Development of a navigation system with high function and high
reusability for Maritime RobotX Challenge 2018.

Shuhei Horiguchi ,Osaka Univ, Team Leader , Software Development

Ryodo Tanaka , Univ. of Tsukuba, Sub Team Leader, Software Development

Kazuki Yamada, Toyama College of Technology, Software Development

Ryo Nakabayashi, Univ of Tokyo, Software Development

Masaya Kataoka, Tier IV. Inc., Software Development

Hiroyuki Harada, Osaka Univ, Hardware Development

Ojiro Matsumoto, Osaka Univ, Hardware Development

Manami Maekawa, Osaka Pref Univ, Hardware Development

Kana Miyazawa, Osaka Pref Univ, Hardware Development

Suisei Wada, Yanmar Co. Ltd, Electrical Circit Development

Taisei Nishishita, Osaka Univ, Electrical Circit Development

Natsuki Akazawa, Toyama College of Technology, Project Management

Tamaki Kumauchi, Osaka Univ, Project Management

2018/11/11

Abstract - OUXT Polaris has been develop-

ing of an autonomous navigation system through
participating in Maritime RobotX Challenge 2014
and 2016.
In this document, we describe the advantages and
disadvantages of the previous system and intro-
duce the new system for 2018 designed based on
further review.

1 Evaluation of the previous navigation systems

In 2014 we achieved fifth place in the competition. In
this system, the Intel NUC and laptop computers were
used as calculators. For sensors, we used the SC-30 lent
by our sponsor’s Furuno Electric and Hokuyo Automatic
YVT-35LX. The network equipment malfunctioned due
to thermal runaway during usage, and development of
more easy-to-troubleshoot system seemed to be necessary.

In 2016, we redesigned the computer system, which
improved the computer performance and software devel-
opment efficiency by using a desktop computer. How-
ever, the power consumption was extreme, and advanced

knowledge and experience was required for the power sup-
ply design. So, we added more equipment, inverters, and
increased the weight of the hull. Also, since there was
only one computer, we had to procure replacement parts
at the site in case of failures. There were still other prob-
lems. Lidar used for obstacle detection revealed serious
lack of the amount of point cloud data that can be de-
tected and its accuracy. And, we discovered that the hull
could be swept by very strong waves at Hawaii.

Considering these reviews, this year we have been work-
ing on the autonomous navigation system with high com-
ponent reusability, while keeping high calculation perfor-
mance and advanced controllability.

2 Development policy of a navigation system for
Maritime RobotX Challenge 2018

The hardware for Maritime RobotX Challenge 2018 was
reformed under the broad policy below.

e Construction of distributed control system using cal-

culators of the same type.

e Elimination of inverters by the unification of the
power system.

e Sophisticated recognition of surroundings using ad-
ditional sensors.

e Improvement of stability with low center of gravity
by additional floats.

e Reconsideration of sensors arrangement and type.

e Realization of the lateral movement by sophisticated
driving mechanism.

In addition, we reformed the software based on the
following policy.

e System development by the gazebo cooperation and
the simulator.

e Open-source system development with ROS which
takes reusability into account.

e Increased calculation speed by the sensor fusion and
adoption of deep learning.

3 Development of electrical hardware
3.1 Construction of distributed control system
by calculators of the same type

Jetson TX2 was adopted as a hull based on review of the
last competition. Although this built-in computer is the
size of a business card, it is possible to run Tiny yolo with
nvidia tegra GPU at about 10 FPS.

Since power consumption is also extremely small, it
contributed greatly to power saving and the lighter weight
of the hull. By harmonizing all hull calculators with Jet-
son TX 2, it became possible to exchange immediately
when a breakdown occurred, and we made effective use
of valuable working time. With the adoption of the dis-
tributed control system, we decided to further utilize the
ROS that we are using from the last competition.

3.2 Elimination of inverters by the unification of
the electrical system

Computers and sensors adopted for control of the hull are
unified with those of 12V and 5V, with only the voltage
of the driving system at 24V. Therefore, there are three
power systems in the hull. Figure.1 shows the connection
diagram of the circuits, and there are three power systems
that mentioned above.

Figure 1: The connection diagram

5V / Voltage Info(MAX 24V)
to Monitoring Box

OUT 24 to Thruster

OUT 12V to Azimuth

Figure 2: The circuit connection

We separated electronic components into three seg-
ments for power supplying, computing, and motor driv-
ing. We developed five main boxes which are connected
by cables. All boxes are waterproof, and they can be sep-
arated. This makes it easy to build up on the vessel, and
they can also be easily removed to fix failed components.
Next we will introduce some significant features of some
boxes. These boxes have three main functions: voltage
converting, switching for safety, and distributing. The
circuits for the motor and the others are completely sep-
arated for noise reduction. This time, the control panel
includes switches and indicators that are separated from
Power Management Box, so we can put switches mostly
anywhere on the vessel. Also, the other devices like sen-
sors are not supplied power from this box directly, but via
a distributor. This design helps to reduce the number of
waterproof connectors on this box and makes the wiring
simpler. Figure.2 shows the circuit connection.

GNSS:Localization
IMU :Control,Localization

Al Pilot: Wide Area Mapping
VLP-16:Small Area Mapping
Dynamixel: Control

Figure 3: Sensor assembly

3.3 Sophisticated recognition of surroundings

using additional sensors

We realize that we could not get enough information due
to lack of sensors to recognize the surroundings.

Therefore, we extended the number of sensors largely
for this competition that shown on Figure.3. Aipilot has a
built-in LIDAR and a camera module which are necessary
for running the autoware and the nvidia Drive PX2. Au-
toware is an all-in-one automatic operation module devel-
oped by TierIV.inc. We modified the specification of the
AT Pilot and have been operating it as a module equipped
with a Jetson TX2 which processes data of camera and
VLP-16. We borrowed the AI Pilot from our sponsor Tier
IV.inc. The VLP-16 installed in AIPilot is mainly used
for detecting obstacles that are distant and to the stern.
Another VLP-16 attached to the front of the hull is used
for obstacle detection near the hull and ahead.

The IMU, Inertial Measurement Unit, is a sensor with
gyro sensors, acceleration sensors and angular velocity
sensors used for localization and speed control.

We borrowed the SC - 30 satellite compass from our
sponsor Furuno Electric. Data of hull speed and local-
ization output from the SC-30, and data output from the
IMU are subjected to sensor fusion by a particle filter and
self-position estimation is performed.

In order to deal with a task of fixed point keeping, we
use servo motors for robot, ROBOTIS Dynamixel, so that
we can change the angle of the thruster.

This improvement made the control system complex,
but we could make hull move to just beside.

Figure 4: Hardware assembly

4 Development of the hardware mechanism

4.1 Improvement of stability by additional floats

We mount floats which make additional buoyant on the
back of the full (No.1 part in Figure.4) to decrease the
possibility of the full downfall. The structure materials
of aluminum support the buoyant which occurs when the
Styrofoam sinks in the sea. We also use GFRP(Glass
Fiber-Reinforced-Plastics) not to damage the Styrofoam
when it contacts the obstacles.

It makes sailing steady because it produce big buoyant
though in spite of its lightness. In addition, we put the
mounter of battery on the full body and improve the sail-
ing stability than last competition because the center of
gravity was too high.

4.2 Review of the sensors arrangement and type

The upper part of the hull is used for detecting the lo-
cation information of the objects around it. In order to
secure an adequate visual field, we arranged the sensor at
height. We placed a stand to arrange Ai pilot upon the
MD/Sensor Box and the Jetson Box (No.2 part in Fig-
ure.4) so that the hull won’t be detected by the lider. In
addition, we selected the dual lidar structure, which has
another lider in front of the hull. As a result, we can get
information about view of both wide field and detailed
forword.

4.3 Stabilized navigation by lowering the center
of gravity

At the last competition, our machine had a big problem
with stability due to the high center of gravity caused
by arranging batteries on the deck. To deal with the
problem, we expanded the space for batteries and Power
Management Box (No.3 part in Figure.4) and made center

of gravity lower. This improvement helped our machine
to run stably.

4.4 Realization of lateral movement by sophisti-
cated driving mechanism

In order to increase the flexibility of movement of the
hull, two propulsion mechanisms with a degree of free-
dom control in the yaw axis were mounted (No.4 part
in Figure.4). An outboard electric motor (LACOMETA)
with 86 pounds of thrust turns into the direction of the
yaw axis using servo motors(XM540-W270, Dynamixel)
and timing belt pulleys. With these additions, the hull
can also move sideways to the hull.

5 Improvements to the Software System

The intent of OUXT Polaris from the beginning was to
upload the source code of the system onto GitHub and
then participate in the RobotX competition. The primary
objective of open-sourcing the source code online was to
reduce the barriers of such an undertaking for people who
have interest in the Maritime RobotX Challenge and in
the autonomous robotics community in general. This sys-
tem was designed and implemented using the Robot Op-
erating System (ROS), serving as a framework for robot
software development.

5.1 System Development simulations through
cooperation with gazebo

There are multiple simulators that can link with the ROS,
but in our case, the link with the ROS was crucial, leading
to the usage of gazebo. Originally, we developed a hull
simulator named “ros_ship_packages” ', but with the ad-
vent of the official simulation called VMRC, we extracted
some functions from the package and moved to the cur-
rent “robotx_packages”?. Inside of “robotx_packages”, we
built a simulator based on the VMRC source code. Fig-
ure.5 shows the demonstration of navigation. And videos
were uploaded to the YouTube channel?.

Ihttps://github.com/0UXT-Polaris/ros_ship_packages

?https://github.com/0UXT-Polaris/robotx_packages

3https://wuw.youtube.com/watch?v=i68BralNP7Zo&t=
3s

Figure 5: Navigation demonstration

System architecture

Joint
Angle
velocity_control

GPS

velocity

command
‘Waypoint

IMU velocil (y
Path Planning

pnse

Map
Pointcloud omeu Map

\mage recognitiop
Obstacle Recognition d Mapping
-’

Figure 6: System architecture

5.2 Open Source Development with awareness to

ROS reusability

The ROS has a feature that allows easy utilization of
the software assets. It can easily divide the system using
interprocess communication with TCP / IP communica-
tion, or use a different programming language (C ++,
Python, Lisp, Rust, etc.) to exchange data with each
other, When interprocess communication is performed,
data is exchanged based on the message type. This mes-
sage type can be expanded by its own definition, enabling
extremely flexible operation. Furthermore, the robot sim-
ulators compatibility with gazebo is simple and easy ,
making it possible to speed up the development. Since
all the packages developed this time are released as open
source software, we believe that other teams can utilize
OUXT Polaris’s software assets and contribute to the so-
phistication of the competition. allowing easier reuse of
the system.

This system is designed as a collection of modules as
shown on Figure.6 Each of these modules cooperate to
allow complicated autonomous navigation.

sensor_msgs/image

—)

robotx_msgs/Objects

Object Bbox Object
Extracter -
jsk_recognition_msgs/
BondingBoxArray

Euclidean

: Mapping
Clustering

Module

S -

sensor_msgs/PointCloud2

Figure 7: Obstacle recognition architecture.

5.3 Faster computational speeds concerning the
adoption of deep learning and sensor fusion

In this system, deep learning is used for object recogni-
tion from images. Deep learning has been applied to a
wide range of fields such as image recognition, transla-
tion, robot control and the likes. It has made remarkable
results in recent years, especially in the field of image
recognition. Through various competitions, it has been
shown that the results from deep learning are far bet-
ter than the recognition methods based on designs by
conventional humans. Furthermore, in the past, it was
mainly a method of recognizing objects appearing in im-
ages such as ImageNet, but recently, starting with Fast
RCN;, including Faster RCNN, Yolo by SSD and Joseph,
and Faster-RCNN by Shaoqing. These new methods of
object recognition utilizing deep learning are also appear-
ing.

However, when designing an environmental object
recognition system to be installed in this autonomous nav-
igation system, it is necessary to measure the type of the
object and the relative position of the hull. Since the
computer to be used is a built in computer, calculation
reduction of is required for quick recognition and posi-
tioning. Therefore, in the proposed environmental object
recognition system, recognition of environmental objects
is performed by combining 3D Point cloud processing and
image processing by deep learning. The layout of the ob-
ject recognition system is shown on Figure. 7

Euclidean clustering is performed on the data acquired
from the 3D LiDAR. For the 3D LiDAR sensor, two VLP-
16 * made by the Velodyne Lidar company were used.
As part of the pre-processing of the Euclidean clustering,
integration of point clouds acquired from the two VLP-
16s are taken and the removal of point clouds obtained
from the reflection on the ship are performed. The point
cloud before pretreatment is shown in the Figure. 8, and
the point cloud after pretreatment is shown in the Figure.

4https://velodynelidar.com/v1lp-16.html

Figure 8: point cloud before pretreatment

Figure 9: Point cloud after pretreatment

9.

The blue dot group in the Figure.8 is a point cloud
obtained from a VLP-16 attached to the upper part of the
hull, and the orange color group is a point cloud obtained
from a VLP-16 attached near the surface of the water.

After eliminating the point cloud of the ship, Euclidean
clustering is performed to detect surrounding objects.
Euclidean clustering is an algorithm that classifies a point
cloud into multiple clusters based on Euclidean distance.
The Euclidean clustering algorithm of this system is based
on PCL’s Euclidean Cluster Extraction®.

The result of Euclidean clustering is shown in the Fig-
ure. 10.

Furthermore, this object region extraction result is pro-
jected on the image plane of the camera to perform ob-
ject recognition through deep learning. The image data
obtained from the camera and the result of Euclidean
clustering are combined to extract the object region from
the camera image. First, the result of Euclidean cluster-
ing is transformed into the coordinate system as viewed
from the camera. For the coordinate transformation, we

Shttp://pointclouds.org/documentation/tutorials/
cluster_extraction.php

FEEECEFLEEEE N EEELEH

Figure 10: Euclidean Clustering result

.
/ ‘\\
~,
.
EL ~F2 B'
A e
-

I B
i
@] :

Figure 11: Pin hole model

used a coordinate transformation library frequently used
in ROS called tf 6. By using tf, it is possible to easily
manage the coordinate system in the distributed control
system. Concerning specific usage, implementation, ete.”,
this material explains in detail. Thereafter, the pinhole
model is applied to the camera, and the position of a cer-
tain point in three dimensional space and the position of
the point on the image are associated by the following
algorithm. The pinhole model is a model of the simplest
camera, as shown in the Figure. 11.

In the Figure.11, f is the focal length, a is the distance
from the viewpoint to the lens, and b is the distance be-
tween the lens and the object. Apply the following al-
gorithm to project the coordinates P (unit: meters) you
want to project onto the point P; = [pa;, py:] (unit: pix-
els) on the image plane.

1. Parameter f;, (viewing angle in the height direction),
fw (viewing angle in the lateral width direction) are
defined, each unit is rad

2. Define the coordinates P = [ps,py,p-] to be pro-
jected on the image plane

3. Define the coordinates Py = [ps0, Pyo, P-0] where the
camera exists

Shttp://wiki.ros.org/en/tf
"https://wuw.slideshare.net/kojiterada5/tftf2

Figure 12: Result of the projection

4. Calculate a vector vo = [Uz0, Uy, , Vz0] extended from
Py toward the center of the image plane

5. Calculate the vector v = [vg, vy, v:] when looking at
the coordinates P from the coordinates Py

6. pitch = atan2(v; — v;0, Vs — V20)
7. yaw = atan2(vy — Vyo,Vz — Vz0)

8. Define the number of pixels in the image height di-
rection as h and the number of pixels in the horizon-
tal width direction as w

9. pzi = wW/2 —yaw * fu, xw
10. py; = h/2 — pitch * fn x h

At this time, the point P to be projected is selected
from six rectangular planes making up the bounding box
(rectangular parallelepiped) of the Euclidean clustering
result, closest to the camera with respect to the normal
distance as a reference, and the coordinates of the four
end points constituting the plane. Based on the four
points projected on the image plane thus obtained, an
object region on the image is calculated as shown in the
Figure.12.

Object recognition is executed for each object region
obtained in this manner. Convolutional Neural Network
(CNN) was used for this task. Figure.13 shows the pro-
cedure.

Neural nets with this structure can be represented by
Keras in the following notation.

1. model = Sequential()

2. model.add(Conv2D(32, kernelsize=(3, 3),
activation="relu’, inputshape=inputshape))

3. model.add(Conv2D(64, (3, 3), activation="relu’))
4. model.add(MaxPooling2D(poolsize=(2, 2)))
5. model.add(Dropout(0.25))

conv2d_I: ConvID
conv2d_2: Conv2D
max_pooling2d_I: MaxPooling2D

dropout_1: Dropout

flatien_1: Flatien

dense_|: Dense

Diropout

dropout_2

Figure 13: Procedure of the CNN

. model.add(Flatten())
. model.add(Dense(128, activation="relu’))
. model.add(Dropout(0.5))

6
7
8
9. model.add(Dense(4, activaton="softmax’))

In addition, this system, using the tensorrt library for
inference, can infer about 30 regions of interest per second
using the NVidia Jetson TX 2. In the training step of deep
learning, a recognition rate of 90% or more was achieved
from a sample size as few as 200 sheets by turning over the
image, blurring, etc. to increase the number of samples

through variation.

6 Comclusion

Based on the results of the 2016 competition, OUXT Po-
laris rebuilt the system and developed an improved sys-
tem for the Maritime RobotX Challenge 2018. We suc-
ceeded in constructing a highly reusable system by design-
ing systems with high independence as parts, in addition
to high computing capacity and environmental recogni-
tion capability. We also focused on a lower center of
gravity and increased navigational stability. On the soft-
ware side, deep learning was utilized for high accuracy in
object recognition, developed as open source. We hope
these significant upgrades will produce positive results in
the competition.

