
TeamQUT 1 of 10

Bruce: An ASV Solution for the 2016 Maritime
RobotX Challenge

Leo Stanislas, Peter Smith, Brendan Tidd, Peter Kujala, Scott Nicholson, Akira Dawson, Riki Lamont, William

Chamberlain, Remy Barton, Markus Eich, and Matthew Dunbabin

Abstract—This paper provides an overview of the hardware

and software systems developed for Bruce, the Queensland
University of Technology’s Autonomous Surface Vehicle (ASV)
for entry in the 2016 Maritime RobotX Challenge. Bruce is a
system-of-systems comprising the ASV, a self-contained
underwater robot, and an automated vison-enabled ball
launcher. An upgraded sensor suite and new mission software
architecture to deal with information discovery and task
sequencing built on the Robotic Operating System (ROS) has
been developed to allow completion of all challenge tasks. To
facilitate software development and offline testing, a high-
fidelity simulation model was developed and integrated with the
software architecture. The ASV’s control, mapping, and task-
specific algorithms have been evaluated both in simulation and
through field experiments. Results demonstrating capabilities
as well as discussions on lessons learnt are also presented.

I. INTRODUCTION
The Queensland University of Technology (QUT)

presents our Autonomous Surface Vehicle (ASV) solution,
named Bruce, shown in Fig 1 for competing in the 2016
Maritime RobotX Challenge. The objective of the 2016
Challenge compared to previous Challenge’s has been to
increase the level of autonomy on-board the ASV such that
it must now react to new information gained as it executes
that Challenge’s tasks [1]. Whilst this increases the overall
complexity of completing the tasks, it has provided a unique
opportunity to explore ideas for solving this problem.

The Maritime RobotX Challenge requires each team use a
standardized base platform, the WAM-V developed by
Marine Advanced Research Inc. The teams can then
configure the platform as they please by adding sensors,
computing, power and propulsion within the Challenge
guidelines [1]. In 2016, the competition also introduced
tasks that encourage a “system-of-systems” approach to
extend the functionality of the ASV. This approach was
taken by TeamQUT with the development of two systems for
the “Underwater Shape Identification” and “Detect and
Deliver” tasks which were integrated into the higher level
task execution software.

The remainder of the paper is structured as follows:
Section II provides an overview of the design stragety behind
the ASV with Section III outlining the key vehicle hardware
and software components. Section IV presents the novel
Autonomous Marine Vehicle Simulator, Section V
overviews the mission execution strategy. Section VI shows
some experimental results, with Section VII providing
concluding remarks.

II. DESIGN STRATEGY
The student team’s overall development strategy was built

from experience gained at the 2014 Singapore Maritime
RobotX Challenge and the task requirements of the 2016
Challenge. The team reflected on the design (both hardware
and software) and made recommendations on what worked
and what did not. These included improving the robustness
of target detection and classification through adding
confidence metrics. It was identified also that there was need
for a high-fidelity simulator to allow off-line development
which should also tie into the common software framework
(ROS). In terms of hardware there was a need for rapid
assembly and deployment during field trips and the wireless
communication system needed upgrading to increase range.

Based on these reflections and task requirements, the bulk
of the effort was particularly focused on 5 key areas: (1)
simplifying and upgrading the hardware systems to improve
in-field operations and overall system reliability, (2) the
generation of a powerful vessel and course simulator to allow
off-line algorithm development and performance evaluation,
(3) extending the capability and functionality of Bruce by
developing two additional automated systems for the
“Underwater Shape Identification” and “Detect and Deliver”
tasks, (4) establishing confidence metrics within each
detection and classification software element to increase
robustness, and (5) creating a mission execution approach to
deal with course element prioritization and discovery of new
information over time.

Fig 1. Burce – The Queensland University of Technology’s Autonomous
Surface Vehicle for the 2016 Maritime RobotX Challenge.

TeamQUT 2 of 10

III. VEHICLE DESIGN
An overview of the Bruce ASV sensors, computing, and

propulsion systems, as well as the software architecture is
described in the following sections. Additionally, two
independent systems that are attached to Bruce (autonomous
racquetball launcher and underwater survey robot) are
discussed.

A. Hardware Overview
Whilst a bulk of the technical effort went towards the

software, simulation and autonomy solutions (Sections III,
IV and V), Bruce underwent a complete hardware overhaul
to improve robustness and operationalization when in the
field. Figure 2 shows the primary hardware upgrades which
include a sliding-tray frame for two electronics bays, and a
removable sensor frame.

Fig 2. Top: The payload tray showing the sensor frame with Velodyne
LiDAR, cameras, GPS and radar attached. Also visible is Gusto, the
automated racquetball launcher and the Vaisala weather station. Lower: The
sliding tray mechanism to allow shore-side access to the computing boxes.

The sliding trays were inspired by years of field work and

the difficulties of assembly, mounting and accessing
hardware to the top of the payload tray. On Bruce, all the
electronics boxes are mounted on sliding trays which lock in
place. The advantages of this approach are:
• trays to allow beach access without climbing over the

vessel
• protection of the computers and batteries from rain and

sun
• frees up the top for other tasks (e.g. platform for

launching an UAV or supporting other science payloads).

The removable sensor frame provides a greater mounting
height for the perception and navigation sensors described in
the following sections.

1) Sensors

The perception sensors provide most of the fundamental
information for executing the Challenge tasks. They also
provide the situational awareness for navigation and obstacle
avoidance.

On the sensor frame, a Velodyne HDL-32E LiDAR and a
Dephi electronically scanning automotive radar provide the
fundamental range information. These sensors are positioned
high to give the greatest situational awareness of the course.
Many competition tasks require computer vision to interpret
parts of the environment (e.g. symbols, buoy colors).
Therefore, the sensor frame also has two Logitech HD 720p
USB web cameras to allow real-time on-board processing.

To measure the underwater acoustic environment, Bruce
has two Reson TC4032 hydrophones connected to a Roland
Quad-Capture USB Audio Interface Device capable of
sampling at 192 kHz.

The primary navigation sensor for Bruce is a Novatel
FLEX6 GPS providing position updates at 20Hz. The GPS is
capable of providing heading angle so a low-end magnetic
flux compass was selected for providing a redundant
compass/heading angle (9DOF Razor Inertial Measurement
System). In addition to heading angle, this sensor provides
roll, pitch and angular rates which are all used for navigation
and mapping.

A Vaisala WTX-520 weather station on the ASV to
provide real-time wind-speed and direction data (at 1 Hz) to
the on-board control system.

Bruce has a range of current and voltage sensors for
monitoring the motors and batteries which provides real-time
feedback to the main software safety system. Monitoring
these variables is critical for battery management and
detecting any system fault.
2) Propulsion & Power Systems

In 2016, Bruce was upgraded to two 80lb 24V electric
trolling motors to provide extra thrust and overall speed. In
addition to the primary trolling motors which provide
differential thrust for forward motion and turning, two Blue
Robotics T200 thrusters were incorporated onto the tractable
hydrophone brackets towards the front of the boat. These
thrusters act like bow-thrusters to assist with turning
particularly in high-wind conditions.

Bruce has two on-board batteries. The larger (Torqeedo
26-104) is used exclusively for powering the propulsion
system. The smaller 12V 50Ahr LiPFe battery is used for
powering the computers and sensors. This battery is
connected to a 100W solar panel attached to the top of the
payload tray for topping up the battery when under low-load
conditions.

TeamQUT 3 of 10

B. Gusto: Automated Racquetball Launcher
The “Detect and Deliver” task entails the delivery of four

payloads to within a target area, as well as detection of the
target itself. The strategy taken by TeamQUT for this task is
to propel each of the four balls individually via a novel
visual-servoing pan-tilt electric robotic ball launcher,
codenamed ‘Gusto’.

Figure 3 shows the automated ball launcher prior to
attachment to the ASV. Delivery of the payload, a regulation
racquetball, is achieved by pushing the ball through two
horizontally opposed counter-rotating wheels separated by a
gap fractionally narrower than the width of the ball. An
automated ball feed mechanism transfers a single ball from
the ball feed cartridge into between the wheels at a rate up to
one ball per second. As the ball is squeezed between the
wheels, they are propelled forwards by the rotational velocity
of the wheels and friction between the contacting bodies (ball
and wheels). The design is inspired by commercially
available devices seen in sports such as tennis, cricket and
baseball. It was also preferred over pneumatic/gas or pre-
tensioned launch systems as being electrically driven, it can
be completely isolated by an emergency stop mechanism
without any stored energy. The manufacture exploited rapid
prototyping techniques such as laser cutting and 3D printing.

Fig 3. Gusto – the automated racquetball launcher for the “Detect and
Deliver” task. (Top) Front view showing camera and electroics box, (Lower)
rear view showing the automated ball feeder.

The main launcher device is mounted on a two degree of
freedom actuated pan-tilt mechanism which enables the
payload’s launch direction to be controlled within the range
of 0 to 35 degrees vertically, and 180 degrees horizontally.
Mounted on the upper deck of the WAM-V surface vessel,

this provides sufficient trajectory/angle to direct the
projectile within the specified target range while the boat is
docked perpendicularly against the target buoy.

The launcher is self-contained with its own electrics and
camera systems. It communicates to the ASV via serial when
required for targeting. Visual servoing using the launcher’s
own camera is used for tracking the target and directing the
launcher accordingly. The target detection system is based
on the symbol detection software described in Section V.

C. George: Autonomous Underwater Imaging Robot
The underwater tasks require collecting and processing

images for symbol detection and wall tracking. In the
preliminary rules, the ASV was not allowed within a
prespecified zone of the underwater objects. This
requirement inspired our strategy of using an Autonomous
Underwater Vehicle (AUV), codenamed ‘George’, to
remotely (whilst tethered to the ASV) roam away and search
an area. This exclusion requirement was later dropped by the
Challenge organizers, however, we continued to pursue this
approach due to initial feedback from the RobotX organizers
that the water visibility may not be sufficient to see the
bottom. Our approach provides a means to autonomously
control its height above the seafloor which may be
advantageous in low-visibility conditions.

Figure 4 shows George during testing in a pool. It is a self-
contained AUV with all on-board power, motor controls and
computing for image-processing and control. It is propelled
by 4 x T100 Blue Robotics motors. Our custom AUV boasts
3 degrees of freedom allowing our vehicle to move just
below the surface of the water to a target location, and dive
down to an appropriate depth for image capture. A host of
sensors keep track of position (GPS when at the surface) and
orientation (IMU), as well as depth below the surface of the
water (Blue Robotics pressure sensor), and height above the
sea floor (underwater altimeter).

Fig 4. George – the autonomous underwater robot to provide imagery and
symbol detection for the “Underwater Survey” task.

An Arduino MEGA accepts incoming data from each of
the sensors, parsing the information into NMEA strings,

TeamQUT 4 of 10

which are then sent via USB to the on-board CPU running a
Linux system. The AUV communicates with the surface
vehicle via a waterproof tether and employs a simple winch
system with high strength fishing line for deployment and
recovery.

Our AUV performs on-board image processing using an
Odroid XU4. Images acquired from a Microsoft Lifecam
Cinema USB camera are passed through a custom algorithm
that improves image clarity (dehaze) and color corrects [2,3]
prior to feature detection. Shape priors are then used to
predict the presence of target shapes for the 'Underwater
Survey' task, and combined with color thresholding for the
“Find the Break” task. Example results are shown in Section
VI.

D. Software Architecture
The software architecture developed for Bruce is shown in

Fig 5. It is an event driven, cross-platform structure built on
the Robotic Operating System (ROS) [4]. Other popular
frameworks for marine vessels exist, such as MOOS [5],
however, cost-benefit-risk analysis led to ROS being chosen
as it provided seamless integration and extension of the
individual software modules representing sensing,
localization, planning, and control. It also facilitates more
rapid software development within the project team
capabilities as it caters to the programming languages
preferred by the individual team members (C++, Python,
Java, and MatlabTM).

 The software platform executes actions in parallel and
asynchronously. The individual sensor modules provide data
asynchronously to the state estimator and image, laser and
acoustic classifiers. The State Estimator maintains the pose
of the ASV for localization and control. The State Estimator,
laser, and vision classifiers (for buoys) all feed the Map
Manager which maintains an up-to-date, globally referenced
map of real and virtual obstacles as the ASV traverses the
courses. The Path Planner produces viable (efficient and
obstacle free) trajectories for the ASV based on the obstacle
map and the desired waypoints provided by the Mission/Task
Controller (see Section V).

The execution of the missions is performed by the
Mission/Task Controller block. This block maintains a series
of state machines for achieving high-level task objectives
and overall system function. The decision support structure
within the state machines is parameterized allowing the
controller to retry, abort or skip specific tasks, or components
therein. The Mission Controller also determines the required
motor control inputs sent to the Motor Controller for driving
both the primary and auxiliary propulsion systems.

To facilitate load management on the primary CPU (Intel
Core i7-4790K, 4.00GHz), particularly for computationally
expensive computer vision tasks, the Mission Controller can
put each classifier block into an “idle” state until required.
Finally, the Mission Controller communicates with the
Messaging System block which provides the task-specific
messaging interface to the remote Judges’ display.

Fig 5. Overview of the Bruce ASV software architecture.

The Sensor & Power Systems Health Monitor provides a

system wide assessment of the operational state of the ASV
including monitoring motor and battery currents and
voltages, and individual sensor performance with the ability
to restart modules when necessary.

E. Mapping and Path Planning
1) Obstacle Map

The obstacle map is based on a 2D occupancy grid [6].
The area being mapped is discretized into fixed size cells
with values reflecting the probability of occupancy given the
Velodyne LiDAR data. Other approaches were considered
such as octrees [cite: Armin Hornung OctoMap: an efficient
probabilistic 3Dmapping framework based on octrees], an
efficient 3D mapping algorithm, but was considered overkill
for a 2D marine environment. Another approach, which was
used in the previous RobotX competition, implements a
hashmap to store each occupied cell of a 2D map only saving
occupied cells in memory [7]. This approach has the
advantage of being very memory efficient and scalable, but
is less efficient in accessing cell values. Prior knowledge of
the course size and abundant computer memory in the boat
made a 2D occupancy grid the most viable option.

The link between sensor data and the map is managed by
ROS coordinate frame transforms. Right handed coordinate
frames are positioned on the main elements of the system
such as the origin of the map, the base of the boat, and the
center of the Velodyne. The GPS position of the boat
(Easting (Xb), Northing (Yb), Heading (Hb)) provides a
transform between a world coordinate frame and the boat
coordinate frame. The map is positioned in the world with a
transform between the world coordinate frame and the map
coordinate frame using pre-determined Easting, Northing
and Heading values (Xm,Ym,Hm). Finally the Velodyne
coordinate frame is positioned with respect to the boat

TeamQUT 5 of 10

coordinate frame using known hardware dimensions and
Inertial Measurement Unit (IMU) rotation values to account
for roll and pitch.

The occupancy probability of each map cell within a
maximum range threshold is updated after every new
Velodyne scan (10Hz). This maximum range threshold is set
to only include the most reliable part of the Velodyne’s scan
data. The map cell values outside of this maximum range
threshold are untouched and act as memory of the course
obstacles. A minimum height threshold was set just lower
than the smallest obstacle to limit the impact of spurious
LiDAR returns from the water. Due to the movement of the
boat, this height threshold could not eliminate completely
spurious returns from the water, only limit them.

Multiple approaches to update map cell values from sensor
data were tested during multiple field trials. The main
difficulty in this process is eliminating spurious data points
from the water in the LiDAR scans.

The first model was resetting the map cell values at each
new Velodyne scan and increased cell values for each
Velodyne point hitting them. This approach appeared to be
too sensitive to spurious data from the water therefore
complicating the path planning process.

The second model incorporated the fact that a spurious
return from the water is rarely present in two consecutive
LiDAR scans. This model compared two consecutive
LiDAR scans and only considered the map cells that received
points in both scans to be occupied. This method was robust
to spurious returns from the water, however, only publishing
a map every two LiDAR scans halves the update rate of the
map to 5Hz which may be problematic when the boat is
moving at 2.5ms-1 because it cannot map the area fast
enough.

The third and best performing model is an improved
version of the first one. Instead of resetting the map cell
values at each iteration, the values are decreased by a step
value “dec_step”. For each cell hit by a LiDAR point, its
respective value is increased by a step value ”inc_step” that
is greater than “dec_step” increasing the probability of
occupancy of that cell over time as LiDAR points hit it. A
minimum probability threshold is then used to classify a cell
as occupied or free.

Once a cell is classified as occupied, a safety radius is
applied around this cell increasing all the cell values around
a detected obstacle. This safety radius is then used to
compute a path that safely avoids any obstacle. Within this
safety radius, the cells closer to the occupied cell have a
greater value that the cells on the edge of the radius to
mitigate risk of collision if the boat has to pass in between
tight obstacles.

This obstacle map is then used to plan a path between the
boat and a goal position while avoiding and detecting
obstacle types to execute the different competition tasks.

2) Path planner

The path planning algorithm uses tree search in which

each of the map cells is a node. The algorithm implemented
is a version of the well-known A-star algorithm [8]. This
algorithm is optimal (will return the best path) and complete
(guaranteed to find a path if it exists) while maintaining a
very high performance. This is an improvement from last
competition where the search algorithm implemented was
Breadth First Search [9] which provides a dramatically
poorer performance. Other algorithms were considered,
notably D-star [10] which has the same search properties as
A-star and is faster to execute but is more computationally
expensive. As the boat dynamics are relatively slow, a new
path is only needed every 5 to 10 seconds. With A-star being
able to produce a path across the entire course in less than 5
seconds, it was chosen to conserve computational power.

The two main features to define for the A-star algorithm
are the cost function, and the links between the tree nodes
(map cells). A-star uses a cost function to guide its search
while exploring the map cells, the definition of this cost
function is crucial and defines the behavior of the search.

This cost function is defined as 𝐹𝐹(𝑛𝑛) = 𝐺𝐺(𝑛𝑛) + 𝐻𝐻(𝑛𝑛)
where 𝑛𝑛 is the last node on the path, 𝐺𝐺(𝑛𝑛) is the cost of the
path from the start to node n, and 𝐻𝐻(𝑛𝑛) is a heuristic function
that estimates the cost of the cheapest path to the goal. [Hart
et al 1968] The algorithm explores the cells with the lowest
F value first which influences the search speed and the path
behavior.

The cost of the path function G is the sum of each map cell
value from the start node to the current node, thus going
through free cells will give a lower G value than going
through occupied cells.

On Bruce, the heuristic function H is defined by the
Euclidean distance from the current node n to the goal;
consequently, the further from the goal a node is, the higher
its heuristic value. A boat speed factor is also added to reflect
that at higher speed the goal is reached faster.

The links between the different cells indicate which cells
of the map are available from the current cell. These links
play a very important role in reflecting the boat dynamics to
produce a realistic path for the boat to follow (e.g. a boat
cannot do a sharp turn at high speed). Therefore, a dynamic
model of the boat was built and improved over time using
different GPS trajectory data from field trials. This model
accounts for the current boat speed and proposes different
turning behaviors. It also incorporates a model of the boat
acceleration and deceleration capabilities.

This path planning implementation allows Bruce to safely
navigate on the course and through challenging obstacle
fields.

3) Obstacle Identification

To proceed to each competition task, it is important to
regularly extract information from the elements around the
boat using its different sensors. This information is organized
in the form of a list of obstacles of different types (e.g.
cylinder buoy, circular buoy, dock, light tower) and their
position on the map. A list of obstacles is produced by each

TeamQUT 6 of 10

perception sensor and then matched and fused in one global
obstacle list wherein each obstacle is associated with a level
of confidence.

The obstacle list from the LiDAR is computed by denoting
a cluster of occupied cells of the obstacle map as a single
obstacle with a centroid position on the map (x,y), a width
(w), and a height (h). The obstacle list from the camera is
created through buoy visual detection, returning a position of
the buoy (x,y) and its color (c). The obstacle list from the
radar is based on the position centroids in the map (x,y)
directly given in the radar raw data.

IV. AUTONOMOUS MARINE SURFACE VESSEL SIMULATOR
To assist in the development of the QUT ASV and

maximize development time and reduce in-field software
debugging, a novel, high-fidelity simulation to test all the
autonomous subsystems of the vessel was developed.
Experience from the 2014 RobotX Challenge highlighted
that although testing systems in local dams provided an
invaluable method of verifying the effectiveness of the
autonomous systems a number of issues remained, including:
• restrictions on where autonomous marine vessels can

operate, limiting testing locations to sites that often
required long and time consuming journeys

• a lack of course elements meant that only small sections
of the competition course could be constructed at a given
time, making complete mission planning impossible

• multiple people are required for field testing along with
strict health and safety regulations limiting access,
resulting in scheduling conflicts.

The key functions required for a simulator to be an

effective model of the QUT ASV included a high-fidelity
camera, LiDAR (Velodyne HDL-32E), IMU and GPS sensor
simulation, as well as buoyancy and physics simulation to
integrate the motors. A search for an existing simulator to
efficiently and accurately meet the requirements included
investigation of a number of simulators including UWSim
[11], Gazebo, and V-Rep [12]; unfortunately, all lacked
support in various key components required for the project.

The Autonomous Marine Surface Vessel Simulator was
created to fill this missing functionality gap in existing
simulators. In particular, the software is designed to simulate
key sensors including camera, LiDAR, IMU and GPS by
implementing the influence of a marine environment on the
readings. The focus of this simulator was to realistically and
efficiently implement a simulation environment that models,
with high fidelity, LiDAR point clouds, buoyancy of surface
marine vessels, and the effect that water has on image
reflection and refraction. In order to realistically model the
effects of reflection and refraction for image simulation,
custom rendering techniques and graphics shaders were
implemented using the programmable pipeline of OpenGL
3.0. To efficiently simulate LiDAR, a method known as

depth buffer sampling was implemented allowing for hard-
ware acceleration through OpenGL whilst also allowing
custom shaders to simulate absorption of LiDAR beams
below the surface of the water. To implement a buoyancy
model, the JBullet physics library was extended to add
functionality that applied buoyancy forces to the vessel. The
fidelity and performance of the simulator was benchmarked
against the existing best available alternative simulator, V-
Rep, to show that the Autonomous Marine Surface Vessel
Simulator has better performance and fidelity when
simulating marine environments.

This simulator has been used to provide a method of
testing the autonomous subsystems on an entire simulated
course from the convenience of the QUT labs, or the comfort
of the home. Figure 6 shows example images of the ASV
during simulating the docking and obstacle fields.

Fig 6. Screen images from the Autonomous Marine Surface Vessel
Simulator whilst the ASV is exectuting a docking task (top), and attempting
the obstacle field (lower).

V. AUTONOMOUS MISSION EXECUTION
Missions are performed by the combination of a set of

behaviors (control primitives) and task specific
detetctors/identifiers. In the 2014 Challenge, the required
tasks were specified in order and all required information
(e.g. symbol representing docking bay, bounding box of each
task location) was specified. However, in the 2016
Challenge, despite being more task elements on the course,
only partial information is given by the organizors with
potential links between each task to obtain the necessary
information to complete the other tasks. This reduces the
ability to “guess” the task sequence or elements to detect

TeamQUT 7 of 10

within each task meaning that the ASV must discover new
information during task execution. The following sections
provide an overview of the Mission Controller developed for
the 2016 Challenge.

A. Behavior-based Architecture of Bruce
Behavior based robotics is a robot control paradigm which

is represented by internal states [13]. Each state is
independent from other states while information can be
passed between the states. Each state can contain sub-states
and the outcome of a single state decides which state is
triggered next. States can be encapsulated in sub-states and
thereby allowing a hierarchical implementation of complex
behaviors. Whilst a number of common articectures exist
within ROS (e.g. FlexBE [14] and SMACH [15]), for the
RobotX Challenge we partially modellied our architecture on
FlexBE in which each state has an event loop which allows
to modify the execution of each state dynamically. Each state
has several hooks which are called depending on the event.
These events are: start, enter, stop, exit, pause, resume. This
is mandatory for the RobotX Challenge because we may
wish take over control of Bruce any time, including the
option of starting, stopping or cancelling the current task.

The current behaviours (control primitives) on Bruce
include: (1) waypoint, (2) station-keep, (3) standoff target,
and (4) circle buoy. In 2016, a new behavior “explorer” was
created. The purpose of the explorer behavior is to search the
course for any missing information that may be needed to
compete a specific task/s and is called by the Task Scheduler
when required.

B. Mission Task Scheduler & Decision Making
The RobotX Challenge emphasizes autonomy and

decision-making to complete the course. The vessel must
therefore perform autonomous task scheduling given the
currently known information, the possible informational
pay-offs of executing a particular task, and the course layout.
Additionally, due to limitations on sensor ranges and
accuracy, the complete course layout cannot be fully
determined at the start of a mission. Therefore, the
geographic layout of the course has to be built while
navigating and completing tasks. This is the role of the Map
Manager and Interpreter.

A core component of the Mission Controller is the Task
Scheduler. The Task Scheduler is composed of a mission
data initialiser, a mission data recorder, a task information
dependency map, and the task scheduler/decision maker. At
the start of a mission, mission data initialiser reads a
configuration file that lists all known task-related
information such as task scoring and the on-the-day details
(e.g. the Acoustic Pinger frequencies) in addition to flags for
all of the information which remains unknown at the start of
the mission. As information is discovered during the
execution of a mission, it is both updated in-memory and
written to a parallel date-stamped mission data file by the
mission data recorder. The recorded files can be used for

restarting missions if required.
The task scheduler/decision maker is responsible for

determining the task sequence, and is actioned after the
completion of each task. The task sequence is based on the
information required by each specific task and the
information currently known, the pay-off and risk associated
with executing a particular task, the distance costs between
tasks, and the remaining time available on the course. As
this information is initially incomplete, the task scheduler
depends on updates from the information discovery
component as the mission progresses. The next task to
complete is determined by a voting in which each currently
incomplete task votes for the task(s) which can provide it
with information. Given the task score s, task information
dependency d of task j on task i, task required information r,
and the estimated cost c, the task t to schedule next is
determined by the vote v for a task i, calculated from:

𝑣𝑣𝑖𝑖 = 𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐
∗ ∑ 𝑓𝑓�𝑑𝑑𝑗𝑗𝑗𝑗 , 𝑟𝑟𝑗𝑗� ∗ 𝑔𝑔(𝑟𝑟𝑖𝑖) (1)

𝑓𝑓�𝑑𝑑𝑗𝑗𝑗𝑗 , 𝑟𝑟𝑗𝑗� = �1 if 𝑟𝑟𝑗𝑗 is complete
0 otherwise

 (2)

𝑔𝑔(𝑟𝑟𝑖𝑖) = �1 if 𝑟𝑟𝑖𝑖 is complete
0 otherwise

 (3)

𝑡𝑡 = max (𝑣𝑣𝑖𝑖) (4)
If t > 0, then execute task with max(vi), otherwise execute

the explorer task.
The task information dependencies are read from a

configuration file at mission initialisation, with a flag which
allows the tuple to be retained but disabled for rapid
configuration on the day. The information discovery
component is linked to the Intepreter and Map Manager and
runs concurrently with task scheduling and completion. In
general, the Interpreter tries to estimate confidences levels
within each of the interpreted elements (e.g. actual buoy
color, symbols). Only once the confidence level exceeds a
threshold is that piece of information considered known for
that particular element. If no task can be excuted due to
missing information, the explorer task can be executed in an
attempt to contribute more information.

C. Task Specific Detectors
The Mission Controller executes a set of task specific

detectors/identifiers to facilitate information discovery and
task execution. On Bruce, these are collectively managed by
a construct known as the Interpreter. The role of the
Interpreter is obtain the higher-level information from the
course elements for use by the Map Manager and Task
Scheduler. The following sections provide an overview of
the key detectors implemented on the ASV.
1) Scan the Code

The “Scan the Code” task of the 2016 Challenge is similar
to that of the 2014 challenge. However, a fourth color,
yellow, has been added to the existing red, green and blue.
The computer vision algorithm was used for detecting the
sequence consists of two stages; (1) LED panel segmentation
and color identification, and (2) a confidence based sequence

TeamQUT 8 of 10

algorithm. To segment the panel color from the rest of the
image, a custom process built on OpenCV was developed for
precise filtering of features based on size, aspect ratio, angle
and circularity. An adaptive thresholding approach using
parameters selected from experimental data allows robust
detection in a wide range of lighting conditions.

Following LED color detection a custom sequence
algorithm is used to build temporal confidence in the color
sequence. Once the confidence exceeds a threshold, the
sequence is reported to the judges’ display.
2) Buoy Identification

Although the LiDAR is capable of detecting the majority
of buoy metadata (e.g. position, size, aspect ratio) it cannot
detect color. The same thresholding and feature detection
processes are used to distinguish many different colored
buoys in the image. A spatial filter is then applied to obtain
an estimated range and bearing of each detected buoy. This
information is combined with laser information and
combined to add color to the existing metadata. A temporal
confidence metric of a detected buoy color is also recorded
for use in the mission tasks. The approach has provided
robust performance on sunlit and shaded buoys as shown in
Fig 7.

Fig 7. Example images of buoy color detection when approaching buoys
from both the sunlit and shaded directions.

3) Symbol Detection and Identification

A robust symbol detection system is required for use in the
docking and detect and deliver tasks. The symbol detection
and identification algorithm was built on the robust code-
based system developed for the 2014 Challenge. In 2016, the

OpenCV and ROS-based module was extended to include
three colors (red, green, blue) and three shapes (circle,
triangle, cruciform). It was updated for improved scale
invariance (allows detection at greater distance) as well as
improved robustness to symbol orientation (e.g. if the
triangle was sideways facing or upside down). In addition, it
reports back the confidence score for each detected for use
in mission execution.

The algorithm performs well in practice and is capable of
detecting all nine symbol combinations in a single image.
The basis of this approach was also used for the “Underwater
Survey” task as described in Section III. Figure 8 shows
example images of correct detection in different scenes and
distances.

Fig 8. Examples showing symbol detection and classification from the raw
images (left) and processed images (right) at different viewing distances and
scenes. The squares indicate the shape (red=circle, blue=cruciform,
green=triangle) with the marker indicating the detected symbol color.

D. Pinger Localisation
The method for pinger detection implemented in 2016 is

identical to that of 2014. Here the signals from two
hydrophones at fixed spacing are recorded and a custom
processing algorithm used to calculate the Time-Difference-
of-Arrival (TDOA). Using the TDOA, the angle to a pinger
can be determine. However, as the detected angle has two
possible solutions (positive and negative about an axis
through the two hydrophones), information from the
Obstacle Identifier is to compare the TDOA calculated angle
and ray trace to the buoys to check the validity of the
solution. The temporal confidence in the solution is
calculated and used by the mission planner.

VI. EXPERIMENTAL RESULTS
In addition to the evaluation results presented in individual

detector systems described in Sections V, Bruce had over 30
hours of in-water testing to evaluate the performance and
refine various subsystems and task elements. An overview of
some experimental results are presented below.

TeamQUT 9 of 10

A. Vehicle performance
An evaluation of Bruce’s new motor configuration

showed an achievable top speed of approximately 2.6 ms-1
(compared to 1.4 ms-1 achieved by the 2014 competition
boat). In differential mode, Bruce can turn on the spot at a
rate of approximately 30 Degrees per second. Whilst not a
significantly high-speed, it is deemed sufficient for executing
the tasks and overcoming the trade-winds expected in
Hawaii. It is estimated that the on-board propulsion battery
could sustain the top speed for approximately 1.5 hours.

B. Launcher performance
A key requirement for the Detect and Deliver task is to

accurately propel a racquetball into a hole in the target. An
evaluation into the targeting accuracy of Gusto was
undertaken to assess repeatability and maximum firing
range. This was deemed necessary as Gusto is a relatively
low-speed ball launcher (measured to be approximately 12.5
ms-1)and the trajectory could be affected by wind or changes
in friction between the ball and wheels. Figure 9 shows
measured results of anticipated trajectory range with
launcher angle which is used by the launcher’s controller.

Fig 9. Measured racquetball launch distance against tilt angle (in PWM
inputs to servo). The error bars show variability in range for 16
measurements at each angle.

C. Obstacle detection and classification performance
A set of evaluations were conducted to assess the ability

of the obstacle detection, to link with the classification
systems as well as the path planner. Figure 10 shows an
example of the boat correctly approaching a set of navigation
buoys. The photo on the left shows the real-time image used
by the ASV with the image on the right showing the obstacles
with safety zones around them and the planned trajectory
through the centre of the buoys.

Fig 10. Example image taken from the AUS during field testing (left) and
the correctly detected and classified objects and safety regions within the
Map Manager.

D. Acoustics
An experimental evaluation was conducted with multiple

pingers (Vemco fish tags with individual frequencies in the
range 54-60 kHz) attached to buoys in the reservoir. Figure
11 shows raw and filtered time-histories of a detected ping.
The top traces shows the results when the boat is moving and
motors on, with the lower trace showing a ping when
stationary. As can be seen there is significant noise
introduced by the motors even though they are at least 3m
away from the hydrophones. These results have driven the
mission execution software to now turn off the motors briefly
to improve signal to noise ratio when looking for the pingers.

Fig 11. Examples of raw and filtered recordings from the hydrophones of
two pingers (57 and 60 kHz) when the motors are turned off (top two traces),
and turned on (lower two traces). The noise from the motors can be clearly
seen in the lower images. The filtering is a band-pass filter centered at
60kHz.

E. Underwater Vision results

A set of images of an underwater symbol target were

collected in Moreton Bay, Queensland, Australia. They were
obtained by setting a target down on the seafloor and
lowering a camera over it. The visibility was approximately
5m based on a Secchi Disc. Figure 12 shows an example
image taken from approximately 2 meters above the target
along with the visibility enhanced and symbol detection
algorithm. Although the symbol could be detected without
enhancement, the overall quality of the image has been
improved and allows detection at even greater altitudes.

TeamQUT 10 of 10

Fig 12. Example image from Moreton Bay, Queensland, showing an
underwater target (left). The visibility enhanced and classified image (right).

F. Lessons Learnt
The field campaigns were invaluable to gain new

knowledge on how to design for robustness and check the
overall fidelity and accuracy of the simulator. Due to the
remoteness of the field site and 4WD access requirements,
the ASV was dismantled and packed onto a 6 x 4 ft trailer
each trip. This allowed us to refine assembly and minimise
hardware setup time to less than 25 minutes.

A particular challenge was the lack of course elements
available to the team for practice. Whilst the simulator
provides a powerful evaluation framework, it does not
replace final in-field evaluation. Again due to the remote
nature of the test site, it was not possible to install course
elements. In the future, it is proposed to construct lightweight
“fold-away” replicas of the courses that can be easily
deployed and transported with minimum setup effort. It was
also identified that for tasks that required significant setup
(e.g. obstacle field), the use of virtual obstacles in the
obstacle map which can also be used concurrently with live
obstacle detection would be beneficial. This is not available
in the current version of the software but will be added in the
future.

VII. CONCLUSIONS
This paper has presented the strategy behind the hardware

and software systems that provide a complete autonomy
solution for Bruce, the Autonomous Surface Vehicle
developed by the Queensland University of Technology.
Core to this innovative solution is; (1) An upgraded hardware
layout and component integration to improve reliability and
facilitate management in the field, (2) the generation of a
powerful physics driven simulator to allow off-line
algorithm development and performance evaluation, (3) two
additional automated systems for the “Underwater Survey”
and “Detect and Deliver” tasks, and (4) creation of a mission
execution framework to deal with course element
prioritisation and discovery of new information. The strategy
and associated innovations have been successfully evaluated
through simulation and on-water testing giving confidence
for a strong performance at the 2016 Maritime RobotX
Challenge.

ACKNOWLEDGMENTS
The team gratefully acknowledges the generosity of our

sponsors and supporters in the development of the Bruce

ASV. These are; The Australian Government through the
Australian Institute of Marine Science (AIMS) and the
Defence Science and Technology Group, the Queensland
University of Technology, the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) GFB Robotics
Pty Ltd, RoPro Design Inc., Blue Robotics Inc., and BotBitz.

Those listed above have provided financial support,
equipment loans and discounted products. We would also
like to acknowledge Seqwater, the operators of the on-water
test site by the team, in addition to the technical support of
individuals from our industry partners; Melanie Olsen from
AIMS and Ray Russell from RoPro Design. Their guidance
on component selection and design and manufacturing
techniques has been invaluable to the team.

REFERENCES
[1] Maritime RobotX Challenge Preliminary Task Descriptions (Version

0.91, Updated 03 November 2016), accessed 10 November 2016 <
http://robotx.org/images/files/2016-MRC-Tasks-2016-11-03.pdf>.

[2] K. He, J. Sun, and X. Tang, “Single image haze removal using
dark channel prior.” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’09). IEEE, 2009, pp. 1956–
1963.

[3] M. Roser, M. Dunbabin and A. Geiger, “Simultaneous underwater
visibility assessment, enhancement and improved stereo”, 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong
Kong, 2014, pp. 3840-3847.

[4] Quigley, M., Conley, K. and Gerkey, B.P., Faust, J., Foote, T., Leibs,
J., Wheeler, R., and Ng, A.Y. “ROS: an open-source Robot Operating
System”, In Proc. ICRA Workshop on Open Source Software, 2009.

[5] P.M. Newman. “MOOS-mission orientated operating suite.”
Massachusetts Institute of Technology, Tech. Rep 2299.08 (2008).

[6] A. Elfes. “Occupancy Grids: A Probabilistic Framework for Robot
Perception and Navigation”, PhD thesis, Carnegie mellon Univ., 1989.

[7] R. Lamont, S. Nicholson, Z. Renando, C. Dirkis, P. Smith, D. Jakes,
J. Vanmali, S. Veitch, A. Chong Bang. “The Endeavour ASV:
Hardware, sensor & software overview”, [online]
http://robotx.org/files/TeamQUT_RobotX_Journal_Paper_2014-10-
05.pdf.

[8] P. E. Hart, N. J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” in IEEE Transactions on
Systems Science and Cybernetics, IEEE 1968, pp 100-107.

[9] S.E. Dreyfus. “An appraisal of some shortest-path algorithms.”
Operations research 17.3 (1969): 395-412.

[10] A. Stentz. “The D* Algorithm for Real-Time Planning of Optimal
Traverses”. Technical report, DTIC Document, 1994.

[11] M. Prats, J. Perez, J.J. Fernandez, P.J. Sanz. “An open source tool for
simulation and supervision of underwater intervention missions”, 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2577-2582, 7-12 Oct. 2012.

[12] E. Rohmer, S. P. N. Signgh, M. Freese, “V-REP: a Versatile and
Scalable Robot Simulation Framework,'” IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2013.

[13] R.C. Arkin, An Behavior-based robotics. Cambridge, MA: MIT Press,
1998.

[14] S. Maniatopoulos and P. Schillinger and V. Pong and D. C. Conner
and H. Kress-Gazit. “Reactive high-level behavior synthesis for an
Atlas humanoid robot”, in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4192-4199, 2016.

[15] J. Bohren and S. Cousins. “The SMACH High-Level Executive [ROS
News]”, IEEE Robotics and Automation Magazine, 17(4), pp.18-20,
2010.

	I. INTRODUCTION
	II. Design Strategy
	III. Vehicle Design
	A. Hardware Overview
	1) Sensors
	2) Propulsion & Power Systems

	B. Gusto: Automated Racquetball Launcher
	C. George: Autonomous Underwater Imaging Robot
	D. Software Architecture
	E. Mapping and Path Planning
	1) Obstacle Map
	2) Path planner
	3) Obstacle Identification

	IV. Autonomous Marine Surface Vessel Simulator
	V. Autonomous Mission Execution
	A. Behavior-based Architecture of Bruce
	B. Mission Task Scheduler & Decision Making
	C. Task Specific Detectors
	1) Scan the Code
	2) Buoy Identification
	3) Symbol Detection and Identification

	D. Pinger Localisation

	VI. Experimental Results
	A. Vehicle performance
	B. Launcher performance
	C. Obstacle detection and classification performance
	D. Acoustics
	E. Underwater Vision results
	F. Lessons Learnt

	VII. Conclusions
	Acknowledgments
	References

