Team NaviGator AMS

1 of 10

NaviGator AMS 2018

Daniel Volya, Matthew Griessler, Kevin Allen, Kipling Cohen, Alan Albritton, Nicholas Suhlman, David
Zobel, Juan Mejia, Rosemond Fabien, Marshall Rawson, Jaxon Brown, Ria Pendon, Daniel Olis, Marquez
Jones, Dr. Eric Schwartz, Dr. Carl Crane, and Shannon Ridgeway

Abstract—NaviGator ASV is a fully autonomous sur-
face vehicle (ASV) built to compete in the Associa-
tion for Unmanned Vehicle Systems International (AU-
VSI) Foundation’s 2018 Maritime RobotX Challenge
in Oahu, Hawaii. The NaviGator ASV is part of a
larger group of collaborative autonomous aerial, sur-
face, and subsurface vehicles known as the NaviGator
Autonomous Maritime System (AMS). This paper de-
scribes the NaviGator ASV’s structural design, propul-
sion, power system, electrical design, software infras-
tructure, and approach to completing the challenges
presented in the 2018 Maritime RobotX Challenge.

I. INTRODUCTION

The University of Florida’s (UF) Team NaviGator AMS
is a multidisciplinary group composed of undergraduate
and graduate students from the departments of Electrical,
Mechanical, and Computer Engineering. This project is
primarily sponsored by the Machine Intelligence Lab (MIL),
which has over 21 years of experience in competing in
the AUVSI Foundation’s robotics competitions, including
numerous championships in the RoboSub and RoboBoat
Competitions, and the defending champion from 2016
RobotX event. Due to the larger scale of the Maritime
RobotX Challenge, MIL has partnered with the Center for
Intelligent Machines and Robotics (CIMAR), a lab that has
competed in three DARPA challenges and has extensive
experience with developing highly intelligent large- scale
autonomous ground vehicles. Between MIL’s experience
in autonomous maritime systems design and CIMAR’s
experience in software architecture design, Team NaviGator
AMS puts forth a competitive vehicle for the Maritime
RobotX Challenge.

II. VEHICLE DESIGN

This section of the paper will describe the hardware and
software that was developed for this competition, as well
as the motivations behind these choices. This will include
descriptions of early iterations of hardware and software
that may have failed, what was learned in that process,
and how that knowledge was integrated to improve on the
designs.

A. Mechanical Subsystems

The mechanical platform used for the NaviGator ASV is
a modified WAM-V research vessel developed by Marine

Advanced Research. Several of the mechanical modifications
that the team has made will be detailed in this section. A
computer-aided design (CAD) of NaviGator ASV is shown
in Fig. 1.

Fig. 1: A CAD of NaviGator ASV

1) Propulsion: NaviGator ASV’s propulsion system began
as two forward-facing stern thrusters, providing the ASV
with a skid-steer configuration. After a short time of
testing, it became apparent that adding more thrusters and
mounting them at an angle would simplify the vectoring of
the thrust to achieve a desired motion, as well as adding
the capability of lateral motion. The current configuration
features two bow and two stern thrusters oriented at a fixed
45 degrees. This is a thruster configuration that the team
used in the 2013 RoboBoat Competition with much success,
earning first place. In addition to improved maneuverability,
using four thrusters provides redundancy in the system,
allowing the ASV to still have maneuverability even if any
single thruster fails. If any two thrusters fail, some degree
of maneuverability is lost, but most tasks could still be
accomplished. This feature was invaluable when a motor
driver died minutes before a qualification run in the 2013
RoboBoat Competition. With a quick modification to the
thruster mapper program, the ASV was able to operate
with just three thrusters, saving the run. Moreover, during
the 2016 RobotX Maritime Challenge, NaviGator was able

Team NaviGator AMS

to repeatedly and successfully station keep and maneuver
the course despite rough currents and winds. The major
disadvantage of this configuration is that the fixed angles
of the thrusters means that it is not particularly efficient
moving in any direction. However, as was demonstrated in
2016, for the tasks that the Navigator ASV is designed to
perform, maneuverability provides a significant advantage
in maintaining stability.

Locking
Actuator

Fig. 2: Auto-deploy system for thrusters

Mounting the thrusters posed many challenges and required
several design iterations, especially for the bow thrusters.
For the ASV to be deployed from a trailer, the bow
thrusters had to be either removed or raised during
deployment so they would not collide with the trailer
structure. Thus, we implemented a student designed auto-
deploy system for the thrusters (Fig. 2), which also aided in
the efficiency of deploying NaviGator. The system uses two
pneumatic linear actuators to rotate the thruster about the
transom mount and to lock the thruster in place. The main
actuator is mounted in a tandem style to allow it to pivot
as the system rotates. To retract the thruster, the locking
actuator extends and moves the spring-loaded locking pin.
The main actuator then retracts pulling the thruster to an
upward position. The air pressure to the locking actuator
is then released causing the locking pin to fall into a lock
position. The air pressure is then released from the main
actuator, as it no longer needed to hold the thruster in
place. To deploy the thruster, the same process is executed
in reverse. This system not only saves time but also makes
it so that only one person has to get in the water to pull
the boat onto or off of the shore.

2) Sensor Mast: The need for a stable sensor platform is
paramount in machine vision applications. The preliminary
design utilized an 80/20 aluminum rail truss, which did not
provide the required stiffness and resulted in smearing of
the vessel’s detection data. The initial sensor platform
also did not raise the LIDAR system high enough to

2 of 10

permit detection of obstacles in immediate proximity to
the pontoons, a problem rectified in the final design.

As previously mentioned, the cameras, LIDAR, and GPS
antenna require a rigid support. The need for an unob-
structed GPS antenna guided the design towards a mast
structure. For transport to the competition site, the assem-
bly had to fit within the prescribed envelope of a Pelican
Products transport case, requiring a modular assembly
process. These target specifications led to a base-and-tree
assembly, where the mast is simply welded to a plate that
then fastens to the payload tray via a superstructure. For
corrosion resistance and manufacturability, 6063 aluminum
was chosen. To simplify the assembly process, fastener
types were standardized. The mast is centered laterally
on the ASV, which helps create a well-defined coordinate
system that permits simpler software transformations.

3) Electronics Box: NaviGator ASV’s electronics are
housed in a Thule Sidekick cargo box. The team originally
considered commercial waterproof boxes, but began looking
for other options due to their high costs. One student
suggested the idea of using a cargo box after being inspired
by family road trips they had taken when they were
younger. While traditionally used to mount on the top
of cars to provide additional storage, the cargo box was an
ideal electronics enclosure due to its watertight integrity,
aerodynamic form factor, low cost, and a side-opening
mechanism that makes it very easy to access all of the
electronic components. The box’s watertight integrity
prevented the team from using air circulation for cooling.
Instead, a combination of techniques are used to cool the
box. First, a reflective covering was applied to the lid of the
box to reflect heat generated by solar radiation. Second,
the box has an active water cooling system that is used to
remove the heat generated from the electronic components
inside the box. Fiberglass inserts and 3D printed structures
were used to mount all of the components inside of the
box. These inserts add rigidity to the relatively flimsy box
and make it easy to add or remove components from the
box. The components that need to be frequently removed,
e.g., the hard drives, are attached to the fiberglass and 3D
printed parts with Velcro. The rest of the components are
attached with traditional fasteners.

4) Racquetball Launcher: A system for delivering the
racquetballs task was improved upon from NaviGator 2016.
NaviGator 2016 used counter-rotating wheels and linear
actuator to launch the racquetballs. Although this mecha-
nism worked well for fresh racquetballs, wet racquetballs
and dried racquetballs that were previously exposed to
salty water, caused major inconsistency in launching. In
order to minimize this inconsistency, a pneumatic-based
launcher was developed, as shown in Fig. 3.

5) The Grinch: The ring retrieval challenge posed a
logistically challenging operation. The grinch works via
a series of strategically spaced rotating metallic hooks. The
hooks are attached to a metallic rod in such a way that
the rotating motion of the rod causes the hooks to rotate.

Team NaviGator AMS

Fig. 3: Picture of the racquetball launcher

This motion engages the rings in order to retrieve them.

The rod is placed in a vertical position to fully cover the
depth of the bottom-tier ring. However, due to the increase
of drag created by the hook-rod assembly, the grinch is
mounted on a pivot above the water-line in such way that
while the challenge is not being attempted, the hook-rod

assembly rests in a horizontal position above the water.

The system is composed of two motors, one which actuates
the rotating motion of the hooks and one to actuate the
pivoting motion. A CAD is shown in Fig. 4.

SSWF

AN\ \»@\\\

Fig. 4: A CAD of the grinch and ring structure (christmas
tree)

3 of 10

B. Electrical System

The design goals for the 2016 NaviGator platform was
robustness and simplicity. Having achieved the 2016 goals,
the goals for 2018 were to improve all systems within the
limits of our budget and time.

1) Power Distribution: The 2018 NaviGator retains the
dual battery power supply and the power merge board from
the 2016 system. NaviGator remains MIL’s biggest project
in terms of power required. In 2016 the team designed a
power system using two Torqueedo Power 26-104 batteries.
The 2016 NaviGator did not provide any feedback on how
much current was being drawn from each battery at a given
point in time; also the voltage level sensing of each battery
needed an upgrade. In 2018 NaviGator improved upon the
2016 power system to provide moment to moment, accurate,
current and voltage sensing. After the current and voltage
sense device there are two power paths that extend from
each battery. The high power path connects each battery to
two thrusters through fuses. The low power path connects
each battery to NaviGator’s sense and compute devices
through the power merge board.

2) Power merge board: The power merge board is a student-
designed printed circuit board assembly (PCBA). It uses
Texas Instruments LM5050-2 ideal diode controllers to
balance and parallel the two batteries into a single 24V
rail to power NaviGator’s sense and compute devices. The
main benefits derived from the power merge board are two-
fold. The everyday benefit is that NaviGator’s batteries
can be switched out without the computer and networking
equipment turning off. The fault tolerant benefit is that
if a battery fails, NaviGator retains control and can be
commanded. One of MIL’s strengths is that parts of MIL’s
vehicles are designed to be translatable to other vehicles
in the lab. This is the third vehicle that has used this
power merge board design. The PCBA was designed for
PropaGator 1 and then used on PropaGator 2. Both
PropaGators have competed in the RoboBoat competition.

3) Passive sonar: The ability to track a point source of
sound in the water is encapsulated into the passive sonar
pressure vessel. It contains a passive sonar amplification
and filtering board (Fig. 5), necessary power regulation, and
USB communication. An Analog Digital 4-channel Data
Acquisition ADC (ADART7251) is used to simultaneously
sample, amplify, convert, and filter the four incoming
signals. The board was designed by Sylphase — a startup
founded and run by a former MIL student — and is capa-
ble of tracking multiple acoustic sources simultaneously,
provided they are at different frequencies.

4) Kill system: In accordance with the RobotX Kill Switch
Specifications, the NaviGator ASV disconnects power to
its thrusters through an emergency kill system capable
of operating independently of the motherboard. Power
supplied into the motor controllers first pass through four
parallel F'7 Series power relays, which are controlled by the
Emergency Kill Board. This Kill Board receives power from

Team NaviGator AMS

Fig. 5: Passive Sonar PCB

a 22.2V LiPo battery, independent of the vehicle’s main
batteries. A microcontroller monitors the status of the four
E-Stop buttons on the WAM-V’s four arms, and deactivates
the power relays when these are pressed. Additionally, the
Kill Board communicates with the motherboard through a
USB connection, constantly relaying the kill switch status
and receiving an ongoing “heartbeat” message. Should
the motherboard stop sending this heartbeat (indicating
software failure) for longer than 5 seconds, the Kill Board
will cut power to the thrusters. The Kill Board is also
equipped with a Linx NT Series RF transceiver, constantly
communicating with another transceiver on the Emergency
Controller on a 903.37 MHz carrier frequency. As this
transceiver is independent of the Wi-Fi connection through
the Ubiquiti antenna, the Emergency Controller can kill
the power to the thrusters even when the vehicle loses
connection to shore. Further, the controller can be used to
set NaviGator to “emergency control” mode, allowing the
user to pilot the vehicle if recovery via shore controls is not
available. To cut power, the kill board opens the contacts
on the four relays connected to the power on the four
motor controllers, cutting power to NaviGator’s actuation
systems while the computer remains active. The kill board
is also used to control NaviGator’s indicator lights.

5) Siren System: The siren board is a student-designed
PCBA that communicates with the computer over the
onboard, low speed, CAN network. It controls the siren that
wards off curious watercraft during testing of NaviGator.

6) Current and Voltage Sensing Board: The current and
voltage sense board is a student-designed PCBA that
continuously senses the voltage level and current being
drawn by each battery. The sensed data is sent to the

computer over the onboard, low speed, CAN network.
There is one PCBA installed in line with each battery.

By recording the current drawn from each battery and
voltage level over time, the health of the batteries can
be ascertained both for long term battery health and
short term determination of when the batteries need to be
switched out and charged.

4 of 10

C. Software System

1) Object Detection and Classification: The lowest level
perception service available on the NaviGator ASV is
the Occupancy Grid Server. Occupancy grids are a two
dimensional grid-like representation of the environment
generated by the sensor suite available on the ASV. The
generated map contains both the occupied and unoccupied
regions in the environment. This information is provided
to the server via any onboard range-detecting sensor.
On the ASV, the primary range-detecting sensor is a
Velodyne VLP16 LIDAR. A LIDAR uses lasers to provide
relatively dense range information of the environment. This
information is then segmented by regions containing dense
clusters of relatively close points. These bounding regions
are treated as obstacles, and are placed in the occupancy
grid. This information is then provided to higher level
services such as the motion planner and Classification
Server. In the Classification Server, the points generated
by the LIDAR are clustered into regions on the occupancy
grid where it decides which of these distinct regions are
objects. The ASV then looks at the bounding box of this
object and classifies the object based on the dimensions
of its bounding box. The software detects if the object
has a prominent plane. If it does, then this information is
attached to the object. These objects are then accessible
to other programs through the use of a list of detected
objects.

2) Motion Planning: For a safer and more flexible planner,
the team sought out an algorithm that can handle strict,
well-defined constraints. The rapidly-exploring random tree
(RRT) algorithm is highly efficient for this scenario [1].
The algorithm starts with a seed node at the ASV’s initial
state. It then randomly samples a state in the region of
navigational interest. A nearness function is applied to
every node currently in the tree, and then that node is
extended or steered towards the random state following a
policy function. The endpoint of that extension is added
as a new node to the tree only if it is allowable, and the
algorithm repeats. If an extension, or any intermediate
state leading up to it, is not allowable, that iteration is
simply abandoned. Once a node reaches the goal region,
the tree is efficiently climbed from the goal back to the seed,
and is classified as one solution to the planning problem.
The best of the found solutions is defined as the one that
takes the least amount of time. The goal region is likely
to be reached because one can bias tree-growth towards
it by shaping the probability density function from which
random states are sampled. An example is shown in Fig.
6.

After selecting the RRT algorithm for safety and flexibility,
the final step was to integrate the algorithm with a real-time
system. One of the biggest difficulties in doing this was
dealing with a highly nonstatic environment. Obstacles
spontaneously appear when they get in range of the
perception system. This means that a valid path can
suddenly become invalid with only seconds to spare. To

Team NaviGator AMS

O @ : | S o
o ." ® Y ® [)

Fig. 6: An example of the NaviGator ASV’s RRT planning
towards a goal region

make efficient use of time, the planner should always be
planning the next move so that the RRT has more time to
get a better solution. To handle this, the planner had to
be made asynchronously interruptible, and a lot of plan-
reevaluation and crisis-aversion logic had to be built in
to elegantly deal with spontaneously appearing and/or
moving obstacles that cross the ASV’s current path. The
ASV’s real-time ROS-integrated RRT algorithm being run
for an arbitrarily drawn, complicated occupancy grid can
be seen in Fig. 7. Tree nodes can be seen in blue. The ASV
was only given one second to plan its first move. It used its
time during the first move to plan its second move, shown
in red. While the paths generated using this method are
safe and useful for solving the problem of navigation in
the competition, the team is actively working on improved
heuristics for smoothing out the paths.

Fig. 7: The NaviGator ASV’s real-time ROS-integrated
RRT algorithm being run on an arbitrarily drawn, compli-
cated occupancy grid

3) Motion Control: Since the RRT motion planner uses
a model of the ASV, in principle it would be possible to
employ a model-predictive control architecture in which the
ASV rapidly re-plans from its current state to steer it back
onto the desired path. However, due to the randomness

5 of 10

inherent to the RRT itself, such a method did not work
well in practice. Thus, the team opted to make use of the
sequence of states generated by the motion planner rather
than the inputs to define the reference a feedback controller
tracks. First, a simple manually-tuned full-state feedback
PD controller was used. Tracking along straight paths
was nearly perfect with this alone, providing a positional
steady-state error of less than 0.25 meters. However, along
curves, a larger positional steady-state error of a few meters
would always emerge depending on the curvature. Even
the introduction of a standard integral term did not fix
this problem. The team figured that this was because an
integral of the world-frame error alone would only be able
to compensate for disturbances that are constant in the
world-frame. Simulation revealed that the sources of the
curved motion disturbances were centripetal-Coriolis effects
and heading-dependent drag forces. A more intelligent
integrator would be necessary to compensate for these state-
dependent disturbances. Most marine and aerial systems
accomplish this by using a model- reference adaptive
control (MRAC) architecture. A block diagram of the
MRAC controller used for the ASV is shown in Fig. 8.
In this diagram, y ref is the current state in the sequence
generated by the motion planner, u is the control effort
choice, and y is the actual state. MRAC works very well on
the ASV, bringing steady-state error to negligible amounts
in all cases without introducing oscillations. Additionally,
it does not wind-up as much as an ordinary integrator
when unexpected disturbances are applied, such as humans
pushing the ASV, since it is trying to adapt specifically
to drag and inertial effects instead of constant external
forces. Finally, with the controller outputting desired
wrenches (i.e., forces and moments), the last operation
needed is to map that wrench to a thrust command for
each thruster. A surface vehicle would only need three
thrusters to be holonomic, but with four, the ASV is more
fault tolerant. This redundancy in the mapping can be
solved as a regularized least-squares problem by evaluating
a pseudoinverse [2].

REFERENCE Tref L ADJUSTMENT
MODEL

MECHANISM

Parameters

v

CONTROLLER

PLANT

\

MODEL REFERENCE ADAPTIVE CONTROL (MRAC)

Fig. 8: Block diagram of the MRAC controller used on the
NaviGator ASV [3]

4) Navigation and Odometry: The NaviGator ASV uses
a student-developed Sylphase global positioning system
(GPS) and inertial navigation system (INS) that is in the
process of being commercialized by Forrest Voight, a UF
graduate and member of 2016 Team NaviGator AMS. It

Team NaviGator AMS

primarily consists of a circuit board with a Spartan-6 field
programmable gate array (FPGA), radio frequency (RF)
frontend, inertial measurement unit (IMU), magnetometer,
and a barometer (see Fig. 9.) The FPGA performs the cor-
relation operations that enable tracking of GPS satellites.
All the sensor measurements and correlations are passed to
a computer via USB, into a pipeline of software modules
that track and decode the signals from the GPS satellites
and then fuse measurements using an extended Kalman
filter into an estimate of the ASV’s pose in both absolute
world and relative odometry coordinate frames. Last, the
resulting odometry is transformed so that it describes the
ASV’s coordinate frame and it is then passed to ROS.
By using the sensors to aid the GPS solution and taking
advantage of GPS carrier phase measurements, extremely
precise relative odometry is possible, with noise on the
order of centimeters over periods of seconds to minutes.
This is the result of years of work, during which several
iterations of the hardware were produced (and deployed on
other MIL robots.) The initial version of the hardware was
a Beaglebone cape, but quickly moved to the USB/FPGA
approach for ease of development and reduced CPU load.

©

USB GPS FE+IMU
Sylphase
_ http://sylphase.com/p/517749

540 mm

P

______ %8

Fig. 9: Current hardware revision of the Sylphase, a student-
designed GPS/INS

5) State Machine: The state machine that is used in solving
the challenges uses a directed acyclic graph (DAG) to decide
which missions to complete at which time. Each mission
is first defined by three key attributes: the other missions
that it depends on, the objects that it depends on, and
whether or not the mission should be re-executed. For
example, the Scan the Code challenge does not depend
on any other challenges. It depends on the Scan the Code
object being recognized after it is executed and it should
not be re-executed after it is completed. The state machine
is constantly listening for new objects to be found. Once
one is found, it goes to the parent missions in the DAG
and evaluates if they are ready to be completed. If one of
these missions is ready, it is executed. Once it is complete,

6 of 10

the DAG is reevaluated for more missions to be complete.
This continues until all missions are complete.

III. DESIGN STRATEGY

One of the most difficult tasks in developing autonomous
vehicles is the detection and recognition of objects, which
is then passed down to higher level decision planning. In
the past, our team would develop custom and traditional
computer vision algorithms for object recognition, however
this requires hours of development time, and often results
in complex solutions with mediocre reliability. As such, we
have integrated deep neural networks as an initial guess
framework, and developed a pipeline to quickly train and
test the network. This has resulted in a faster debugging
process, and created a central framework from which many
design decision evolved.

A. Deep Neural Networks

Machine learning has become one of the integral compo-
nents for perception solutions on all our projects. The
ability of machine learning to quickly give us a targeted
region of interest without having to craft a traditional
computer vision solution has drastically cut down on
development time for our systems. Due to our increasing
usage of neural networks, efforts were made to develop
a fully featured development pipeline for the purpose
of training and deploying neural networks for computer
vision or perception related tasks. To accomplish this, we
employed the Tensorflow Object Detection library which
was custom compiled to work with CUDA 10 and the new
NVIDIA tensorcore architecture. We used the Labelbox
labelling tool to handle all of the manual data processing.

1) Data Handling: One of the well known drawbacks of
deep neural networks is the tremendous data requirements
for achieving any semblance of accuracy in object detection.
To combat this, we utilized a tactic called transfer learning
[4]. Transfer learning is the process of taking a network
that was trained on a separate dataset (for our purposes
this was most commonly the COCO [5]) and retraining
the final layers of the network on our own datasets. This
takes advantage of the fact that the majority of the
neural network is taken up by general shape and color
differentiation. The majority of the data requirement is
due to these early and middle network layers being trained
to differentiate shapes. Once the shapes are learned, only
a small amount of data is required for learning the finer
details. It is only in the final layers of a neural network that
the finer details of an object are discerned and analyzed.
Thus we targeted these layers for retraining and held the
other layers to be constant. This reduced the number
of training images required for each network down from
potentially tens of thousands of images to a few hundred.

With this in mind, during our weekly testing days, we
recorded footage of design objects with the mounted

Team NaviGator AMS

cameras on NaviGator from many different angles and
in a myriad of lighting and weather conditions. The ROS
bags containing this camera footage was processed and
segmented, so anyone who wishes can access and download
the images generated from them. This is publically available
for any team to use, as is the code for the pipeline. Note
that at this stage the data is not labelled. Deep neural
networks require that we have ground truth labels in order
for the network to actually learn anything. We employed
Labelbox for this purpose, as it allowed for collaborative
labelling, so multiple members of the team could process
the same dataset. This sped up the process considerably.

Once the data is labelled, it must be downloaded and
processed into a format that Tensorflow recognizes and can
use. Additionally, due to flaws in the Labelbox software,
some of the labels could extend outside of the image bounds
or be the size of a single pixel. These ‘broken’ labels could
seriously hinder the network’s ability to train off the dataset
or cause the training process to crash entirely. Thus arose
the MIL Machine Learning Pipeline.

2) Training Networks: The pipeline was developed using
python scripts, docker containers, and a few bash scripts.
The central premise of the pipeline is to download the
images directly from Labelbox using the JSON file that
can be exported from Labelbox. The images and labels
are downloaded as png and xml files respectively. These
files are then separated into a 60-40 split for training and
testing data, respectively. Once divided, we generate two
separate CSV files that arrange the labels into the format
required by Tensorflow. At this stage we also perform the
error checking on the bounds. We check to ensure that
the labels are larger than a specified area and that the
labels do not exceed the bounds of the image itself. Spelling
check and label validity are also checked against the specific
project needs at this stage. For example, if we are training
a network to analyze totems and buoys, we will toss out
labels and images only containing the docks. Once the data
is processed, it is compiled by Tensorflow into TFRecords.
These records combine both the images and the labels into
a binary file that can be handled more easily by Tensorflow
itself. This is what is loaded into the actual training script.
If desired, the files that we generate are then automatically
repaired. If not, the generated files are left and can be
used to validate the integrity of the dataset through a
separate script which visualizes the labels using OpenCV.
At this stage the user selects a pretrained model that fits
their needs. We found the COCO dataset to be adequate
for our purposes and downloaded the architecture that
had a good balance of accuracy and speed, as we require
real-time object identification. There are plenty of options
available at the Tensorflow Model Zoo [6], part of their
Object Detection repository on GitHub. After selecting a
model, you need to make some edits to its configuration
file so that the model knows where to load its training
and testing data from. There are a variety of other options
that can be useful to change and tweak to give better
accuracy, but this is dependent on the model choice. The

7 of 10

docker image now comes into play. Launching the pipeline
script we created spins up a docker image that contains
all the necessary software prerequisites for Tensorflow and
compiles it from the source. This avoids requiring the user
of our pipeline to download the repository locally and
install the myriad of dependencies required therein. With
this done, one can easily train any network from the model
zoo and with any dataset they desire. The output will be
a fully trained network with a frozen inference graph that
can be used on any system running a compatible version
of Tensorflow.

3) Perception Application: Now that a network is trained,
a manager processes spins up. Each processes is devoted
to a specific challenge, but the code within is in essence
the same. The process will load the network associated
with the challenge and begin processing images fed to it
from our cameras. It will then publish a bounding box
corresponding to it’s observations, as shown in Fig. 10. We
can set thresholds for confidence levels and size of bounding
boxes to further refine our results from this stage and apply
more traditional computer vision techniques specific to
each challenge, but the bulk of the work is now complete.
Machine learning has greatly enhanced and streamlined
our solutions to computer vision challenges. All work we
have done is available for others to use and modify, and we
encourage other teams to explore our process to develop a
more robust pipeline and networks to solve the computer
vision challenges.

Fig. 10: Demonstration of classification using a deep neural
network

B. Identify Symbol and Dock Challenge

One particular example that demonstrates the trade-off
between reliability and development time is in the Identify
Symbol and Dock Challenge. This mission begins by
selecting the dock object from the object server, which
is easily identified by being the largest connected object on
the course. The object server gives the mission a rotated box
enclosing the challenge, from which positions estimates of
the two dock bays and two racquetball target placards are
determined based on the known geometry of the challenge.
Next, the AVS approaches each of these 4 points of interest,

Team NaviGator AMS

orienting itself so the symbol is near the center of the
camera’s field of view. These images are inputs to the deep
learning software to generate the best prediction of the
symbol’s shape and color. If this is the correct symbol,

the docking or racquetball launching procedure begins.

The docking procedure simply sets a new waypoint in the
center of the bay, relying on the controller and obstacle
avoidance system to reach this goal safely. For launching
racquetballs, we found a more complicated feedback loop
was required to account for wind, waves, and the drift
of both the AVS and the target. A quickly written and
efficient computer vision script uses binary thresholding
and edge detection [7] to identify the black border around
the targets (Fig. 11) at roughly 10 frames per second. This
new position of the target is fed directly into the controller
to make small movements to keep the AVS aligned. We
intentionally bypass the obstacle avoidance system for these
small adjustments to enhance performance. The system
constantly compares its real pose to the desired pose, only
launching the racquetball when there is a low error.

Fig. 11: Simple traditional computer vision to segment
targets

C. Pinger

The NaviGator ASV uses intersecting lines to determine
the location of the active pinger, as shown in Fig. 12. In
order to find the pinger, the ASV’s thrusters are disabled
before gathering acoustic data. We found that the motors

generated sound within the potential pinger frequencies.

Lobs will be collected over time while the ASV drifts. A
queue of lobs is accumulated, and once enough lobs are
present, a point will be estimated. In order to make this
estimate, we first must filter our lobs. The first filter detects

lobs that are captured without much movement of the boat.

These lobs have starting points very close to each other and

tend to provide little useful in terms of their intersections.

Next, intersection points are calculated for each lob. Any
lobs that have many intersection points close to their origin
are thrown out. This prevents noisy or bad readings from
pulling the estimated point closer to the boat than it should
be. Finally, an intersection estimate is calculated from the
remaining lobs using a least-squares approach.

8 of 10

Drifting

Fig. 12: An illustration of the intersecting method. The red
line indicates the drifting of the ASV. The other arrows
represent the lobs collected by the hydrophones. The black
lines have been filtered out and are disregarded. The red
circles highlight the intersecting points that are too close to
the ASV. The orange dot represents the position estimate
of the pinger.

1) Entrance/Exit Gates Task: For the Entrance and Exit
Gates task, NaviGator ASV starts by identifying each
of the four relevant buoys from the classification server.
NaviGator ASV then navigates to a position directly in
front of the gates. Next, NaviGator ASV disables the
thrusters. This provides time for the previously described
pinger location estimation to collect data. After a fixed
amount of time, NaviGator ASV enables its thrusters and
navigates through the gate whose center is closest to the
estimated pinger location. As a backup, in the case that the
collected data is insufficient to estimate the location of the
pinger, NaviGator ASV will use the lobs in combination
with a-priori information about the positioning of the gates.
Since NaviGator ASV knows where the gates are bound,
we can count how many lobs pass through each gate. The
gate with the most lobs is then the gate with the active
pinger. Fig. 13 provides a visual for the process.

IV. EXPERIMENTAL RESULTS
A. Simulator

The first phase for testing new software for NaviGator AMS
is simulation. We use a modified version of VMRC, the
beta platform for the virtual marine robotics challenge,
that was worked on as part of an internship at Open
Robotics by Kevin Allen, a NaviGator AMS team member.
This simulator uses similar technologies to modern 3D
video games to render images for the simulated vision
cameras and LIDAR (see Fig. 14.) Every challenge present
in RobotX 2018 is modeled in the simulator, allowing
each task to be tested independently and in sequential
runs similar to the finals of RobotX. Architecturally, the

Team NaviGator AMS

Drifting

I
Py

E . \ Navigating to
< detected gate

Navigate

through gate l

Fig. 13: Path diagram illustrating the path NaviGator ASV
takes when passing through the Entrance and Exit gates

simulator uses Gazebo, an open source robotics simulator
designed to integrate well with the ROS middleware we use.
This allows us to run the exact same software in simulator
as on the life platform, as the TCP socket interfaces for
hardware (sensors and actuators) are fulfilled by the simula-
tor. We added additional plugins to simulate the protocols
of our student designed boards used for the emergency
stop, pneumatic actuator, and passive sonar systems. The
simulated hardware enables testing the integration of these
systems into the higher level software without having
physical access to the system. Simulation also makes the
development of high level decision making programs, known
as “missions”, to proceed in parallel to perception software.
Developers can optionally run the simulator in ground truth
mode to receive perfect information about computer vision
targets, nearby obstacles, and the position of the pinger.
In this mode we can verify that the logic of the missions
is correct (i.e., the system moves correctly to complete the
challenges) in ideal conditions. This separation of concerns
allows the team to test a layer of our autonomy in isolation,
which is essential for finding bugs and other design failures.

B. Field Testing

In addition to testing in the simulator, NaviGator ASV
underwent significant lake testing (see Fig. 15.) Over
120 hours of in-water testing were carried out in the
form of day-long tests in the months leading up to the
competition at a lake near UF. Over 40,000 labor hours
were accumulated during lake testing. Lake testing offered
real-life environmental factors that simulation cannot
accurately provide, such as wind and current disturbances,
various lighting conditions, and inclement weather.

Field testing also offered a chance to test the mechanical
systems of the ASV, such as actuators like the racquetball
launcher, the strength of team-manufactured components,

9 of 10

Fig. 14: Simulated NaviGator ASV in a realistic environ-
ment

and the efficiency of the computer cooling system. The fre-
quency and duration of testing helped to expose hardware
failures that may have gone unnoticed until the competition.
For example, the original sensor mast placed the Ubiquiti
omnidirectional Wi-Fi antenna less than two inches away
from the Velodyne LIDAR. During field testing, the team
found that the LIDAR was returning noisy data. However,
when testing in the lab, the LIDAR data looked fine.
Eventually the team determined that the only difference
was that a wired connection was used to connect to the
ASV while working in the lab, as opposed to the Wi-Fi
connection that was used while field testing. It turns out
that the Wi-Fi signal from the antenna was adding noise to
the LIDAR data. Moving the Wi-Fi antenna further from
the LIDAR solved the problem. This kind of issue would
never have arisen during simulation. The detection of this
and other flaws during testing prevented what would have
been catastrophic failures during the competition.

C. Field Element Construction

In order to take full advantage of the realistic testing
environment that the lake provides, field elements sim-

Team NaviGator AMS

ilar to those that will be used in the competition were
constructed. The field elements were designed to be simple
in construction and easy to deploy. Many of the elements
were made of a PVC pipe frame that allowed for modular
construction and easy assembly and disassembly. Buoyancy
was provided by foam sheets and pool noodles fitted around
the PVC pipes. The simplicity and light weight of the course
elements allowed for quick and easy setup and teardown
of the course using only a few team members in a kayak.

V. CONCLUSION

This paper presents the University of Florida’s autonomous
surface vehicle, NaviGator ASV, for use in the 2018
Maritime RobotX Challenge. Sacrificing speed for ma-
neuverability, the vessel’s four thrusters give the ASV an
additional degree of freedom when compared to traditional
skid-steer vessels. The novel use of an automotive cargo
box for housing electronics created an open layout design
that allowed for easy access and rapid repairs. An iterative
approach and deep neural network pipeline created a strong
software foundation that was exhaustively tested with over
120 hours of in-water testing. After extensive testing of
our upgraded software, electrical, and mechanical systems
from our 2016 championship robot in both simulation and
field environments, Team NaviGator AMS is ready for the
2018 Maritime RobotX Challenge!

VI. ACKNOWLEDGEMENT

Team NaviGator AMS would like to acknowledge everyone
who has supported the team throughout the year, including
the University of Florida’s departments of Electrical &
Computer Engineering department and Mechanical &
Aerospace Engineering; the labs of MIL and CIMAR;
and our major industry sponsors of Harris Corporation
and Texas Instruments. The team would like to extend
an appreciative thank you to our advisers: Dr. Eric
Schwartz, Dr. Carl Crane, and Shannon Ridgeway. The
latest Team NaviGator AMS developments can be found
at www.NaviGatorUF .org.

REFERENCES

[1] S. M. Lavalle, “Rapidly-Exploring Random Trees: A
New Tool for Path Planning,” 1998.

[2] A. Devarakonda, K. Fountoulakis, J. Demmel, and M.
W. Mahoney, “Avoiding communication in primal and dual
block coordinate descent methods,” arXiv:1612.04003 [cs],
Dec. 2016.

[3] “Adaptive control,” Wikipedia, Nov. 2018.

[4] L. Torrey and J. Shavlik, “Transfer Learning,” Handbook
of Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques, pp. 242—-264, 2010.

10 of 10

[5] “COCO - Common Context.”

http://cocodataset.org/#home.

Objects in

[6] “Model Zoo - Deep learning code and pretrained models
for transfer learning, educational purposes, and more.”
https://www.modelzoo.co/.

[7] “A Computational
Detection - IEEE Journals &
https://ieeexplore.ieee.org/document /4767851.

Approach to
Magazine.

Edge

”

www.NaviGatorUF.org

	Introduction
	Vehicle Design
	Mechanical Subsystems
	Propulsion
	Sensor Mast
	Electronics Box
	Racquetball Launcher
	The Grinch

	Electrical System
	Power Distribution
	Power merge board
	Passive sonar
	Kill system
	Siren System
	Current and Voltage Sensing Board

	Software System
	Object Detection and Classification
	Motion Planning
	Motion Control
	Navigation and Odometry
	State Machine

	Design Strategy
	Deep Neural Networks
	Data Handling
	Training Networks
	Perception Application

	Identify Symbol and Dock Challenge
	Pinger
	Entrance/Exit Gates Task

	Experimental Results
	Simulator
	Field Testing
	Field Element Construction

	Conclusion
	Acknowledgement
	References

