
[Team Kanaloa] 1 of 8

2016 RobotX Journal Paper

Aricia Argyris, Ileana Argyris, Amy Bentz, Karla Cortez, Steven Cory, Jonathan De Leon, Raina Ann Duenas, Richard

Eidswick, Nicole Clare Hortizuela, Michael Huang, Kelan Ige, Christianne Izumigawa, Minshik Kang, Steven Kim, Paulo

Lemus, Michael Loui, Aaron Nagamine, Nathan Park, Kobe Taylor, Eric Welton, Allison Wong, and Darren Wong

FACULTY ADVISOR: A ZACHARY TRIMBLE

GRADUATE ADVISOR: BRENNAN YAMAMOTO

Abstract—Team Kanaloa, comprised of students from the

University of Hawaii at Manoa, was given an opportunity to

compete in May of 2016. With a six month time period, many

design decisions were driven by this constraint. The goal was to

execute the Demonstrate Navigation and Control, Find Totems

and Avoid Obstacles, and Detect and Deliver. Unfortunately,

Team Kanaloa was unable to successfully complete a single task;

However, the experience and opportunities gained from this

competition would establish a strong foundation for future

RobotX competitions.

I. INTRODUCTION

Team Kanaloa will be representing the University of

Hawaiʻi at Mānoa in the 2016 Maritime RobotX

Challenge. The team was given an opportunity to participate

in this competition in May of 2016. Due to the limited time

budget of six months, all design decisions were heavily

influenced by this constraint. This also drove the decision to

allocate resources to execute certain tasks rather than all of

them.
Team Kanaloa's mission statement declared that the team

will perform the following tasks: Demonstrate Navigation and

Control, Find Totems and Avoid Obstacles, and Detect and

Deliver. Demonstrate Navigation and Control, also referred to

the Preliminary Task, was selected as this was a requirement

to compete in the competition. Find Totems and Avoid

Obstacles was selected because the requirements to complete

this task, were fundamentals of an autonomous vehicle. As a

team, successfully executing this task would demonstrate that

the WAM-V has the core functionalities to become an

autonomous vehicle and would establish a foundation for

future RobotX competitions. Detect and Deliver was selected

due to the dominant presence of mechanical engineering

majors on the roster. It was best suited to execute a task that

tended to the team’s strengths rather than its weakness.

Team Kanaloa's definition of success for this project was to

perform these tasks robustly and reliably by obtaining at least

80% of the total points for each task. Eighty percent was

selected as the team concluded that the percentage stated,

quantified a competitive score. Meeting this expectation at

competition will demonstrate competency and prove the

team's success. The team's long-term goal for this project was

to establish a foundation within the University of Hawai'i for

future Maritime RobotX competitions. As such, the team will

promote the integration of undergraduate and graduate

students from various majors and skill levels to collaborate in

maritime robotics projects.

II. DESIGN STRATEGY

A. Subsystem Division

Team Kanaloa was divided into four subsystems: Surface,

Computing, Power, and Safety. The Surface subsystem was

responsible for the following sub-subsystems: Sensor

Selection, Object Manipulator, and Propulsion. The team

members within the surface sub-subsystem were responsible

for the design, hardware selection, and mounts for integrating

onto the WAM-V. The Computing subsystem is responsible

for the following sub-subsystems: Robot Operating System

(ROS), Simultaneous Localization and Mapping (SLAM),

Path Planning, and Color Recognition. The team members

within the Computing sub-subsystem were responsible for the

selection of software and computing-specific hardware as well

as the development of codes. The Power subsystem is

responsible for battery selection and allocation of power to all

hardware prescribed by the Surface and Computing

subsystems. The Safety subsystem is responsible to oversee

everything complies with the safety regulations outlined by

the competition.

B. Surface Subsystem

The surface subsystem design process and design decisions

focuses on meeting the system and functional requirements set

forth by the team. The system requirements were set forth

based off the tasks of the competition. The system

requirements for the surface subsystem is represented by

following modules- Localization, Object Perception, Image

Recognition, Wireless Communication, Object Manipulator,

and Propulsion. Accompanying the system requirement are the

functional requirements which is written in terms of

quantitative performance to elaborate on the system

requirements.
To address these requirements, various solutions to a given

surface system (sensors, object manipulator, and

propulsion) was considered and decided on based on how best

they met the functional requirements. To do this, Decision

Making Matrices (DMM) or Error Budgets were created to

help weigh the merits of all solutions. Due to our limited

budgets, ease of implementation, cost and availability were

key factors when deciding on our final solution.

1. Sensor Selection

[Team Kanaloa] 2 of 8

The sensor selection was based on the system and

functional requirements. Decision Making Matrix (DMM) was

used to compare the variety of sensors that meet the team’s

functional requirements for the modules of localization, object

perception, image recognition, and wireless communication.

Most of the sensors were ultimately decided based on their

availability and their ease of implementation. This resulted in

some tradeoff of performance as some low-end, but easier to

implement sensors were chosen over high-end sensors.

2. Object Manipulator

One major engineering design decision made by the team

was for an object manipulator to be used in the Detect and

Deliver task. The team chose to focus on aiming for the

smaller multiplier hole during competition, as we were

looking to maximize our points in the few tasks we will be

attempting.

3. Propulsion

Trolling motors, Jet-pump, and Rim Driven Propellers

(RDP) were evaluated and compared for the thruster options.

These solutions were chosen because they had the potential to

provide a wide range of drive configuration possibilities to

accomplish the Find Totems and Avoid Obstacles task, as this

is the seen as the most challenging task to maneuver

through. A modified drag equation was created to model the

trust requirements:

F=ma+12CρV2A+12Cq(V+T)2Z (1)

The coefficient of drag of the WAM-V, C, was previously

determined by Team Topcat [3]. The density of the sea-water

and atmosphere are ρ and q respectively. V is velocity of the

WAM-V and T is the velocity of the wind. A and Z are the

respective reference areas. This model was used in

determining the thrust required to propel a fully loaded WAM-

V at 3 m/s with an acceleration of 1 m/s^2.
Three drive configuration options: Differential Drive, ‘T’

Drive, and Holonomic Drive, as shown in Fig 1, were

considered. Differential drive is the simplest to implement

with the least amount of cost. It only requires at least one

thruster per pontoon. However, Differential does not enable

the WAM-V to achieve lateral movement. A ‘T’ drive

configuration build off of the Differential drive configuration.

In a ‘T’ drive, at least one thruster is placed in such a fashion

where it’s thrust vector is perpendicular to the trust vectors of

the other thrusters. The additional thruster enables the WAM-

V to move laterally. A Holonomic drive configuration

provides the greatest degrees of motion, but it requires at least

one thruster per corner of the WAM-V. The thrusters in a

Holonomic drive need to be orientated in such a way that no

two thrust vectors are parallel. The configuration is required to

make the WAM-V attain an angular velocity of 5 degrees per

second.

Fig 1. Diagram of the Differential, ‘T’, and Holonomic drive configurations

respectively.

A maneuverability index was created for the thruster

orientation to help determine the optimal angle at which the

motors are mounted. To find the optimal angle, the functional

requirements were taken into account, and analysis was done

to ensure an optimal balance between forward thrust and

maneuverability (e.g. lateral velocity and angular velocity)

was achieved. Truster separation, total trust, thrust provided

per thrust, environmental variables (e.g. wind and current),

and were factors in determining the optimal angle of 30

degrees.

C. Computing Subsystem

The computing subsystem handles all software choices,

computing-specific hardware selections, and the design of the

autonomous system for the WAM-V. Essential ingredients to

achieve autonomous behaviors are perception, reasoning, and

motion planning capabilities, which aim to answer the

corresponding questions:

1. Where am I and what is around me?
2. What do I need to do?
3. How do I do it?

 Due to lack of programming, robotics, and control

systems experience within the team, software and computing

hardware options were carefully considered with learning

curves and ease of development heavily weighted in order to

alleviate the considerable time and manpower budget

constraints. Robot Operating System and MATLAB were

chosen as the primary working environments due to their

accessibility, integration with each other, and gentler learning

curves.

III. VEHICLE DESIGN

A. Surface Subsystem

1. Sensor Selection

In order to fulfill all the system requirements for the surface

subsystem, multiple sensors were selected. These sensors

include a global positioning system (GPS), an inertial

measurement unit (IMU), a light detection and ranging

(LiDAR), and a camera. The predominant localization method

is the GPS. Accompanying the GPS is the IMU. Both the GPS

and Razor IMU were from SparkFun for easier integration

with Arduino despite the tradeoff of performance. The GPS

receiver offers a 2.5m positional accuracy. The Hokuyo UST-

20LX LiDAR was selected as the sensor for object perception.

This lidar offers a maximum detection distance of 60 meters,

[Team Kanaloa] 3 of 8

angular resolution of 0.25 degree, and refresh rate of 40 Hz. A

LiDAR was chosen primarily due to its capability to produce a

mass point cloud dataset. The LiDAR was then incorporated

with SLAM to provide a real-time map for our WAM-V. The

Logitech C920 was selected as the sensor for image

recognition. This webcam offers a 1080p video recording at

30fps and a 78 degree diagonal field of view (FOV). A

webcam was chosen over a point and shoot primarily due to

the cost and interface advantages. A combination of a Wi-Fi

router and an access point was selected for the module of

wireless communication. The Wi-Fi router is a standard router

whose range is extended up to 500m with the Ubiquiti

PicoStationM2HP. Figure 2 below displays a visual of the

hardware placement on the WAM-V.

Fig 2. Visual of hardware on the WAM-V: A. LiDAR; B. Electronics case; C.
Battery housing; D. Safety light and access point; E. Webcam; F. IMU.

The sensors had to be integrated into a core framework that

would allow other parts of the system to access their data and

fuse them together. ROS used as a framework for our entire

system and allowed the data from sensors to be shared

between modules as needed. The core component of the

system is the LiDAR as it allows the WAM-V to detect

objects and is currently used directly with GPS . With the

LiDAR being a 2D LiDAR, the WAM-V only had a view of a

plane with 270 degree angle around it. As a result, the LiDAR

had to be mounted low so it could see obstacles in front of the

boat. Additionally, marine environments are highly dynamic

so perturbations of the LiDAR produced mapping errors.

These errors are reduced by considering the roll and sway data

from the IMU in conjunction with the LiDAR data in order to

compensate for any movement in the defined 2D mapping

plane. Rudimentary sensor fusion has been implemented to

integrate the camera data with the LiDAR data so that the

WAM-V can correlate object color and shape with object

position.. Currently, the team is in the process of

implementing camera data with the LiDAR by taking heading

information from the camera and checking the map for an

object in that direction.

2. Object Manipulator

For the object manipulator, the team decided on a single-

link telescoping arm. The single-link arm had the lowest value

on the error budget, the lowest cost, and was a simple yet

effective design. To complete the Detect and Deliver task, the

WAM-V maneuvers into position alongside the buoy, then the

arm extends to the buoy and delivers the racquetballs into the

hole. The final arm design consists of one square aluminum

tube, acting as the telescoping inner tube, resting within a

rectangular aluminum tube, with a pin to guide the sliding

motion of the inner tube. The arm’s telescopic feature is

driven by a chain-sprocket mechanism and a stepper motor. A

gear motor driving a gearbox at the base of the arm allows the

arm to move vertically.
To select an appropriate design for the object manipulator,

an error budget was used to compare a shooter and a robotic

arm. An error budget model allocates errors to a process

which, in this case, is the process of manipulating the

racquetballs into the target hole on the buoy. This error budget

predicted the accuracy of the final position of the ball relative

to the center of the target hole.

 Main Arm
One of the designs the team considered was a projectile

launcher. However, this design was eliminated due to its high

error value in the error budget. Although simple in design, it

proved to be impractical in the setting of the competition

location, where strong winds were an important variable to

consider. Strong winds greatly affect the path of a projectile;

had we chosen a projectile launcher, our accuracy in

completing the task would have been much lower. Our next

best option was determined to be a robotic arm. A multi-link

arm with a grabber was first considered. However, this design

was eliminated due to several reasons, including cost,

precision, and time. The multiple motors and extra material

required for a multi-link arm would have added considerably

to the cost of the object manipulator. The next reason for this

design’s elimination was precision. If the WAM-V were to

move while the arm was grabbing another ball from the

payload tray, this could cause the arm to lose accuracy when

repeating this action. The third reason for elimination was

time. Compared to other designs, a multi-link arm design

would have required a significant amount of time for

programming and manufacturing. With the extremely limited

timeline the team had to prepare for this competition, extra

labor had to be eliminated wherever possible.
The team eliminated a rotating base from the design for

similar reasons. The inclusion of a rotating base in the design

would have allowed for an extra degree of freedom (rotation

about the z-axis). However, due to time and money

constraints, the team opted for a stationary base. One major

drawback to this decision is that more precise positioning of

the WAM-V will be required in order to account for the lack

of z-axis rotation of the arm.

 End Effector

Several end effector designs were considered for the object

manipulator. The team decided that the simultaneous delivery

of all four racquetballs into the target hole was the best

method for task completion. Through brainstorming, the team

came up with a design consisting of a tube to hold the

racquetballs and a mechanism to deliver them. The design

options the team considered for the delivery mechanism were

a conveyer belt, a linear actuator, and spring-loading of the

racquetballs combined with a moveable gate to release them

when needed. The final end effector design consists of a tube

to hold the racquetballs, a rubber band attached to a plunger

[Team Kanaloa] 4 of 8

for spring-loading the balls, and a stopper that acts as a gate,

holding the balls in the tube before moving out of the way to

release the balls. The tube for holding the balls is made of 2.5

inch PVC pipe. The stopper is attached to a servo motor which

is attached to the end of the PVC pipe.

 Motors
The motors for the movement of the arm were selected

based on the torque required to rotate the arm , as well as the

torque required to extend the inner tube of the arm and hold it

in position. After free body analysis was completed on the

system to determine the required torques for these two motors,

the values came out to 40.146 Nm and 1.477 Nm,

respectively. A gearmotor was determined to be the proper

motor for rotating the arm due to its high torque. Calculations

were done to determine the gear ratio needed for the to

operate at a specific current while still supplying the necessary

torque to rotate the arm and hold it in position. For the

telescopic mechanism, a stepper motor was chosen for its

accuracy. An RC servo motor was chosen for the end effector

due to its ease of use, weight, and availability.

 Coding
Many options were considered when it came to how the

team would go about creating a code to work with the arm and

accomplish the assigned task. MATLAB was chosen to code

the arm because most of the team members were already

familiar with MATLAB and its pre-existing applications.
The first part of the code involved detecting the square on

the buoy. It was ideal to have the square be in the same

conditions as if it were the actual competition prop. A simple

8” x 8” piece of black plastic taped to a white piece of paper

served as the test target. Then, 55 photos were taken with the

square present and 100 photos were taken without the square

to serve as “positive” and “negative” images, respectively.

The images were then uploaded to the Training Image Labeler

tool, bound boxes were placed on the squares in each

individual picture, and the images were saved as a .mat file.

This file will be essentially tell MATLAB what to look for.

The file was then loaded onto MATLAB to create a Positive

Instances file containing the file made, and a Negative

Instances file which contains all of the images without a

square. The trainCascadeObjectDetector command was used

to create an .xml file and choose the parameters, these being

the number of stages and the false alarm rate. The first attempt

wasn’t successful because as the sample images were loaded

for testing, it would see objects other than a square and label

them as squares. To fix this problem, an additional 555

positive images and 500 negative images were taken and

included in the files. At the end of testing, the results were

much more appropriate and the amount of false alarms was

reduced while the program accuracy increased. After detecting

the square, coordinates must be placed on the shape in order

for the arm to detect the location of the square. This is used to

determine the square’s location relative to the base of the arm.
The second part of the code interprets the data from the first

part and tells the arm which way to move in order to get the

end of the arm to the square. Using inverse kinematics, we

calculated the required angles and distances for the arm to

reach the square. Through arduino, we used these calculations

to program the motors for the arm to move the arm in x- and

y-directions until the location of the end of the arm coincides

with the location of the square.

3. Propulsion

Trolling motors were ultimately selected. Trolling motors

met the team’s requirements while providing adequate

performance. Six total trolling motors are used. At first, four

30 lbs Minn Kota Endura C2 were planned to be used, but

these alone did not provide enough thrust to propel the WAM-

V as desired. Two additional 55 lbs motors were acquired and

mounted near the bow for holonomic drive. The 30 lbs motors

were mounted to the rear and front thruster mounts were

designed for the 55 lbs motors. The motors were divided in

such a way to minimize the difference in the amount of truster

from each corner of the WAM-V.
The front mounts mimicked the rear thruster mounts as it

would be the simplest to manufacture and took up the least

amount of area on top the skis. Aluminum was used as it is

lightweight and readily available. The front thruster mounts

are attached using the existing fastener points on the skis near

the bow of the WAM-V. Also, a mount for the LiDAR was

integrated with one of the front thruster mounts, because of its

required proximity to the water. The rear thruster mounts are

attached to the buoyancy pods with the provided holes. All

thrusters are placed inwards in order to reduce the potential of

collisions.
Holonomic drive was selected for the final drive

configuration, with each thruster oriented 30 degrees from the

pontoons. Holonomic drive offered the greatest degree of

freedom and flexibility. This angle was decided to be the best

when compromising between thrust and velocity. The team

decided that the total forward thrust, Ff, was of greater

importance than lateral thrust, FL in order to counteract

environmental variables, but while maintaining the ability for

finer positioning with lateral movement.

 Ff=i = 16Ficos(30°) (2)

 FL=i = 16Fisin(30°) (3)

B. Computing Subsystem

The computing subsystem autonomy is based on a

hierarchical control system architecture as outlined in Fig 3

with a high-level diagram of the hardware and software

module data flow. The selection of such a control scheme

allows for the various components to be independently

developed and incrementally tested while lending itself to

retaining a cohesive overall structure and smoothing the

overall integration path. [5]
Motion planning and control are handled by a high-level

mission planner, a path-planning module, and low-level

motion controls. All three modules of the motion planning

and control were developed in MATLAB. The mission

planner uses finite state machines to control the state

switching needed to regulate the behavior of the WAM-

V. The mission planner takes input from the motion planning

and perception modules in order to recognize which tasks the

[Team Kanaloa] 5 of 8

WAM-V needs to perform and then generates the high-level

plan needed to accomplish the task. The high-level plans are

made up of atomic behaviors, which are then combined to

produce the more complex behaviors needed to accomplish

competition tasks. The path-planner uses mapping data to find

a feasible path for the WAM-V to attempt. This path is

communicated as a series of waypoints to the mission planner,

which then execute the needed atomic behaviors. The atomic

behaviours, such as waypoint following and station keeping,

are then executed by the low-level motion controls.[5]
The perception module interprets incoming sensor data to

make an estimate of the environment and the state of the

WAM-V. Image processing and and point cloud processing

are the primary components of the perception module. An

occupancy grid of the environment is generated from point

cloud data and is populated by other sensor inputs to enhance

the WAM-V’s perception of itself and the surrounding

environment.
The motion planning module is comprised of a path

planning component, which calculates a feasible path that

avoids obstacles, and a low-level motion control component

that is comprised of atomic behaviours such as waypoint

control, stationkeeping, and other basic behaviours.

Fig 3. WAM-V hierarchical control system with data flow indicated

The overall software data flow as pictured in Fig 3 illustrates

the relationships and organization of the computing

subsystem. The computing subsystem architecture was

influenced by entrants in the DARPA Grand Challenge and

DARPA Urban Challenge competitions. [6][7]

 1. Robot Operating System (ROS)

Robot operating system (ROS) was originally designed by

Willow Garage to be a robotics platform that simplified the

process for creating and connecting robotic behaviors. ROS is

an open-source software that creates a framework for

communicating between software modules that determine

robotic behaviors. It has been used in projects from the

industrial robots to amateur DIY projects. It is currently

designed to run on Ubuntu.
The framework in ROS consists of a structure built for

quick data exchange and easy organization. At the top level of

ROS are the packages which contain all the software modules

for that package. Packages can be entire projects or parts of

projects depending on how the organization for the individual

project needs. The master node, which lies just below the

package, is created to house registry of all subsequent nodes

and it is used for quick lookup of nodes. Without the master

node, the nodes cannot communicate to each other. Nodes are

the software modules for the robot. The main communication

for nodes is through the use of topics. Topics are messages

that can have information sent to or received from them. A

node or multiple nodes can publish information to a topic and

other nodes can subscribe to that topic to get that information.

The benefit to this is multiple topics can talk to each other at

once and if a node has to be shut down, it will not affect the

other nodes.

Table 1

ROS PACKAGES
THESE WERE THE PRE-MADE PACKAGES FROM ROS THAT

ASSISTED WITH SENSOR AND DRIVER INTEGRATION

ROS package Description

hector_slam
Simultaneous Localization and

Mapping

rosserial Serial communications driver

nmea_navsat_driver GPS driver

razor_9dof_imu IMU driver

urg_node LIDAR driver

tf Coordinate transforms

One of the most important features of ROS is the amount of

information and packages produced by community members

and companies. Being one of the leading open source robotic

softwares, there are many pre-made packages to assist with the

process of creating the behaviors of the robot as seen in Table

1. These packages along with an expanding community will

be an important resource for building robotic behaviors.
MATLAB will be utilized for some of it features in color

and shape recognition. In order to use these functions, there is

a robotic toolbox in MathWorks that is designed to interface

with ROS. Simulink is one of the features that allows for a

program in MATLAB to be made into a ROS node. Color

recognition and shape analysis can be made in MATLAB and

place into ROS with relative ease. We are using Arduino

boards to produce PWM signals for our motor controllers. It

communicates by serial with ROS to get the autonomous

thrust signals and with a remote control receiver to get manual

signals.

 2. SLAM

The current SLAM node, or Simultaneous Localization and

Mapping node, uses a Hokuyo UST 20LX LIDAR and a

[Team Kanaloa] 6 of 8

Razor IMU to build a 2D mapping of the objective area, to

track the current location in said area, and to keep a record of

the previous path followed through the map. The most

important information that this node provides to other nodes is

the map and localization data. The data is used by other nodes

to plan a path through obstacles and to update the PID

controller to ensure that we remain on any desired path. This

SLAM node provides the map data to other nodes in the form

of an Occupancy Grid, which currently shows objects in the

world as probabilities. This data can easily be converted into a

Binary Occupancy Grid or matrix for data interpretation in

other nodes.
The first design choice made was the decision to work

solely using a 2D SLAM system. This decision to trade the

robustness of a 3D mapping system for an easy-to-implement

2D mapping system was necessary. The 2D SLAM system

covers the minimum needs for path planning and event

handling, and took a relatively short amount of time to

implement, leaving plenty of time for integration with other

nodes. The SLAM node is built and configured entirely from

readily available ROS packages. Making use of existing ROS

packages cut build time to a short two weeks as compared to

the projected month or longer it would take to write

transformation and mapping logic from scratch.
During the integration phase between SLAM and the path

planning node, the SLAM was configured in such a way so

that the data could be received as accurately as possible and

thus the map data contained many data points (high resolution,

map size). This led to a major issue; the path planning node

runtime was far too long to be viable. To compensate, the data

could either be manipulated before reaching the path planning

algorithm, or the map data point count could be decreased.

The latter option was chosen for several reasons: 1) It would

be far less time consuming to reduce the map size and

resolution than to implement logic to make the map data more

compatible with Dstar, and 2) The map data would still be

completely usable. This design choice was a hotfix, and is not

at all desirable. Ideally in the future, the SLAM node would be

converted as to map 3D space and to map with the highest

resolution that is viable for the capabilities of the computing

hardware.

 3. Path Planning

The current Path Planning node uses a MATLAB

implementation of the D* lite algorithm found in the Robotics

MATLAB Toolkit. The D* algorithm has been shown to be

computationally up to two magnitudes of order faster than the

popular A* algorithm implementation while offering similar

performance[8].

 4. Color Recognition

In regards to color recognition for the Preliminary Task, the

objective was to detect the red and green buoys and integrate

this output with the LiDAR output to keep the heading of the

WAM-V centered between the two buoys. Color recognition

was computed using MATLAB and its built-in functions

[4]. MATLAB has a Color Thresholder App that allows a

user to look at an image in different color spaces and control

the parameters of the color space to isolate a specific

“color.” These limitations on the parameters define a

threshold mask for that “color” which can then be exported as

a function to be used within a larger set of code. Using a test

image, as shown in Fig 4, a threshold mask could be generated

for “red” and “green.”

Fig 4. Test image taken on-site to be used in Color Thresholder App.

 However, through several field tests, it was discovered that

using only color thresholding was not reliable to detect certain

colors. For the Find Totems and Avoid Obstacles Task, it was

necessary to be able to detect blue and yellow buoys as

well. The same method as described previously was used to

generate and implement a threshold mask for “blue” and

“yellow.” Yet, when the code for all four colors was tested on

images such as in Fig 4, the blue and green detection proved to

be difficult. The blue detection detected the sky and the water,

while the green detection also detected areas of the water. To

address this problem, another method in MATLAB was used

that implemented morphological operations [4]. By adding in

morphological operations to the color recognition code, some

of the false detections of color seemed to be eliminated from

the results but not all of them.

D. Power Subsystem

 1. Battery Selection
Initial cost, energy capacity, weight, volume, and power all

play a role in battery selection. However, the primary factor in

autonomous operation is providing enough power. Two

standard car batteries were selected to power four, 30 lb

trolling motors in the rear and two, 50 lb trolling motors in the

front respectively. With the capacity of each lead acid battery

being 1680 Wh, which allows driving the WAM-V for more

than four hours, but it may vary with operating conditions.
The power system for all mechanical and electrical

components on board include providing power for the LiDAR,

wireless router, NUC, access point, safety light, relay, and

other sensor systems such as the Arduino boards. This system

is powered by three Lithium Ion battery packs in parallel

connection, which alter between 16.6V and 11V. The Lithium

Ion batteries have become the most common rechargeable

batteries for electronics as they are durable and relatively

light-weight. Yet, due to various voltage inputs, four step-up

and step-down voltage regulators were used to provide 5V,

9V, 12V, and 24V. After careful consideration, all the

[Team Kanaloa] 7 of 8

electronics were selected based on functional requirements

and primarily the budget constraint as all maritime equipments

are highly priced. Due to the budget constraint, the relatively

low-priced products were selected. Yet, it is feasible to carry

out the tasks.
Addition to that, the other electronics and sensor controls,

such as the Arduinos are linked via USB hub. The USB hub

was initially hooked up to the primary PC, which did not

provide enough power for all. As a result, the 5V step-down

DC-DC converter was connected to the Lithium Ion battery

packs to provide sufficient and durable power within a simple

circuit. Lastly, the safety kill switch is powered externally by a

11.1V Lithium Ion battery pack for safety issues as it is

required by the Maritime RobotX Challenge guideline. The

WAM-V system design shown in Fig 5 illustrates the power

system architecture of the WAM-V (refer to Appendix).

Fig 5. Power System Architecture of the WAM-V

IV. EXPERIMENTAL RESULTS

Team Kanaloa had the unique opportunity to test at the

location of the competition at Sand Island, Honolulu, Hawaii.

This gave the team an opportunity to test the WAM-V under

the environmental conditions that would occur during the

competition. By having this opportunity, it gave the team an

advantage over the other teams. The team had planned for 15

field test days down at Sand Island with at least a four testing

period for each day. With a total of 60 hours of testing, three

fourths of the time was devoted to troubleshooting problems.

This was due to the lack of incremental testing. The team

developed a plan to tackle this issue to utilize the time wisely

down at Sand Island.
Throughout the testing process the capabilities of the

WAM-V as well as some design flaws were identified, both of

which shall be addressed in this section.

1. Surface Subsystem

To allow the team to test the hardware and software of the

WAM-V off-site, a prototype robot was proposed and built as

a test bench. This prototype robot simulated the actual WAM-

V in terms of sensors placement and drive configuration. For

this purpose, the housing for all the primary electronics was

modified so that it could integrate with the actual WAM-V as

well as our prototype robot.
Since a holonomic drive configuration was implemented,

the WAM-V has the ability to turn about its center as well as

move laterally, left and right. Wooden front thruster mounts

were first created. The temporary prototypes were meant to

verify the effectiveness of holonomic drive. The wooden

mounts fractured due torsional shear from the 55 lbs motor.

Next, the maximum bending and torsion stresses was

calculated and corroborated in SolidWorks with finite element

analysis (FEA), and empirical data from field tests. Aluminum

mounts were designed and manufactured. Collision of the

thrusters was identified as a problem during field testing, so all

mounts are placed inwards.
While testing the IMU, it was discovered that the

electronics enclosure it was contained in caused interference

and subsequently, the IMU was moved outside of the

electronics enclosure. A significant range problem was

identified with the WiFi and the remote kill switch. Both

ranges were about 70 meters, which is not suitable for the

competition. Different measures are being assessed to resolve

this issue. First is to mount the access point higher on the boat,

the next is to use a bigger antenna, and finally we plan on

reducing the frequency and data transfer over the access point

in order to increase its range.

2. Computing Subsystem

A test performed was gathering data from the lidar on the

water along with the mapping node. The WAM-V could not

localize itself without the LiDAR and registered the WAM-V

as stationary. The mapping node was tested on land and

utilized SLAM effectively, but does not work if it cannot use

anything as a reference. Testing will take place on the water in

the conditions the boat will face in the competition. The test

concluded that sunlight causes interference in the lidar as the

mapping node detected tiny spots on the map of objects that

were not there.
All of these tests gave us good data that we use to further

develop our autonomous boat.

V. CONCLUSION

Team Kanaloa has come a long way in a relatively short

time. As a first year team with limited time and resources we

have come a long way in developing core competencies and

being competitive in RobotX. Although, as of completing this

paper, Team Kanaloa have yet to successfully accomplish a

task, we are progressing swiftly in order to be able to complete

at least the Preliminary and the Find Totems and Avoid

Obstacles tasks. If the time and financial budgets permit, the

team will continue with the Detect and Deliver task, because

we decided that it is more important to do a task robustly and

reliably. Regardless of the outcomes of the competition, Team

Kanaloa will continue to strive towards achieving greater

success in future RobotX competitions

VI. ACKNOWLEDGEMENTS

Team Kanaloa would like to express gratitude to the

following individuals who have contributed their time, money,

and effort to ensure the success of this project over the past six

months:

Dr. A Zachary Trimble

[Team Kanaloa] 8 of 8

University of Hawaii, College of Engineering, Mechanical

Engineering, Director of Renewable Energy, Industrial

Automation, and Precision Engineering (RIP) Laboratory

Mark Rognstad
University of Hawaii, Hawai'i Institute of Geophysics and

Planetology, SOEST

Anthony Sylvester
Makai Ocean Engineering

João Tasso de Figueiredo Borges de Sousa
Electrical and Computer Engineering Department

Porto University, Portugal

Shojiro Ishibashi
JAMSTEC Researcher

Dr. Choi Song
University of Hawaii, College of Engineering, Assistant to the

Dean

Team Kanaloa would also like to acknowledge

donations and sponsorships that were granted to the team by

the following organizations:

Applied Research Laboratory at University of Hawaii
Banner Engineering

College of Engineering at University of Hawaii
IEEE

Makai Ocean Engineering
Marine Technology Society

MathWorks
Office of Naval Research

RIP Laboratory at University of Hawaii

Thank you all so much!

VI. REFERENCES

1. T. MathWorks, "Features - Simulink - MathWorks United

Kingdom," 1994. [Online]. Available:
https://www.mathworks.com/products/simulink/features.html#buil

ding_the_model. Accessed: 2016.

2. "Documentation - ROS Wiki,". [Online]. Available:
http://wiki.ros.org/. Accessed: 2016.

3. Team Topcat, Maritime RobotX Journal, pp. 3–4, 2014.

4. T. MathWorks, "RoboNation - MathWorks United Kingdom,"
1994. [Online]. Available:

https://www.mathworks.com/academia/student-

competitions/robonation/. Accessed: 2016.
5. J. T. F. B. Sousa, “Short course on control architectures for

unmanned vehicles”, lecture,

6. S. Thrun et al., “Stanley: The robot that won the DARPA Grand
Challenge,” J. F. Robot., vol. 23, no. 9, pp. 661–692, Sep. 2006.

7. M. Montemerlo et al., “Junior: The stanford entry in the urban

challenge,” Springer Tracts Adv. Robot., vol. 56, no. October
2005, pp. 91–123, 2009

8. S. Koenig and M. Likhachev, “D* Lite,” Proc. Eighteenth Natl.

Conf. Artif. Intell., pp. 476–483, 2002.

VII. APPENDIX

[1]

[2]

https://www.mathworks.com/products/simulink/features.html#building_the_model
https://www.mathworks.com/products/simulink/features.html#building_the_model

