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Abstract—This paper provides an overview of the hardware 

and software systems developed for Bruce, the Queensland 
University of Technology’s Autonomous Surface Vehicle (ASV) 
for entry in the 2016 Maritime RobotX Challenge. Bruce is a 
system-of-systems comprising the ASV, a self-contained 
underwater robot, and an automated vison-enabled ball 
launcher. An upgraded sensor suite and new mission software 
architecture to deal with information discovery and task 
sequencing built on the Robotic Operating System (ROS) has 
been developed to allow completion of all challenge tasks. To 
facilitate software development and offline testing, a high-
fidelity simulation model was developed and integrated with the 
software architecture. The ASV’s control, mapping, and task-
specific algorithms have been evaluated both in simulation and 
through field experiments. Results demonstrating capabilities 
as well as discussions on lessons learnt are also presented.  

I. INTRODUCTION 
The Queensland University of Technology (QUT) 

presents our Autonomous Surface Vehicle (ASV) solution, 
named Bruce, shown in Fig 1 for competing in the 2016 
Maritime RobotX Challenge. The objective of the 2016 
Challenge compared to previous Challenge’s has been to 
increase the level of autonomy on-board the ASV such that 
it must now react to new information gained as it executes 
that Challenge’s tasks [1]. Whilst this increases the overall 
complexity of completing the tasks, it has provided a unique 
opportunity to explore ideas for solving this problem. 

The Maritime RobotX Challenge requires each team use a 
standardized base platform, the WAM-V developed by 
Marine Advanced Research Inc. The teams can then 
configure the platform as they please by adding sensors, 
computing, power and propulsion within the Challenge 
guidelines [1].  In 2016, the competition also introduced 
tasks that encourage a “system-of-systems” approach to 
extend the functionality of the ASV. This approach was 
taken by TeamQUT with the development of two systems for 
the “Underwater Shape Identification” and “Detect and 
Deliver” tasks which were integrated into the higher level 
task execution software. 

The remainder of the paper is structured as follows: 
Section II provides an overview of the design stragety behind 
the ASV with Section III outlining the key vehicle hardware 
and software components. Section IV presents the novel 
Autonomous Marine Vehicle Simulator, Section V 
overviews the mission execution strategy. Section VI shows 
some experimental results, with Section VII providing 
concluding remarks.  

II. DESIGN STRATEGY 
The student team’s overall development strategy was built 

from experience gained at the 2014 Singapore Maritime 
RobotX Challenge and the task requirements of the 2016 
Challenge. The team reflected on the design (both hardware 
and software) and made recommendations on what worked 
and what did not. These included improving the robustness 
of target detection and classification through adding 
confidence metrics. It was identified also that there was need 
for a high-fidelity simulator to allow off-line development 
which should also tie into the common software framework 
(ROS). In terms of hardware there was a need for rapid 
assembly and deployment during field trips and the wireless 
communication system needed upgrading to increase range. 

Based on these reflections and task requirements, the bulk 
of the effort was particularly focused on 5 key areas: (1) 
simplifying and upgrading the hardware systems to improve 
in-field operations and overall system reliability, (2) the 
generation of a powerful vessel and course simulator to allow 
off-line algorithm development and performance evaluation, 
(3) extending the capability and functionality of Bruce by 
developing two additional automated systems for the 
“Underwater Shape Identification” and “Detect and Deliver” 
tasks, (4) establishing confidence metrics within each 
detection and classification software element to increase 
robustness, and (5) creating a mission execution approach to 
deal with course element prioritization and discovery of new 
information over time. 

 
 

 
 

Fig 1. Burce – The Queensland University of Technology’s Autonomous 
Surface Vehicle for the 2016 Maritime RobotX Challenge. 
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III. VEHICLE DESIGN 
An overview of the Bruce ASV sensors, computing, and 

propulsion systems, as well as the software architecture is 
described in the following sections. Additionally, two 
independent systems that are attached to Bruce (autonomous 
racquetball launcher and underwater survey robot) are 
discussed. 

A. Hardware Overview 
Whilst a bulk of the technical effort went towards the 

software, simulation and autonomy solutions (Sections III, 
IV and V), Bruce underwent a complete hardware overhaul 
to improve robustness and operationalization when in the 
field. Figure 2 shows the primary hardware upgrades which 
include a sliding-tray frame for two electronics bays, and a 
removable sensor frame. 
 

 

 
Fig 2. Top: The payload tray showing the sensor frame with Velodyne 
LiDAR, cameras, GPS and radar attached. Also visible is Gusto, the 
automated racquetball launcher and the Vaisala weather station. Lower: The 
sliding tray mechanism to allow shore-side access to the computing boxes. 

 
The sliding trays were inspired by years of field work and 

the difficulties of assembly, mounting and accessing 
hardware to the top of the payload tray. On Bruce, all the 
electronics boxes are mounted on sliding trays which lock in 
place. The advantages of this approach are: 
• trays to allow beach access without climbing over the 

vessel 
• protection of the computers and batteries from rain and 

sun 
• frees up the top for other tasks (e.g. platform for 

launching an UAV or supporting other science payloads). 

The removable sensor frame provides a greater mounting 
height for the perception and navigation sensors described in 
the following sections.  

 
1) Sensors 

The perception sensors provide most of the fundamental 
information for executing the Challenge tasks. They also 
provide the situational awareness for navigation and obstacle 
avoidance. 

On the sensor frame, a Velodyne HDL-32E LiDAR and a 
Dephi electronically scanning automotive radar provide the 
fundamental range information. These sensors are positioned 
high to give the greatest situational awareness of the course. 
Many competition tasks require computer vision to interpret 
parts of the environment (e.g. symbols, buoy colors). 
Therefore, the sensor frame also has two Logitech HD 720p 
USB web cameras to allow real-time on-board processing. 

To measure the underwater acoustic environment, Bruce 
has two Reson TC4032 hydrophones connected to a Roland 
Quad-Capture USB Audio Interface Device capable of 
sampling at 192 kHz. 

The primary navigation sensor for Bruce is a Novatel 
FLEX6 GPS providing position updates at 20Hz. The GPS is 
capable of providing heading angle so a low-end magnetic 
flux compass was selected for providing a redundant 
compass/heading angle (9DOF Razor Inertial Measurement 
System). In addition to heading angle, this sensor provides 
roll, pitch and angular rates which are all used for navigation 
and mapping.  

A Vaisala WTX-520 weather station on the ASV to 
provide real-time wind-speed and direction data (at 1 Hz) to 
the on-board control system. 

Bruce has a range of current and voltage sensors for 
monitoring the motors and batteries which provides real-time 
feedback to the main software safety system. Monitoring 
these variables is critical for battery management and 
detecting any system fault. 
2) Propulsion & Power Systems 

In 2016, Bruce was upgraded to two 80lb 24V electric 
trolling motors to provide extra thrust and overall speed. In 
addition to the primary trolling motors which provide 
differential thrust for forward motion and turning, two Blue 
Robotics T200 thrusters were incorporated onto the tractable 
hydrophone brackets towards the front of the boat. These 
thrusters act like bow-thrusters to assist with turning 
particularly in high-wind conditions. 

Bruce has two on-board batteries. The larger (Torqeedo 
26-104) is used exclusively for powering the propulsion 
system. The smaller 12V 50Ahr LiPFe battery is used for 
powering the computers and sensors. This battery is 
connected to a 100W solar panel attached to the top of the 
payload tray for topping up the battery when under low-load 
conditions. 
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B. Gusto: Automated Racquetball Launcher 
The “Detect and Deliver” task entails the delivery of four 

payloads to within a target area, as well as detection of the 
target itself. The strategy taken by TeamQUT for this task is 
to propel each of the four balls individually via a novel 
visual-servoing pan-tilt electric robotic ball launcher, 
codenamed ‘Gusto’. 

Figure 3 shows the automated ball launcher prior to 
attachment to the ASV. Delivery of the payload, a regulation 
racquetball, is achieved by pushing the ball through two 
horizontally opposed counter-rotating wheels separated by a 
gap fractionally narrower than the width of the ball. An 
automated ball feed mechanism transfers a single ball from 
the ball feed cartridge into between the wheels at a rate up to 
one ball per second. As the ball is squeezed between the 
wheels, they are propelled forwards by the rotational velocity 
of the wheels and friction between the contacting bodies (ball 
and wheels). The design is inspired by commercially 
available devices seen in sports such as tennis, cricket and 
baseball. It was also preferred over pneumatic/gas or pre-
tensioned launch systems as being electrically driven, it can 
be completely isolated by an emergency stop mechanism 
without any stored energy. The manufacture exploited rapid 
prototyping techniques such as laser cutting and 3D printing. 

 

 
Fig 3. Gusto – the automated racquetball launcher for the “Detect and 
Deliver” task. (Top) Front view showing camera and electroics box, (Lower) 
rear view showing the automated ball feeder. 
  

The main launcher device is mounted on a two degree of 
freedom actuated pan-tilt mechanism which enables the 
payload’s launch direction to be controlled within the range 
of 0 to 35 degrees vertically, and 180 degrees horizontally. 
Mounted on the upper deck of the WAM-V surface vessel, 

this provides sufficient trajectory/angle to direct the 
projectile within the specified target range while the boat is 
docked perpendicularly against the target buoy.  

The launcher is self-contained with its own electrics and 
camera systems. It communicates to the ASV via serial when 
required for targeting. Visual servoing using the launcher’s 
own camera is used for tracking the target and directing the 
launcher accordingly. The target detection system is based 
on the symbol detection software described in Section V. 

C. George: Autonomous Underwater Imaging Robot 
The underwater tasks require collecting and processing 

images for symbol detection and wall tracking. In the 
preliminary rules, the ASV was not allowed within a 
prespecified zone of the underwater objects. This 
requirement inspired our strategy of using an Autonomous 
Underwater Vehicle (AUV), codenamed ‘George’, to 
remotely (whilst tethered to the ASV) roam away and search 
an area. This exclusion requirement was later dropped by the 
Challenge organizers, however, we continued to pursue this 
approach due to initial feedback from the RobotX organizers 
that the water visibility may not be sufficient to see the 
bottom. Our approach provides a means to autonomously 
control its height above the seafloor which may be 
advantageous in low-visibility conditions. 

Figure 4 shows George during testing in a pool. It is a self-
contained AUV with all on-board power, motor controls and 
computing for image-processing and control. It is propelled 
by 4 x T100 Blue Robotics motors. Our custom AUV boasts 
3 degrees of freedom allowing our vehicle to move just 
below the surface of the water to a target location, and dive 
down to an appropriate depth for image capture. A host of 
sensors keep track of position (GPS when at the surface) and 
orientation (IMU), as well as depth below the surface of the 
water (Blue Robotics pressure sensor), and height above the 
sea floor (underwater altimeter). 

 
Fig 4. George – the autonomous underwater robot to provide imagery and 
symbol detection for the “Underwater Survey” task. 
 

An Arduino MEGA accepts incoming data from each of 
the sensors, parsing the information into NMEA strings, 
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which are then sent via USB to the on-board CPU running a 
Linux system. The AUV communicates with the surface 
vehicle via a waterproof tether and employs a simple winch 
system with high strength fishing line for deployment and 
recovery. 

Our AUV performs on-board image processing using an 
Odroid XU4. Images acquired from a Microsoft Lifecam 
Cinema USB camera are passed through a custom algorithm 
that improves image clarity (dehaze) and color corrects [2,3] 
prior to feature detection. Shape priors are then used to 
predict the presence of target shapes for the 'Underwater 
Survey' task, and combined with color thresholding for the 
“Find the Break” task. Example results are shown in Section 
VI. 

D. Software Architecture 
The software architecture developed for Bruce is shown in 

Fig 5. It is an event driven, cross-platform structure built on 
the Robotic Operating System (ROS) [4]. Other popular 
frameworks for marine vessels exist, such as MOOS [5], 
however, cost-benefit-risk analysis led to ROS being chosen 
as it provided seamless integration and extension of the 
individual software modules representing sensing, 
localization, planning, and control. It also facilitates more 
rapid software development within the project team 
capabilities as it caters to the programming languages 
preferred by the individual team members (C++, Python, 
Java, and MatlabTM).  

 The software platform executes actions in parallel and 
asynchronously.  The individual sensor modules provide data 
asynchronously to the state estimator and image, laser and 
acoustic classifiers. The State Estimator maintains the pose 
of the ASV for localization and control. The State Estimator, 
laser, and vision classifiers (for buoys) all feed the Map 
Manager which maintains an up-to-date, globally referenced 
map of real and virtual obstacles as the ASV traverses the 
courses. The Path Planner produces viable (efficient and 
obstacle free) trajectories for the ASV based on the obstacle 
map and the desired waypoints provided by the Mission/Task 
Controller (see Section V). 

The execution of the missions is performed by the 
Mission/Task Controller block. This block maintains a series 
of state machines for achieving high-level task objectives 
and overall system function. The decision support structure 
within the state machines is parameterized allowing the 
controller to retry, abort or skip specific tasks, or components 
therein. The Mission Controller also determines the required 
motor control inputs sent to the Motor Controller for driving 
both the primary and auxiliary propulsion systems. 

To facilitate load management on the primary CPU (Intel 
Core i7-4790K, 4.00GHz), particularly for computationally 
expensive computer vision tasks, the Mission Controller can 
put each classifier block into an “idle” state until required. 
Finally, the Mission Controller communicates with the 
Messaging System block which provides the task-specific 
messaging interface to the remote Judges’ display. 

 

 
Fig 5. Overview of the Bruce ASV software architecture. 

 
The Sensor & Power Systems Health Monitor provides a 

system wide assessment of the operational state of the ASV 
including monitoring motor and battery currents and 
voltages, and individual sensor performance with the ability 
to restart modules when necessary. 
 

E. Mapping and Path Planning 
1) Obstacle Map  

The obstacle map is based on a 2D occupancy grid [6]. 
The area being mapped is discretized into fixed size cells 
with values reflecting the probability of occupancy given the 
Velodyne LiDAR data. Other approaches were considered 
such as octrees [cite: Armin Hornung OctoMap: an efficient 
probabilistic 3Dmapping framework based on octrees], an 
efficient 3D mapping algorithm, but was considered overkill 
for a 2D marine environment. Another approach, which was 
used in the previous RobotX competition, implements a 
hashmap to store each occupied cell of a 2D map only saving 
occupied cells in memory [7]. This approach has the 
advantage of being very memory efficient and scalable, but 
is less efficient in accessing cell values. Prior knowledge of 
the course size and abundant computer memory in the boat 
made a 2D occupancy grid the most viable option. 

The link between sensor data and the map is managed by 
ROS coordinate frame transforms. Right handed coordinate 
frames are positioned on the main elements of the system 
such as the origin of the map, the base of the boat, and the 
center of the Velodyne. The GPS position of the boat 
(Easting (Xb), Northing (Yb), Heading (Hb)) provides a 
transform between a world coordinate frame and the boat 
coordinate frame. The map is positioned in the world with a 
transform between the world coordinate frame and the map 
coordinate frame using pre-determined Easting, Northing 
and Heading values (Xm,Ym,Hm). Finally the Velodyne 
coordinate frame is positioned with respect to the boat 
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coordinate frame using known hardware dimensions and 
Inertial Measurement Unit (IMU) rotation values to account 
for roll and pitch. 

The occupancy probability of each map cell within a 
maximum range threshold is updated after every new 
Velodyne scan (10Hz). This maximum range threshold is set 
to only include the most reliable part of the Velodyne’s scan 
data. The map cell values outside of this maximum range 
threshold are untouched and act as memory of the course 
obstacles. A minimum height threshold was set just lower 
than the smallest obstacle to limit the impact of spurious 
LiDAR returns from the water. Due to the movement of the 
boat, this height threshold could not eliminate completely 
spurious returns from the water, only limit them. 

Multiple approaches to update map cell values from sensor 
data were tested during multiple field trials. The main 
difficulty in this process is eliminating spurious data points 
from the water in the LiDAR scans. 

The first model was resetting the map cell values at each 
new Velodyne scan and increased cell values for each 
Velodyne point hitting them. This approach appeared to be 
too sensitive to spurious data from the water therefore 
complicating the path planning process. 

The second model incorporated the fact that a spurious 
return from the water is rarely present in two consecutive 
LiDAR scans. This model compared two consecutive 
LiDAR scans and only considered the map cells that received 
points in both scans to be occupied. This method was robust 
to spurious returns from the water, however, only publishing 
a map every two LiDAR scans halves the update rate of the 
map to 5Hz which may be problematic when the boat is 
moving at 2.5ms-1 because it cannot map the area fast 
enough. 

The third and best performing model is an improved 
version of the first one. Instead of resetting the map cell 
values at each iteration, the values are decreased by a step 
value “dec_step”. For each cell hit by a LiDAR point, its 
respective value is increased by a step value ”inc_step” that 
is greater than “dec_step” increasing the probability of 
occupancy of that cell over time as LiDAR points hit it. A 
minimum probability threshold is then used to classify a cell 
as occupied or free. 

Once a cell is classified as occupied, a safety radius is 
applied around this cell increasing all the cell values around 
a detected obstacle. This safety radius is then used to 
compute a path that safely avoids any obstacle. Within this 
safety radius, the cells closer to the occupied cell have a 
greater value that the cells on the edge of the radius to 
mitigate risk of collision if the boat has to pass in between 
tight obstacles. 

This obstacle map is then used to plan a path between the 
boat and a goal position while avoiding and detecting 
obstacle types to execute the different competition tasks. 

   
2) Path planner 

The path planning algorithm uses tree search in which 

each of the map cells is a node. The algorithm implemented 
is a version of the well-known A-star algorithm [8]. This 
algorithm is optimal (will return the best path) and complete 
(guaranteed to find a path if it exists) while maintaining a 
very high performance. This is an improvement from last 
competition where the search algorithm implemented was 
Breadth First Search [9] which provides a dramatically 
poorer performance. Other algorithms were  considered, 
notably D-star [10] which has the same search properties as 
A-star and is faster to execute but is more computationally 
expensive. As the boat dynamics are relatively slow, a new 
path is only needed every 5 to 10 seconds. With A-star being 
able to produce a path across the entire course in less than 5 
seconds, it was chosen to conserve computational power. 

The two main features to define for the A-star algorithm 
are the cost function, and the links between the tree nodes 
(map cells). A-star uses a cost function to guide its search 
while exploring the map cells, the definition of this cost 
function is crucial and defines the behavior of the search.  

This cost function is defined as 𝐹𝐹(𝑛𝑛) = 𝐺𝐺(𝑛𝑛) + 𝐻𝐻(𝑛𝑛) 
where 𝑛𝑛 is the last node on the path, 𝐺𝐺(𝑛𝑛) is the cost of the 
path from the start to node n, and 𝐻𝐻(𝑛𝑛) is a heuristic function 
that estimates the cost of the cheapest path to the goal. [Hart 
et al 1968] The algorithm explores the cells with the lowest 
F value first which influences the search speed and the path 
behavior. 

The cost of the path function G is the sum of each map cell 
value from the start node to the current node, thus going 
through free cells will give a lower G value than going 
through occupied cells. 

On Bruce, the heuristic function H is defined by the 
Euclidean distance from the current node n to the goal; 
consequently, the further from the goal a node is, the higher 
its heuristic value. A boat speed factor is also added to reflect 
that at higher speed the goal is reached faster. 

The links between the different cells indicate which cells 
of the map are available from the current cell. These links 
play a very important role in reflecting the boat dynamics to 
produce a realistic path for the boat to follow (e.g. a boat 
cannot do a sharp turn at high speed). Therefore, a dynamic 
model of the boat was built and improved over time using 
different GPS trajectory data from field trials. This model 
accounts for the current boat speed and proposes different 
turning behaviors. It also incorporates a model of the boat 
acceleration and deceleration capabilities. 

This path planning implementation allows Bruce to safely 
navigate on the course and through challenging obstacle 
fields. 

  
3) Obstacle Identification 

To proceed to each competition task, it is important to 
regularly extract information from the elements around the 
boat using its different sensors. This information is organized 
in the form of a list of obstacles of different types (e.g. 
cylinder buoy, circular buoy, dock, light tower) and their 
position on the map. A list of obstacles is produced by each 
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perception sensor and then matched and fused in one global 
obstacle list wherein each obstacle is associated with a level 
of confidence. 

The obstacle list from the LiDAR is computed by denoting 
a cluster of occupied cells of the obstacle map as a single 
obstacle with a centroid position on the map (x,y), a width 
(w), and a height (h). The obstacle list from the camera is 
created through buoy visual detection, returning a position of 
the buoy (x,y) and its color (c). The obstacle list from the 
radar is based on the position centroids in the map (x,y) 
directly given in the radar raw data. 
 

IV. AUTONOMOUS MARINE SURFACE VESSEL SIMULATOR 
To assist in the development of the QUT ASV and 

maximize development time and reduce in-field software 
debugging, a novel, high-fidelity simulation to test all the 
autonomous subsystems of the vessel was developed. 
Experience from the 2014 RobotX Challenge highlighted 
that although testing systems in local dams provided an 
invaluable method of verifying the effectiveness of the 
autonomous systems a number of issues remained, including: 
• restrictions on where autonomous marine vessels can 

operate, limiting testing locations to sites that often 
required long and time consuming journeys 

• a lack of course elements meant that only small sections 
of the competition course could be constructed at a given 
time, making complete mission planning impossible 

• multiple people are required for field testing along with 
strict health and safety regulations limiting access, 
resulting in scheduling conflicts. 

 
The key functions required for a simulator to be an 

effective model of the QUT ASV included a high-fidelity 
camera, LiDAR (Velodyne HDL-32E), IMU and GPS sensor 
simulation, as well as buoyancy and physics simulation to 
integrate the motors. A search for an existing simulator to 
efficiently and accurately meet the requirements included 
investigation of a number of simulators including UWSim 
[11], Gazebo, and V-Rep [12]; unfortunately, all lacked 
support in various key components required for the project. 

The Autonomous Marine Surface Vessel Simulator was 
created to fill this missing functionality gap in existing 
simulators. In particular, the software is designed to simulate 
key sensors including camera, LiDAR, IMU and GPS by 
implementing the influence of a marine environment on the 
readings. The focus of this simulator was to realistically and 
efficiently implement a simulation environment that models, 
with high fidelity, LiDAR point clouds, buoyancy of surface 
marine vessels, and the effect that water has on image 
reflection and refraction. In order to realistically model the 
effects of reflection and refraction for image simulation, 
custom rendering techniques and graphics shaders were 
implemented using the programmable pipeline of OpenGL 
3.0. To efficiently simulate LiDAR, a method known as 

depth buffer sampling was implemented allowing for hard- 
ware acceleration through OpenGL whilst also allowing 
custom shaders to simulate absorption of LiDAR beams 
below the surface of the water. To implement a buoyancy 
model, the JBullet physics library was extended to add 
functionality that applied buoyancy forces to the vessel. The 
fidelity and performance of the simulator was benchmarked 
against the existing best available alternative simulator, V-
Rep, to show that the Autonomous Marine Surface Vessel 
Simulator has better performance and fidelity when 
simulating marine environments. 

This simulator has been used to provide a method of 
testing the autonomous subsystems on an entire simulated 
course from the convenience of the QUT labs, or the comfort 
of the home. Figure 6 shows example images of the ASV 
during simulating the docking and obstacle fields. 

 

 
 
Fig 6. Screen images from the Autonomous Marine Surface Vessel 
Simulator whilst the ASV is exectuting a docking task (top), and attempting 
the obstacle field (lower). 

V. AUTONOMOUS MISSION EXECUTION 
Missions are performed by the combination of a set of 

behaviors (control primitives) and task specific 
detetctors/identifiers. In the 2014 Challenge, the required 
tasks were specified in order and all required information 
(e.g. symbol representing docking bay, bounding box of each 
task location) was specified. However, in the 2016 
Challenge, despite being more task elements on the course, 
only partial information is given by the organizors with 
potential links between each task to obtain the necessary 
information to complete the other tasks. This reduces the 
ability to “guess” the task sequence or elements to detect 
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within each task meaning that the ASV must discover new 
information during task execution. The following sections 
provide an overview of the Mission Controller developed for 
the 2016 Challenge. 

A. Behavior-based Architecture of Bruce 
Behavior based robotics is a robot control paradigm which 

is represented by internal states [13]. Each state is 
independent from other states while information can be 
passed between the states. Each state can contain sub-states 
and the outcome of a single state decides which state is 
triggered next. States can be encapsulated in sub-states and 
thereby allowing a hierarchical implementation of complex 
behaviors. Whilst a number of common articectures exist 
within ROS (e.g. FlexBE [14] and SMACH [15]), for the 
RobotX Challenge we partially modellied our architecture on 
FlexBE in which each state has an event loop which allows 
to modify the execution of each state dynamically. Each state 
has several hooks which are called depending on the event. 
These events are: start, enter, stop, exit, pause, resume. This 
is mandatory for the RobotX Challenge because we may 
wish take over control of Bruce any time, including the 
option of starting, stopping or cancelling the current task. 

The current behaviours (control primitives) on Bruce 
include: (1) waypoint, (2) station-keep, (3) standoff target, 
and (4) circle buoy. In 2016, a new behavior “explorer” was 
created. The purpose of the explorer behavior is to search the 
course for any missing information that may be needed to 
compete a specific task/s and is called by the Task Scheduler 
when required.  

B. Mission Task Scheduler & Decision Making 
The RobotX Challenge emphasizes autonomy and 

decision-making to complete the course. The vessel must 
therefore perform autonomous task scheduling given the 
currently known information, the possible informational 
pay-offs of executing a particular task, and the course layout. 
Additionally, due to limitations on sensor ranges and 
accuracy, the complete course layout cannot be fully 
determined at the start of a mission. Therefore, the 
geographic layout of the course has to be built while 
navigating and completing tasks. This is the role of the Map 
Manager and Interpreter. 

A core component of the Mission Controller is the Task 
Scheduler. The Task Scheduler is composed of a mission 
data initialiser, a mission data recorder, a task information 
dependency map, and the task scheduler/decision maker. At 
the start of a mission,  mission data initialiser reads a 
configuration file that lists all known task-related 
information such as task scoring and the on-the-day details 
(e.g. the Acoustic Pinger frequencies) in addition to flags for 
all of the information which remains unknown at the start of 
the mission. As information is discovered during the 
execution of a mission, it is both updated in-memory and 
written to a parallel date-stamped mission data file by the 
mission data recorder. The recorded files can be used for 

restarting missions if required. 
The task scheduler/decision maker is responsible for 

determining the task sequence, and is actioned after the 
completion of each task.  The task sequence is based on the 
information required by each specific task and the 
information currently known, the pay-off and risk associated 
with executing a particular task, the distance costs between 
tasks, and the remaining time available on the course.  As 
this information is initially incomplete, the task scheduler 
depends on updates from the information discovery 
component as the mission progresses.  The next task to 
complete is determined by a voting in which each currently 
incomplete task votes for the task(s) which can provide it 
with information.  Given the task score s, task information 
dependency d of task j on task i, task required information r, 
and the estimated cost c, the task t to schedule next is 
determined by the vote v for a task i, calculated from:  

 
𝑣𝑣𝑖𝑖 =  𝑠𝑠𝑖𝑖

𝑐𝑐𝑖𝑖
∗ ∑ 𝑓𝑓�𝑑𝑑𝑗𝑗𝑖𝑖 , 𝑟𝑟𝑗𝑗� ∗ 𝑔𝑔(𝑟𝑟𝑖𝑖)     (1) 

𝑓𝑓�𝑑𝑑𝑗𝑗𝑖𝑖 , 𝑟𝑟𝑗𝑗� = �1 if 𝑟𝑟𝑗𝑗  is complete
0 otherwise

    (2) 

𝑔𝑔(𝑟𝑟𝑖𝑖) = �1 if 𝑟𝑟𝑖𝑖  is complete
0 otherwise

       (3) 

𝑡𝑡 = max (𝑣𝑣𝑖𝑖)            (4) 
If t > 0, then execute task with max(vi), otherwise execute 

the explorer task. 
The task information dependencies are read from a 

configuration file at mission initialisation, with a flag which 
allows the tuple to be retained but disabled for rapid 
configuration on the day. The information discovery 
component is linked to the Intepreter and Map Manager and 
runs concurrently with task scheduling and completion. In 
general, the Interpreter tries to  estimate confidences levels 
within each of the interpreted elements (e.g. actual buoy 
color, symbols). Only once the confidence level exceeds a 
threshold is that piece of information considered known for 
that particular element. If no task can be excuted due to 
missing information, the explorer task can be executed in an 
attempt to contribute more information. 

C. Task Specific Detectors 
The Mission Controller executes a set of task specific 

detectors/identifiers to facilitate information discovery and 
task execution. On Bruce, these are collectively managed by 
a construct known as the Interpreter. The role of the 
Interpreter is obtain the higher-level information from the 
course elements for use by the Map Manager and Task 
Scheduler. The following sections provide an overview of 
the key detectors implemented on the ASV.  
1) Scan the Code  

The “Scan the Code” task of the 2016 Challenge is similar 
to that of the 2014 challenge. However, a fourth color, 
yellow, has been added to the existing red, green and blue. 
The computer vision algorithm was used for detecting the 
sequence consists of two stages; (1) LED panel segmentation 
and color identification, and (2) a confidence based sequence 
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algorithm. To segment the panel color from the rest of the 
image, a custom process built on OpenCV was developed for 
precise filtering of features based on size, aspect ratio, angle 
and circularity. An adaptive thresholding approach using 
parameters selected from experimental data allows robust 
detection in a wide range of lighting conditions.  

Following LED color detection a custom sequence 
algorithm is used to build temporal confidence in the color 
sequence. Once the confidence exceeds a threshold, the 
sequence is reported to the judges’ display. 
2) Buoy Identification  

Although the LiDAR is capable of detecting the majority 
of buoy metadata (e.g. position, size, aspect ratio) it cannot 
detect color. The same thresholding and feature detection 
processes are used to distinguish many different colored 
buoys in the image. A spatial filter is then applied to obtain 
an estimated range and bearing of each detected buoy. This 
information is combined with laser information and 
combined to add color to the existing metadata. A temporal 
confidence metric of a detected buoy color is also recorded 
for use in the mission tasks. The approach has provided 
robust performance on sunlit and shaded buoys as shown in 
Fig 7. 

 

 
Fig 7. Example images of buoy color detection when approaching buoys 
from both the sunlit and shaded directions. 
 

 
3) Symbol Detection and Identification 

A robust symbol detection system is required for use in the  
docking and detect and deliver tasks. The symbol detection 
and identification algorithm was built on the robust code-
based system developed for the 2014 Challenge. In 2016, the 

OpenCV and ROS-based module was extended to include 
three colors (red, green, blue) and three shapes (circle, 
triangle, cruciform). It was updated for improved scale 
invariance (allows detection at greater distance) as well as 
improved robustness to symbol orientation (e.g. if the 
triangle was sideways facing or upside down). In addition, it 
reports back the confidence score for each detected for use 
in mission execution.  

The algorithm performs well in practice and is capable of 
detecting all nine symbol combinations in a single image. 
The basis of this approach was also used for the “Underwater 
Survey” task as described in Section III. Figure 8 shows 
example images of correct detection in different scenes and 
distances. 

 

 

 
Fig 8. Examples showing symbol detection and classification from the raw 
images (left) and processed images (right) at different viewing distances and 
scenes. The squares indicate the shape (red=circle, blue=cruciform, 
green=triangle) with the marker indicating the detected symbol color. 
 

D. Pinger Localisation 
The method for pinger detection implemented in 2016 is 

identical to that of 2014. Here the signals from two 
hydrophones at fixed spacing are recorded and a custom 
processing algorithm used to calculate the Time-Difference-
of-Arrival (TDOA). Using the TDOA, the angle to a pinger 
can be determine. However, as the detected angle has two 
possible solutions (positive and negative about an axis 
through the two hydrophones), information from the 
Obstacle Identifier is to compare the TDOA calculated angle 
and ray trace to the buoys to check the validity of the 
solution. The temporal confidence in the solution is 
calculated and used by the mission planner. 

VI. EXPERIMENTAL RESULTS 
In addition to the evaluation results presented in individual 

detector systems described in Sections V, Bruce had over 30 
hours of in-water testing to evaluate the performance and 
refine various subsystems and task elements. An overview of 
some experimental results are presented below. 
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A. Vehicle performance 
An evaluation of Bruce’s new motor configuration 

showed an achievable top speed of approximately 2.6 ms-1 
(compared to 1.4 ms-1 achieved by the 2014 competition 
boat). In differential mode, Bruce can turn on the spot at a 
rate of approximately 30 Degrees per second. Whilst not a 
significantly high-speed, it is deemed sufficient for executing 
the tasks and overcoming the trade-winds expected in 
Hawaii. It is estimated that the on-board propulsion battery 
could sustain the top speed for approximately 1.5 hours. 

B. Launcher performance 
A key requirement for the Detect and Deliver task is to 

accurately propel a racquetball into a hole in the target. An 
evaluation into the targeting accuracy of Gusto was 
undertaken to assess repeatability and maximum firing 
range. This was deemed necessary as Gusto is a relatively 
low-speed ball launcher (measured to be approximately 12.5 
ms-1)and the trajectory could be affected by wind or changes 
in friction between the ball and wheels. Figure 9 shows 
measured results of anticipated trajectory range with 
launcher angle which is used by the launcher’s controller. 

 

 
Fig 9. Measured racquetball launch distance against tilt angle (in PWM 
inputs to servo). The error bars show variability in range for 16 
measurements at each angle. 
 

C. Obstacle detection and classification performance 
A set of evaluations were conducted to assess the ability 

of the obstacle detection, to link with the classification 
systems as well as the path planner. Figure 10 shows an 
example of the boat correctly approaching a set of navigation 
buoys. The photo on the left shows the real-time image used 
by the ASV with the image on the right showing the obstacles 
with safety zones around them and the planned trajectory 
through the centre of the buoys. 

 

 

Fig 10. Example image taken from the AUS during field testing (left) and 
the  correctly detected and classified objects and safety regions within the 
Map Manager. 

D. Acoustics 
An experimental evaluation was conducted with multiple 

pingers (Vemco fish tags with individual frequencies in the 
range 54-60 kHz) attached to buoys in the reservoir. Figure 
11 shows raw and filtered time-histories of a detected ping. 
The top traces shows the results when the boat is moving and 
motors on, with the lower trace showing a ping when 
stationary. As can be seen there is significant noise 
introduced by the motors even though they are at least 3m 
away from the hydrophones. These results have driven the 
mission execution software to now turn off the motors briefly 
to improve signal to noise ratio when looking for the pingers.  

 

 
Fig 11. Examples of raw and filtered recordings from the hydrophones of 
two pingers (57 and 60 kHz) when the motors are turned off (top two traces), 
and turned on (lower two traces). The noise from the motors can be clearly 
seen in the lower images. The filtering is a band-pass filter centered at 
60kHz. 

 

E. Underwater Vision results 
 
A set of images of an underwater symbol target were 

collected in Moreton Bay, Queensland, Australia. They were 
obtained by setting a target down on the seafloor and 
lowering a camera over it. The visibility was approximately 
5m based on a Secchi Disc. Figure 12 shows an example 
image taken from approximately 2 meters above the target 
along with the visibility enhanced and symbol detection 
algorithm. Although the symbol could be detected without 
enhancement, the overall quality of the image has been 
improved and allows detection at even greater altitudes. 
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Fig 12. Example image from Moreton Bay, Queensland, showing an 
underwater target (left). The visibility enhanced and classified image (right). 

F. Lessons Learnt 
The field campaigns were invaluable to gain new 

knowledge on how to design for robustness and check the 
overall fidelity and accuracy of the simulator. Due to the 
remoteness of the field site and 4WD access requirements, 
the ASV was dismantled and packed onto a 6 x 4 ft trailer 
each trip. This allowed us to refine assembly and minimise 
hardware setup time to less than 25 minutes.  

A particular challenge was the lack of course elements 
available to the team for practice. Whilst the simulator 
provides a powerful evaluation framework, it does not 
replace final in-field evaluation. Again due to the remote 
nature of the test site, it was not possible to install course 
elements. In the future, it is proposed to construct lightweight 
“fold-away” replicas of the courses that can be easily 
deployed and transported with minimum setup effort. It was 
also identified that for tasks that required significant setup 
(e.g. obstacle field), the use of virtual obstacles in the 
obstacle map which can also be used concurrently with live 
obstacle detection would be beneficial. This is not available 
in the current version of the software but will be added in the 
future. 

VII. CONCLUSIONS 
This paper has presented the strategy behind the hardware 

and software systems that provide a complete autonomy 
solution for Bruce, the Autonomous Surface Vehicle 
developed by the Queensland University of Technology. 
Core to this innovative solution is; (1) An upgraded hardware 
layout and component integration to improve reliability and 
facilitate management in the field, (2) the generation of a 
powerful physics driven simulator to allow off-line 
algorithm development and performance evaluation, (3) two 
additional automated systems for the “Underwater Survey” 
and “Detect and Deliver” tasks, and (4) creation of a mission 
execution framework to deal with course element 
prioritisation and discovery of new information. The strategy 
and associated innovations have been successfully evaluated 
through simulation and on-water testing giving confidence 
for a strong performance at the 2016 Maritime RobotX 
Challenge. 
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