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Abstract—Team Kanaloa, comprised of students from the 

University of Hawaii at Manoa, was given an opportunity to 

compete in May of 2016. With a six month time period, many 

design decisions were driven by this constraint.  The goal was to 

execute the Demonstrate Navigation and Control, Find Totems 

and Avoid Obstacles, and Detect and Deliver. Unfortunately, 

Team Kanaloa was unable to successfully complete a single task; 

However, the experience and opportunities gained from this 

competition would establish a strong foundation for future 

RobotX competitions.  

I. INTRODUCTION 

Team Kanaloa will be representing the University of 

Hawaiʻi at Mānoa in the 2016 Maritime RobotX 

Challenge.  The team was given an opportunity to participate 

in this competition in May of 2016.  Due to the limited time 

budget of six months, all design decisions were heavily 

influenced by this constraint. This also drove the decision to 

allocate resources to execute certain tasks rather than all of 

them.  
Team Kanaloa's mission statement declared that the team 

will perform the following tasks: Demonstrate Navigation and 

Control, Find Totems and Avoid Obstacles, and Detect and 

Deliver. Demonstrate Navigation and Control, also referred to 

the Preliminary Task, was selected as this was a requirement 

to compete in the competition. Find Totems and Avoid 

Obstacles was selected because the requirements to complete 

this task, were fundamentals of an autonomous vehicle. As a 

team, successfully executing this task would demonstrate that 

the WAM-V has the core functionalities to become an 

autonomous vehicle and would establish a foundation for 

future RobotX competitions. Detect and Deliver was selected 

due to the dominant presence of mechanical engineering 

majors on the roster. It was best suited to execute a task that 

tended to the team’s strengths rather than its weakness. 

Team Kanaloa's definition of success for this project was to 

perform these tasks robustly and reliably by obtaining at least 

80% of the total points for each task.  Eighty percent  was 

selected as the team concluded that the percentage stated, 

quantified a competitive score.  Meeting this expectation at 

competition will demonstrate competency and prove the 

team's success.  The team's long-term goal for this project was 

to establish a foundation within the University of Hawai'i for 

future Maritime RobotX competitions.  As such, the team will 

promote the integration of undergraduate and graduate 

students from various majors and skill levels to collaborate in 

maritime robotics projects. 

II. DESIGN STRATEGY 

A. Subsystem Division 

Team Kanaloa was divided into four subsystems: Surface, 

Computing, Power, and Safety.  The Surface subsystem was 

responsible for the following sub-subsystems: Sensor 

Selection, Object Manipulator, and Propulsion.  The team 

members within the surface sub-subsystem were responsible 

for the design, hardware selection, and mounts for integrating 

onto the WAM-V.  The Computing subsystem is responsible 

for the following sub-subsystems: Robot Operating System 

(ROS), Simultaneous Localization and Mapping (SLAM), 

Path Planning, and Color Recognition.  The team members 

within the Computing sub-subsystem were responsible for the 

selection of software and computing-specific hardware as well 

as the development of codes.  The Power subsystem is 

responsible for battery selection and allocation of power to all 

hardware prescribed by the Surface and Computing 

subsystems.  The Safety subsystem is responsible to oversee 

everything complies with the safety regulations outlined by 

the competition.  

B. Surface Subsystem 

The surface subsystem design process and  design decisions 

focuses on meeting the system and functional requirements set 

forth by the team. The system requirements were set forth 

based off the tasks of the competition. The system 

requirements for the surface subsystem is represented by 

following modules- Localization, Object Perception, Image 

Recognition, Wireless Communication, Object Manipulator, 

and Propulsion. Accompanying the system requirement are the 

functional requirements which is written in terms of 

quantitative performance to elaborate on the system 

requirements.  
To address these requirements, various solutions to a given 

surface system (sensors, object manipulator, and 

propulsion)  was considered and decided on based on how best 

they met the functional requirements. To do this, Decision 

Making Matrices (DMM) or Error Budgets were created to 

help weigh the merits of all solutions. Due to our limited 

budgets, ease of implementation, cost and availability were 

key factors when deciding on our final solution.  

 

 

1. Sensor Selection 
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The sensor selection was based on the system and 

functional requirements. Decision Making Matrix (DMM) was 

used to compare the variety of sensors that meet the team’s 

functional requirements for the modules of localization, object 

perception, image recognition, and wireless communication. 

Most of the sensors were ultimately decided based on their 

availability and their ease of implementation. This resulted in 

some tradeoff of performance as some low-end, but easier to 

implement sensors were chosen over high-end sensors.  

 

2. Object Manipulator 

One major engineering design decision made by the team 

was for an object manipulator to be used in the Detect and 

Deliver task. The team chose to focus on aiming for the 

smaller multiplier  hole during competition, as we were 

looking to maximize our points in the few tasks we will be 

attempting.  
 

3. Propulsion 

Trolling motors, Jet-pump, and Rim Driven Propellers 

(RDP) were evaluated and compared for the thruster options. 

These solutions were chosen because they had the potential to 

provide a wide range of drive configuration possibilities to 

accomplish the Find Totems and Avoid Obstacles task, as this 

is the seen as the most challenging task to maneuver 

through.  A modified drag equation was created to model the 

trust requirements: 
 

F=ma+12CρV2A+12Cq(V+T)2Z (1) 

 

The coefficient of drag of the WAM-V, C, was previously 

determined by Team Topcat [3]. The density of the sea-water 

and atmosphere are ρ and q respectively. V is velocity of the 

WAM-V and T is the velocity of the wind. A and Z are the 

respective reference areas. This model was used in 

determining the thrust required to propel a fully loaded WAM-

V at 3 m/s with an acceleration of 1 m/s^2. 
Three drive configuration options: Differential Drive, ‘T’ 

Drive, and Holonomic Drive, as shown in Fig 1, were 

considered. Differential drive is the simplest to implement 

with the least amount of cost. It only requires at least one 

thruster per pontoon. However, Differential does not enable 

the WAM-V to achieve lateral movement. A ‘T’ drive 

configuration build off of the Differential drive configuration. 

In a ‘T’ drive, at least one thruster is placed in such a fashion 

where it’s thrust vector is perpendicular to the trust vectors of 

the other thrusters. The additional thruster enables the WAM-

V to move laterally. A Holonomic drive configuration 

provides the greatest degrees of motion,  but it requires at least 

one thruster per corner of the WAM-V. The thrusters in a 

Holonomic drive need to be orientated in such a way that no 

two thrust vectors are parallel. The configuration is required to 

make the WAM-V attain an angular velocity of  5 degrees per 

second. 
 

 
Fig 1. Diagram of the Differential, ‘T’, and Holonomic drive configurations 

respectively. 
 
A maneuverability index was created for the thruster 

orientation to help determine the optimal angle at which the 

motors are mounted. To find the optimal angle, the functional 

requirements were taken into account, and analysis was done 

to ensure an optimal balance between forward thrust and 

maneuverability (e.g. lateral velocity and angular velocity) 

was achieved. Truster separation, total trust, thrust provided 

per thrust, environmental variables (e.g. wind and current), 

and  were factors in determining the optimal angle of 30 

degrees.  

C. Computing Subsystem 

The computing subsystem handles all software choices, 

computing-specific hardware selections, and the design of the 

autonomous system for the WAM-V. Essential ingredients to 

achieve autonomous behaviors are perception, reasoning, and 

motion planning capabilities, which aim to answer the 

corresponding questions: 
 

1. Where am I and what is around me?  
2. What do I need to do?  
3. How do I do it?  

 
         Due to lack of programming, robotics, and control 

systems experience within the team, software and computing 

hardware options were carefully considered with learning 

curves and ease of development heavily weighted in order to 

alleviate the considerable time and manpower budget 

constraints.  Robot Operating System and MATLAB were 

chosen as the primary working environments due to their 

accessibility, integration with each other, and gentler learning 

curves.  

III. VEHICLE DESIGN 

A. Surface Subsystem 

1. Sensor Selection  

In order to fulfill all the system requirements for the surface 

subsystem, multiple sensors were selected. These sensors 

include a global positioning system (GPS), an inertial 

measurement unit (IMU), a light detection and ranging 

(LiDAR), and a camera. The predominant localization method 

is the GPS. Accompanying the GPS is the IMU. Both the GPS 

and Razor IMU were from SparkFun for easier integration 

with Arduino despite the tradeoff of performance. The GPS 

receiver offers a 2.5m positional accuracy. The Hokuyo UST-

20LX LiDAR was selected as the sensor for object perception. 

This lidar offers a maximum detection distance  of 60 meters, 
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angular resolution of 0.25 degree, and refresh rate of 40 Hz. A 

LiDAR was chosen primarily due to its capability to produce a 

mass point cloud dataset. The LiDAR was then incorporated 

with SLAM to provide a real-time map for our WAM-V. The 

Logitech C920 was selected as the sensor for image 

recognition. This webcam offers a 1080p video recording at 

30fps and a 78 degree diagonal field of view (FOV). A 

webcam was chosen over a point and shoot primarily due to 

the cost and interface advantages. A combination of a Wi-Fi 

router and an access point was selected for the module of 

wireless communication. The Wi-Fi router is a standard router 

whose range is extended up to 500m with the Ubiquiti 

PicoStationM2HP. Figure 2 below displays a visual of the 

hardware placement on the WAM-V. 
 

 
Fig 2. Visual of hardware on the WAM-V: A. LiDAR; B. Electronics case; C. 
Battery housing; D. Safety light and access point; E. Webcam; F. IMU. 
 

The sensors had to be integrated into a core framework that 

would allow other parts of the system to access their data and 

fuse them together. ROS  used as a framework for our entire 

system and allowed the data from sensors to be shared 

between modules as needed. The core component of the 

system is the LiDAR as it allows the WAM-V to detect 

objects and is currently used directly with GPS . With the 

LiDAR being a 2D LiDAR, the WAM-V only had a view of a 

plane with 270 degree angle around it.  As a result, the LiDAR 

had to be mounted low so it could see obstacles in front of the 

boat.  Additionally, marine environments are highly dynamic 

so perturbations of the LiDAR produced mapping errors. 

These errors are reduced by considering the roll and sway data 

from the IMU in conjunction with the LiDAR data in order to 

compensate for any movement in the defined 2D mapping 

plane. Rudimentary sensor fusion has been implemented to 

integrate the camera data with the LiDAR data so that the 

WAM-V can correlate object color and shape with object 

position.. Currently, the team is in the process of 

implementing camera data with the LiDAR by taking heading 

information from the camera and checking the map for an 

object in that direction.  

 
2. Object Manipulator 

For the object manipulator, the team decided on a single-

link telescoping arm. The single-link arm had the lowest value 

on the error budget, the lowest cost, and was a simple yet 

effective design. To complete the Detect and Deliver task, the 

WAM-V maneuvers into position alongside the buoy, then the 

arm extends to the buoy and delivers the racquetballs into the 

hole. The final arm design consists of one square aluminum 

tube, acting as the telescoping inner tube, resting within a 

rectangular aluminum tube, with a pin to guide the sliding 

motion of the inner tube.  The arm’s telescopic feature is 

driven by a chain-sprocket mechanism and a stepper motor.  A 

gear motor driving a gearbox at the base of the arm allows the 

arm to move vertically. 
To select an appropriate design for the object manipulator, 

an error budget was used to compare a shooter and a robotic 

arm. An error budget model allocates errors to a process 

which, in this case, is the process of manipulating the 

racquetballs into the target hole on the buoy. This error budget 

predicted the accuracy of the final position of the ball relative 

to the center of the target hole. 

 

  Main Arm 
One of the designs the team considered was a projectile 

launcher. However, this design was eliminated due to its high 

error value in the error budget. Although simple in design, it 

proved to be impractical in the setting of the competition 

location, where strong winds were an important variable to 

consider. Strong winds greatly affect the path of a projectile; 

had we chosen a projectile launcher, our accuracy in 

completing the task would have been much lower. Our next 

best option was determined to be a robotic arm. A multi-link 

arm with a grabber was first considered. However, this design 

was eliminated due to several reasons, including cost, 

precision, and time. The multiple motors and extra material 

required for a multi-link arm would have added considerably 

to the cost of the object manipulator.  The next reason for this 

design’s elimination was precision.  If the WAM-V were to 

move while the arm was grabbing another ball from the 

payload tray, this could cause the arm to lose accuracy when 

repeating this action. The third reason for elimination was 

time.  Compared to other designs, a multi-link arm design 

would have required a significant amount of time for 

programming and manufacturing. With the extremely limited 

timeline the team had to prepare for this competition, extra 

labor had to be eliminated wherever possible.  
The team eliminated a rotating base from the design for 

similar reasons. The inclusion of a rotating base in the design 

would have allowed for an extra degree of freedom (rotation 

about the z-axis). However, due to time and money 

constraints, the team opted for a stationary base. One major 

drawback to this decision is that more precise positioning of 

the WAM-V will be required in order to account for the lack 

of z-axis rotation of the arm. 
 
    End Effector  

Several end effector designs were considered for the object 

manipulator. The team decided that the simultaneous delivery 

of all four racquetballs into the target hole was the best 

method for task completion. Through brainstorming, the team 

came up with a design consisting of a tube to hold the 

racquetballs and a mechanism to deliver them. The design 

options the team considered for the delivery mechanism were 

a conveyer belt, a linear actuator, and spring-loading of the 

racquetballs combined with a moveable gate to release them 

when needed. The final end effector design consists of a tube 

to hold the racquetballs, a rubber band attached to a plunger 
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for spring-loading the balls, and a stopper that acts as a gate, 

holding the balls in the tube before moving out of the way to 

release the balls. The tube for holding the balls is made of 2.5 

inch PVC pipe. The stopper is attached to a servo motor which 

is attached to the end of the PVC pipe. 
 

    Motors 
The motors for the movement of the arm were selected 

based on the torque required to rotate the arm , as well as the 

torque required to extend the inner tube of the arm and hold it 

in position. After free body analysis was completed on the 

system to determine the required torques for these two motors, 

the values came out to 40.146 Nm and 1.477 Nm, 

respectively. A gearmotor was determined to be the proper 

motor for rotating the arm due to its high torque. Calculations 

were done to determine the gear ratio needed for the  to 

operate at a specific current while still supplying the necessary 

torque to rotate the arm and hold it in position. For the 

telescopic mechanism, a stepper motor was chosen for its 

accuracy. An RC servo motor was chosen for the end effector 

due to its ease of use, weight, and availability. 
 

    Coding 
Many options were considered when it came to how the 

team would go about creating a code to work with the arm and 

accomplish the assigned task. MATLAB was chosen to code 

the arm because most of the team members were already 

familiar with MATLAB and its pre-existing applications. 
The first part of the code involved detecting the square on 

the buoy. It was ideal to have the square be in the same 

conditions as if it were the actual competition prop. A simple 

8” x 8” piece of black plastic taped to a white piece of paper 

served as the test target. Then, 55 photos were taken with the 

square present and 100 photos were taken without the square 

to serve as “positive” and “negative” images, respectively. 

The images were then uploaded to the Training Image Labeler 

tool, bound boxes were placed on the squares in each 

individual picture, and the images were saved as a .mat file. 

This file will be essentially tell MATLAB what to look for. 

The file was then loaded onto MATLAB to create a Positive 

Instances file containing the file made, and a Negative 

Instances file which contains all of the images without a 

square. The trainCascadeObjectDetector command was used 

to create an .xml file and choose the parameters, these being 

the number of stages and the false alarm rate. The first attempt 

wasn’t successful because as the sample images were loaded 

for testing, it would see objects other than a square and label 

them as squares. To fix this problem, an additional 555 

positive images and 500 negative images were taken and 

included in the files. At the end of testing, the results were 

much more appropriate and the amount of false alarms was 

reduced while the program accuracy increased. After detecting 

the square, coordinates must be placed on the shape in order 

for the arm to detect the location of the square. This is used to 

determine the square’s location relative to the base of the arm. 
The second part of the code interprets the data from the first 

part and tells the arm which way to move in order to get the 

end of the arm to the square. Using inverse kinematics, we 

calculated the required angles and distances for the arm to 

reach the square. Through arduino, we used these calculations 

to program the motors for the arm to move the arm in x- and 

y-directions until the location of the end of the arm coincides 

with the location of the square.  
 

3. Propulsion 

Trolling motors were ultimately selected. Trolling motors 

met the team’s requirements while providing adequate 

performance. Six total trolling motors are used. At first, four 

30 lbs Minn Kota Endura C2 were planned to be used, but 

these alone did not provide enough thrust to propel the WAM-

V as desired. Two additional 55 lbs motors were acquired and 

mounted near the bow for holonomic drive. The 30 lbs motors 

were mounted to the rear and front thruster mounts were 

designed for the 55 lbs motors. The motors were divided in 

such a way to minimize the difference in the amount of truster 

from each corner of the WAM-V.  
The front mounts mimicked the rear thruster mounts as it 

would be the simplest to manufacture and took up the least 

amount of area on top the skis. Aluminum was used as it is 

lightweight and readily available. The front thruster mounts 

are attached using the existing fastener points on the skis near 

the bow of the WAM-V. Also, a mount for the LiDAR was 

integrated with one of the front thruster mounts, because of its 

required proximity to the water. The rear thruster mounts are 

attached to the buoyancy pods with the provided holes. All 

thrusters are placed inwards in order to reduce the potential of 

collisions. 
Holonomic drive was selected for the final drive 

configuration, with each thruster oriented 30 degrees from the 

pontoons. Holonomic drive offered the greatest degree of 

freedom and flexibility. This angle was decided to be the best 

when compromising between thrust and velocity. The team 

decided that the total forward thrust, Ff, was of greater 

importance than lateral thrust, FL  in order to counteract 

environmental variables, but while maintaining the ability for 

finer positioning with lateral movement.  
 

 Ff=i = 16Ficos(30°)   (2) 

    FL=i = 16Fisin(30°)   (3) 

 

B. Computing Subsystem 

The computing subsystem autonomy is based on a 

hierarchical control system architecture as outlined in Fig 3 

with a high-level diagram of the hardware and software 

module data flow. The selection of such a control scheme 

allows for the various components to be independently 

developed and incrementally tested while lending itself to 

retaining a cohesive overall structure and smoothing the 

overall integration path. [5] 
Motion planning and control are handled by a high-level 

mission planner, a path-planning module, and low-level 

motion controls.  All three modules of the motion planning 

and control were developed in MATLAB.  The mission 

planner uses finite state machines to control the state 

switching needed to regulate the behavior of the WAM-

V.  The mission planner takes input from the motion planning 

and perception modules in order to recognize which tasks the 
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WAM-V needs to perform and then generates the high-level 

plan needed to accomplish the task.  The high-level plans are 

made up of atomic behaviors, which are then combined to 

produce the more complex behaviors needed to accomplish 

competition tasks. The path-planner uses mapping data to find 

a feasible path for the WAM-V to attempt.  This path is 

communicated as a series of waypoints to the mission planner, 

which then execute the needed atomic behaviors. The atomic 

behaviours, such as waypoint following and station keeping, 

are then executed by the low-level motion controls.[5]  
The perception module interprets incoming sensor data to 

make an estimate of the environment and the state of the 

WAM-V.  Image processing and and point cloud processing 

are the primary components of the perception module.  An 

occupancy grid of the environment is generated from point 

cloud data and is populated by other sensor inputs to enhance 

the WAM-V’s perception of itself and the surrounding 

environment. 
The motion planning module is comprised of a path 

planning component, which calculates a feasible path that 

avoids obstacles, and a low-level motion control component 

that is comprised of atomic behaviours such as waypoint 

control, stationkeeping, and other basic behaviours.   

 

 

 
Fig 3. WAM-V hierarchical control system with data flow indicated  

 
The overall software data flow as pictured in Fig 3 illustrates 

the relationships and organization of the computing 

subsystem. The computing subsystem architecture was 

influenced by entrants in the DARPA Grand Challenge and 

DARPA Urban Challenge competitions. [6][7] 
 
  1.   Robot Operating System (ROS) 

Robot operating system (ROS) was originally designed by 

Willow Garage to be a robotics platform that simplified the 

process for creating and connecting robotic behaviors. ROS is 

an open-source software that creates a framework for 

communicating between software modules that determine 

robotic behaviors. It has been used in projects from the 

industrial robots to amateur DIY projects.  It is currently 

designed to run on Ubuntu.  
The framework in ROS consists of a structure built for 

quick data exchange and easy organization. At the top level of 

ROS are the packages which contain all the software modules 

for that package. Packages can be entire projects or parts of 

projects depending on how the organization for the individual 

project needs. The master node, which lies just below the 

package, is created to house registry of all subsequent nodes 

and it is used for quick lookup of nodes. Without the master 

node, the nodes cannot communicate to each other. Nodes are 

the software modules for the robot. The main communication 

for nodes is through the use of topics. Topics are messages 

that can have information sent to or received from them. A 

node or multiple nodes can publish information to a topic and 

other nodes can subscribe to that topic to get that information. 

The benefit to this is multiple topics can talk to each other at 

once and if a node has to be shut down, it will not affect the 

other nodes.  
 

Table 1 
 

ROS PACKAGES 
THESE WERE THE PRE-MADE PACKAGES FROM ROS THAT 

ASSISTED WITH SENSOR AND DRIVER INTEGRATION  
 

ROS package Description 

hector_slam 
Simultaneous Localization and 

Mapping 

rosserial Serial communications driver 

nmea_navsat_driver GPS driver 

razor_9dof_imu IMU driver 

urg_node LIDAR driver 

tf Coordinate transforms  

 
One of the most important features of ROS is the amount of 

information and packages produced by community members 

and companies. Being one of the leading open source robotic 

softwares, there are many pre-made packages to assist with the 

process of creating the behaviors of the robot as seen in Table 

1. These packages along with an expanding community will 

be an important resource for building robotic behaviors.  
MATLAB will be utilized for some of it features in color 

and shape recognition. In order to use these functions, there is 

a robotic toolbox in MathWorks that is designed to interface 

with ROS. Simulink is one of the features that allows for a 

program in MATLAB to be made into a ROS node. Color 

recognition and shape analysis can be made in MATLAB and 

place into ROS with relative ease. We are using Arduino 

boards to produce PWM signals for our motor controllers. It 

communicates by serial with ROS to get the autonomous 

thrust signals and with a remote control receiver to get manual 

signals.  
 
    2.   SLAM 

The current SLAM node, or Simultaneous Localization and 

Mapping node, uses a Hokuyo UST 20LX LIDAR and a 
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Razor IMU to build a 2D mapping of the objective area, to 

track the current location in said area, and to keep a record of 

the previous path followed through the map. The most 

important information that this node provides to other nodes is 

the map and localization data. The data is used by other nodes 

to plan a path through obstacles and to update the PID 

controller to ensure that we remain on any desired path. This 

SLAM node provides the map data to other nodes in the form 

of an Occupancy Grid, which currently shows objects in the 

world as probabilities. This data can easily be converted into a 

Binary Occupancy Grid or matrix for data interpretation in 

other nodes. 
The first design choice made was the decision to work 

solely using a 2D SLAM system. This decision to trade the 

robustness of a 3D mapping system for an easy-to-implement 

2D mapping system was necessary. The 2D SLAM system 

covers the minimum needs for path planning and event 

handling, and took a relatively short amount of time to 

implement, leaving plenty of time for integration with other 

nodes. The SLAM node is built and configured entirely from 

readily available ROS packages. Making use of existing ROS 

packages cut build time to a short two weeks as compared to 

the projected month or longer it would take to write 

transformation and mapping logic from scratch. 
During the integration phase between SLAM and the path 

planning node, the SLAM was configured in such a way so 

that the data could be received as accurately as possible and 

thus the map data contained many data points (high resolution, 

map size). This led to a major issue; the path planning node 

runtime was far too long to be viable. To compensate, the data 

could either be manipulated before reaching the path planning 

algorithm, or the map data point count could be decreased. 

The latter option was chosen for several reasons: 1) It would 

be far less time consuming to reduce the map size and 

resolution than to implement logic to make the map data more 

compatible with Dstar, and 2) The map data would still be 

completely usable. This design choice was a hotfix, and is not 

at all desirable. Ideally in the future, the SLAM node would be 

converted as to map 3D space and to map with the highest 

resolution that is viable for the capabilities of the computing 

hardware. 
 
    3.   Path Planning 

The current Path Planning node uses a MATLAB 

implementation of the D* lite algorithm found in the Robotics 

MATLAB Toolkit. The D* algorithm has been shown to be 

computationally up to two magnitudes of order faster than the 

popular A* algorithm implementation while offering similar 

performance[8]. 
 
    4.   Color Recognition 

In regards to color recognition for the Preliminary Task, the 

objective was to detect the red and green buoys and integrate 

this output with the LiDAR output to keep the heading of the 

WAM-V centered between the two buoys.  Color recognition 

was computed using MATLAB and its built-in functions 

[4].  MATLAB has a Color Thresholder App that allows a 

user to look at an image in different color spaces and control 

the parameters of the color space to isolate a specific 

“color.”  These limitations on the parameters define a 

threshold mask for that “color” which can then be exported as 

a function to be used within a larger set of code.  Using a test 

image, as shown in Fig 4, a threshold mask could be generated 

for “red” and “green.” 
 

 
Fig 4. Test image taken on-site to be used in Color Thresholder App. 
 
 However, through several field tests, it was discovered that 

using only color thresholding was not reliable to detect certain 

colors.  For the Find Totems and Avoid Obstacles Task, it was 

necessary to be able to detect blue and yellow buoys as 

well.  The same method as described previously was used to 

generate and implement a threshold mask for “blue” and 

“yellow.”  Yet, when the code for all four colors was tested on 

images such as in Fig 4, the blue and green detection proved to 

be difficult.  The blue detection detected the sky and the water, 

while the green detection also detected areas of the water.  To 

address this problem, another method in MATLAB was used 

that implemented morphological operations [4].  By adding in 

morphological operations to the color recognition code, some 

of the false detections of color seemed to be eliminated from 

the results but not all of them.   
 
D.   Power Subsystem 
 

   1.   Battery Selection 
Initial cost, energy capacity, weight, volume, and power all 

play a role in battery selection. However, the primary factor in 

autonomous operation is providing enough power. Two 

standard car batteries were selected to power four, 30 lb 

trolling motors in the rear and two, 50 lb trolling motors in the 

front respectively. With the capacity of each lead acid battery 

being 1680 Wh, which allows driving the WAM-V for more 

than four hours, but it may vary with operating conditions. 
The power system for all mechanical and electrical 

components on board include providing power for the LiDAR, 

wireless router, NUC, access point, safety light, relay, and 

other sensor systems such as the Arduino boards.  This system 

is powered by three Lithium Ion battery packs in parallel 

connection, which alter between 16.6V and 11V.  The Lithium 

Ion batteries have become the most common rechargeable 

batteries for electronics as they are durable and relatively 

light-weight. Yet, due to various voltage inputs, four step-up 

and step-down voltage regulators were used to provide 5V, 

9V, 12V, and 24V. After careful consideration, all the 
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electronics were selected based on functional requirements 

and primarily the budget constraint as all maritime equipments 

are highly priced. Due to the budget constraint, the relatively 

low-priced products were selected. Yet, it is feasible to carry 

out the tasks. 
Addition to that, the other electronics and sensor controls, 

such as the Arduinos are linked via USB hub. The USB hub 

was initially hooked up to the primary PC, which did not 

provide enough power for all. As a result, the 5V step-down 

DC-DC converter was connected to the Lithium Ion battery 

packs to provide sufficient and durable power within a simple 

circuit. Lastly, the safety kill switch is powered externally by a 

11.1V Lithium Ion battery pack for safety issues as it is 

required by the Maritime RobotX Challenge guideline. The 

WAM-V system design shown in Fig 5 illustrates the power 

system architecture of the WAM-V (refer to Appendix). 
 

 
Fig 5. Power System Architecture of the WAM-V 

 

IV.   EXPERIMENTAL RESULTS 
 

Team Kanaloa had the unique opportunity to test at the 

location of the competition at Sand Island, Honolulu, Hawaii. 

This gave the team an opportunity to test the WAM-V under 

the environmental conditions that would occur during the 

competition. By having this opportunity, it gave the team an 

advantage over the other teams. The team had planned for 15 

field test days down at Sand Island with at least a four testing 

period for each day. With a total of 60 hours of testing, three 

fourths of the time was devoted to troubleshooting problems. 

This was due to the lack of incremental testing. The team 

developed a plan to tackle this issue to utilize the time wisely 

down at Sand Island.  
Throughout the testing process the capabilities of the 

WAM-V as well as some design flaws were identified, both of 

which shall be addressed in this section.   
 

1. Surface  Subsystem  

To allow the team to test the hardware and software of the 

WAM-V off-site, a prototype robot was proposed and built as 

a test bench. This prototype robot simulated the actual WAM-

V in terms of sensors placement and drive configuration. For 

this purpose, the housing for all the primary electronics was 

modified so that it could integrate with the actual WAM-V as 

well as our prototype robot. 
Since a holonomic drive configuration was implemented, 

the WAM-V has the ability to turn about its center as well as 

move laterally, left and right.  Wooden front thruster mounts 

were first created.  The temporary prototypes were meant to 

verify the effectiveness of holonomic drive. The wooden 

mounts fractured due torsional shear from the 55 lbs motor. 

Next, the maximum bending and torsion stresses was 

calculated and corroborated in SolidWorks with finite element 

analysis (FEA), and empirical data from field tests. Aluminum 

mounts were designed and manufactured. Collision of the 

thrusters was identified as a problem during field testing, so all 

mounts are placed inwards. 
While testing the IMU, it was discovered that the 

electronics enclosure it was contained in caused interference 

and subsequently, the IMU was moved outside of the 

electronics enclosure. A significant range problem was 

identified with the WiFi and the remote kill switch. Both 

ranges were about 70 meters, which is not suitable for the 

competition. Different measures are being assessed to resolve 

this issue. First is to mount the access point higher on the boat, 

the next is to use a bigger antenna, and finally we plan on 

reducing the frequency and data transfer over the access point 

in order to increase its range.  
 

2. Computing Subsystem  

A test performed was gathering data from the lidar on the 

water along with the mapping node. The WAM-V could not 

localize itself without the LiDAR and registered the WAM-V 

as stationary. The mapping node was tested on land and 

utilized SLAM effectively, but does not work if it cannot use 

anything as a reference. Testing will take place on the water in 

the conditions the boat will face in the competition. The test 

concluded that sunlight causes interference in the lidar as the 

mapping node detected tiny spots on the map of objects that 

were not there.  
All of these tests gave us good data that we use to further 

develop our autonomous boat. 
 

V. CONCLUSION 
 

Team Kanaloa has come a long way in a relatively short 

time. As a first year team with limited time and resources we 

have come a long way in developing core competencies and 

being competitive in RobotX. Although, as of completing this 

paper, Team Kanaloa have yet to successfully accomplish a 

task, we are progressing swiftly in order to be able to complete 

at least the Preliminary and the Find Totems and Avoid 

Obstacles tasks. If the time and financial budgets permit, the 

team will continue with the Detect and Deliver task, because 

we decided that it is more important to do a task robustly and 

reliably. Regardless of the outcomes of the competition, Team 

Kanaloa will continue to strive towards achieving greater 

success in future RobotX competitions 
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