corner detec-
Ɵon. In Computer Vision--ECCV 2006, pages
430--443. Springer, 2006.

Team MIT-Olin 13


