
Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

VRX Competition Technical Guide
Virtual RobotX 2022 Competition www.RobotX.org

1. Introduction
The purpose of this document is to provide Virtual RobotX (VRX) teams with the information necessary to
successfully prepare for and participate in the VRX competition. It covers the following topics: the robotic
platform, competition tasks, propulsion and sensor configuration, runs and environmental envelopes, the
application programming interface (API), and instructions for submitting your code for the competition.

Related documents include the following:
● Virtual RobotX 2022 Competition and Task Descriptions

2. Robotic Platform
The VRX competition will be executed using the Gazebo simulation environment. All teams must use the
simulated version of the Wave Adaptive Modular Vessel (WAM-V) surface craft distributed with the VRX
software. The WAM-V as supplied by the VRX software is standard for all teams. No modification of the
standard platform model (URDF description, etc.) is allowed during competition.

The simulated WAM-V includes models of the rigid body dynamics, hydrodynamics, external forcing (waves
and wind) and propulsion. The rigid body dynamics are captured via the Gazebo physics engine. The
hydrodynamic, external forcing and propulsion forces are generated by VRX plugins with fixed parameters.
No modification of the standard VRX model parameters is allowed during competition.

Figure 1: Simulated WAM-V model

1 of 14

https://github.com/osrf/vrx
https://github.com/osrf/vrx


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

3. Propulsion configuration
As part of the competition, teams may customize the propulsion system with which their WAM-V is
equipped. Vehicle propulsion is provided by a set of identical thrusters. The details of the thruster model are
available through the documentation page of the VRX Wiki. The maximum number of allowed thrusters is
four. The pose (position and attitude relative to the vessel) of each thruster is configurable via a YAML file.

In order to preserve realism, not all possible thruster positions will be accepted. The valid set of allowed
positions are represented in Figure 2 as five red bounding boxes. In order for a thruster configuration to be
considered valid, the origin of each thruster must be contained within one of these bounding boxes and
each bounding box must contain no more than one thruster. Additionally, all thrusters have the ability to
dynamically rotate and thus change the thrust direction.

Teams can visit the tutorials section of the VRX website for information about how to customize the WAM-V
for running simulations locally. The same tutorials describe the format of the YAML file used for propulsion
configuration.

During an actual event, teams will need to provide a valid YAML file named propulsion.yaml with their
propulsion configuration. Working examples of YAML configuration files with typical propulsion
configurations are described in the VRX tutorials.

Figure 2: Allowed thruster regions in WAM-V

2 of 14

https://github.com/osrf/vrx/wiki/documentation
https://github.com/osrf/vrx/wiki/tutorials
https://github.com/osrf/vrx/wiki/tutorials


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Table 1: Dimensions of Bounding Boxes

Name Position and Orientation of Center
of Bounding Box (x y z R P Y)
(Relative to the Origin of the
WAM-V)

Size (x y z)

Back Left -2.25 1 0 0 0 0 1 1 1.2

Back Right -2.25 -1 0 0 0 0 1 1 1.2

Front Left 1 1 0 0 0 0 1 1 1.2

Front Right 1 -1 0 0 0 0 1 1 1.2

Center 0.25 0 0 0 0 0 2.5 1 1.2

4. Sensor configuration
As with the propulsion system, teams should customize the sensor system with which their WAM-Vs are
equipped by choosing the type of sensors and placement of those sensors. Standard sensors include
navigation sensors (GPS and IMU) and perception sensors (cameras and lidars). In addition to configuring
sensor types, teams may also customize the sensor placement.

Table 2: Maximum number of sensors allowed per sensor type

Sensor type Maximum number of instances

Camera 3
Lidar 2
GPS/IMU 1

The available sensor types and their performance characteristics have been chosen to reflect commonly
used sensors from the RobotX physical competition. These characteristics do not represent any specific
sensor choice but are meant to be representative of typical hardware options.

Note: While the sensor performance specifications below (update rates, noise values, etc.) are detailed, the
exact values of these specifications may change before the final release of this document.

4.1. Navigation Sensor
A single standard navigation sensor, representing a GPS-aided IMU, will be used for VRX. This single sensor is
simulated through the use of two Gazebo plugins (see the hector_gazebo_plugins) which generate GPS
information (position and velocity) and IMU information (attitude, attitude rate and accelerations). While
these two measurements are presented separately, the characteristics of the measurements are consistent
with a sensor that estimates a complete navigation solution, e.g., a GPS-aided IMU.

3 of 14

http://wiki.ros.org/hector_gazebo_plugins


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Table 3: Characteristics of VRX Navigation Sensor

GPS-Aided IMU

GPS

Update Rate 20 Hz

Horizontal Position Noise1 0.85 m

Vertical Position Noise 2.0 m

Velocity Noise 0.1 m/s

IMU

Update Rate 100 Hz

Acceleration Offset/Bias +/- 0.002 g

Acceleration Noise 0.275 g

Attitude Rate Noise 0.08 degrees/s

Heading Noise 0.8 degrees

4.2. Camera Sensor
A standard camera is simulated via the Gazebo camera plugin. Teams may provision their system with up to
three cameras.

Table 4: Characteristics of VRX Camera Sensor

Camera

Update Rate 30 Hz

Resolution 1280x720 px

Color format R8G8B8

4.3. Lidar Sensors
Two types of lidar sensors are provided for VRX: 16 beam and 32 beam. Teams may provision their system
with up to two lidars.

Table 5: Characteristics of VRX Lidar Sensors

16 Beam 32 Beam

Update Rate [Hz] 10 10

Lasers (Number of beams) 16 32

Samples (Number of horizontal rotating samples) 1875 2187

Min Range [m] 0.9 0.9

Max Range [m] 130 130

Noise [m] 0.01 0.01

1 Unless otherwise noted, noise values are specified as one standard deviation and represent a Gaussian distribution.

4 of 14



Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Min. Horizontal Angle [rad] − π − π

Max. Horizontal Angle [rad] π π

Min. Vertical Angle [rad] − π
12 0.186−

Max. Vertical Angle [rad]
π
12 0.54

4.4. Sensor Placement
The pose of each sensor is configurable via a YAML file. In order to preserve realism, not all possible sensor
positions will be accepted. The valid set of allowed positions are represented in the next figure as green
bounding boxes. The origin of each sensor needs to be contained within one of these bounding boxes to be
considered valid. Note that the specification of the sensor is not customizable; all teams share the same
sensor types.

Figure 3: Allowed sensor regions in WAM-V

Teams can visit the tutorials section of the VRX Wiki for information about how to customize their WAM-Vs
for running simulations locally. The tutorial also describes the format of the YAML file used for sensor
configuration.

During an actual event, teams will need to provide a valid YAML file, named sensors.yaml, with their
sensor configuration.

5 of 14

https://github.com/osrf/vrx/wiki/tutorials


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

5. Task Information
Teams face multiple independent tasks during VRX. These tasks require different actions from the
participant’s controller code. During every task, the status of the task is published as a custom ROS Task
message over a ROS topic. Table 6 lists the information this message provides about the status of the
simulated task. Please refer to the VRX API section of this document for further details.

Table 6: ROS Task message definition

Field Name Description
name Unique task name (e.g.: “station_keeping”, “wayfinding”).
state The current task state = {initial, ready, running, finished}. See the

Task States section for more information.
ready_time Simulation time at which the task transitions to the ready state.
running_time Simulation time at which the task transitions to the running state.
elapsed_time Elapsed time since the start of the task (since running_time).
remaining_time Remaining task time.
timed_out Whether the task has timed out or not.
score Current task score.

Teams are expected to subscribe to this task ROS topic and select their appropriate robot behavior given the
current task under execution. In addition, teams need to react to the task states accordingly. The initial state
is only used to stabilize the vehicle, allow for initial transients to decay and make sure that all the software
blocks are ready. While the system is in the initial state, teams receive sensor information, but the robot
control will be very limited. In the ready state, teams have full control of their robot and we expect them to
get ready for the start of the task. Teams need to monitor the simulation time published over the clock ROS
topic and compare it with the ready_time and running_time to be prepared to take control of the
vehicle and start the task respectively. Once the task is in the finished state, teams still can control the
vehicle, but the score will not change.

6. Task States

Figure 4: Task states as a function of time

A task can be in one of four different states. The task state is set by Gazebo according to the task
configuration. The current state is included in the task message periodically published on the task
information ROS topic.

6 of 14

https://github.com/osrf/vrx/blob/master/vrx_gazebo/msg/Task.msg
https://github.com/osrf/vrx/blob/master/vrx_gazebo/msg/Task.msg


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

6.1. Initial
After Gazebo starts, the task is in the initial state. The robot’s motion is fixed in the X (surge), Y (sway) and
yaw degrees of freedom, but allowed to move in Z (heave), pitch and roll degrees of freedom. Thus, the
robot is pushed up and down by the waves and wind and will change its orientation (except in yaw) but stays
in the same 2D position. The purpose of this initial state is to allow for simulation startup transients to decay
and for all the user’s software to have sufficient time to initialize.

6.2. Ready
The task transitions to ready when simulation time reaches the value ready_time. In the ready state, the
robot motion is free in all degrees of freedom and is under the participant’s full control. While in the ready
state no scoring is performed.

6.3. Running
The task transitions to running when simulation time reaches the value running_time. In the running
state, the task officially starts. The scoring and the task timer are enabled.

6.4. Finished
The task transitions to finished when the remaining_time field of the task message reaches 0 or when the
task is considered complete. If all task time has been consumed, but the task has not been fully solved, the
field timed_out of the task message will be set to true. The score will not be updated in this state.

7. Runs and Environmental Envelopes
In the competition, each team shall conduct multiple runs per task, where each run will use a different set of
environmental conditions. Though conditions will be distinct from run to run, these distinct configurations
will be identical for each team; i.e., each team will see the same set of conditions as the other teams in the
competition. The subsections below describe elements of the simulation that may change between runs.

7.1. Object Location and Orientation
Relevant objects will be moved between runs to discourage training the team’s controllers to handle known
geometry across runs. This will include the placement of obstacles (for example, buoys or docks), as well as
the starting pose of the robot itself.

7.2. Fog
Gazebo will optionally simulate fog with different densities and colors. The two images below illustrate the
addition of fog to the visual scene.

7 of 14



Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Figure 5: Visual scene with no fog

Figure 6: Visual scene with fog

7.3. Wind
Wind exerts a force on objects in the VRX environment. The total wind velocity is a combination of a
constant mean velocity component and a variable wind speed (i.e., gusting). The variable component of the
wind speed is modeled as a first-order linear spectrum defined by two components: the variability gain and
the variability time constant. The variability gain specifies the magnitude (root-mean-square) of the variable
component of the wind speed, and the variability time constant specifies how rapidly the wind speed
changes with time. For details on the wind model and implementation see the Theory of Operations on the
VRX Wiki For examples of how to change the wind parameters see the tutorial on Changing Simulation
Parameters on the VRX Wiki.

7.4. Waves
Surface waves affect the motion of objects in the simulated environment. The simulated sea state is
generated using a summation of individual regular waves to create the three-dimensional water surface
geometry as a function of time. The amplitudes of the individual waves are determined from sampling a

8 of 14

https://github.com/osrf/vrx/wiki/vrx_theory
https://github.com/osrf/vrx/wiki/changing_plugin_params_tutorial
https://github.com/osrf/vrx/wiki/changing_plugin_params_tutorial


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Pierson-Moskowitz (P-M) ocean wave spectrum. The pertinent parameters associated with specifying a
particular sea state are as follows:

● Peak Period ( ) – wave period with the highest energy.𝑇
𝑝

● Gain ( ) – constant multiplier applied to the individual wave amplitudesγ
● Wave Direction – direction of travel of the wave component corresponding to the peak period
● Wave Angle – angular difference in direction between component waves

The combination of and parameters determine the energy in the specific sea state. For the VRX𝑇
𝑝

γ

competition combinations of and as illustrated in Figure 7 will be used for evaluation.𝑇
𝑝

γ

Figure 7: Envelope for sea state parameters used in VRX evaluation.

For details on the sea state model see the Theory of Operations on the VRX Wiki.

9 of 14

https://github.com/osrf/vrx/wiki/vrx_theory


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

7.5. Ambient Light
The color of the ambient light.  The two images below illustrate changes to the ambient lighting conditions.

Figure 8: Visual scene with reduced ambient light

Figure 9: Visual scene with regular ambient light

10 of 14



Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

7.6. Summary of Environmental Parameters
Table 7 summarizes the ranges of all the parameters that can change during runs:

Table 7: Environmental variable parameters

Gazebo Parameter Minimum value Maximum
value

scene::fog::color [0.7, 0.7, 0.7, 1] [0.9, 0.9, 0.9, 1]
scene::fog::density 0 0.1
scene::ambient [0.3, 0.3, 0.3, 1] [1, 1, 1, 1]
wamv_gazebo::wind_mean_velocity 0 8
wamv_gazebo::wind_variance_gain 0 8
wamv_gazebo::wind_variance_time 2 20
wamv_gazebo::wind_direction 0 360
wamv_gazebo::wave_period

See Figure 7.
wamv_gazebo::wave_gain
wamv_gazebo::wave_direction 0 360
wamv_gazebo::wave_angle 0 360

The characteristics of the simulated environment will be varied during competition runs. Final specifications
for the exact characteristics will be released as part of the final technical specification; however, teams can
expect values to be within the ranges described in the table above.

8. VRX API
VRX provides a ROS interface to the teams for controlling all available actuators, reading sensor information
and sending/receiving notifications. The use of ROS as the interface between the team’s software and the
simulation environment does not require that the team’s software internally use ROS. The intention of the
competition is to be technology agnostic with regard to solution architecture and implementation. However,
a single standard interface is required for the feasibility of the virtual competition. Every effort will be made
to offer all teams support implementing the ROS interface to their software. For teams not familiar with ROS
we highly recommend going through http://wiki.ros.org/ROS/Tutorials to get familiar with ROS and, in
particular, with ROS topics and services.

Tables 8-11 summarize the ROS API used for the competition. Note that all topic names used for propulsion
and sensors are configurable via their respective YAML files.

Table 8: Thruster actuation API (default topics)

Thruster Actuation

Topic Name Description
/wamv/thrusters/<thrustername>_angle Next angle command for the

<thrustername> thruster
/wamv/thrusters/<thrustername>_cmd Next power command for

the <thrustername> thruster

11 of 14

http://wiki.ros.org/ROS/Tutorials


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Table 9: Sensor information API (default topics)

Sensor Information

Topic Name Description
/wamv/sensors/cameras/<sensorname>/camera_info Meta information for

<sensorname> camera.
See CameraInfo message
for details.

/wamv/sensors/cameras/<sensorname>/image_raw Raw image data for
<sensorname> camera.
See Image message for
details.

/wamv/sensors/gps/gps/fix GPS position data.
/wamv/sensors/gps/gps/fix_velocity GPS velocity data.
/wamv/sensors/imu/imu IMU data describing

attitude, attitude rate and
accelerations.

/wamv/sensors/lidars/<sensorname>/points <sensorname> 3D lidar
output

/wamv/sensors/pingers/pinger/range_bearing A distance (range) and
two angles (bearing and
elevation) indicating the
relative position of the
acoustic pinger from the
USV, with noise.

Table 10: Task information API

Tasks2

Topic Name Description
/clock Simulation time
/vrx/task/info Task information

2 Each task can use an additional set of ROS topics/services. Please consult the Virtual RobotX 2022 Competition and Task
Descriptions document for additional information.

12 of 14

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/CameraInfo.html
http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

Table 11: Debug information API (not available during competition)

Debug3

Topic Name Description
/vrx/debug/wind/direction Wind vector (units in degrees and ENU

coordinate)
/vrx/debug/wind/speed Magnitude of the wind
/vrx/debug/contact WAM-V collisions

The interface described above is generic to the entire competition, including all tasks. The task-specific
elements of the interface are described in the Virtual RobotX Competition and Task Descriptions, which
details the additional ROS topics and services used to support individual task execution. Finally, note that the
VRX interface also includes elements that are not used in either the generic or task-specific APIs; these are
not needed for the competition and can be disregarded.

9. Submission and Code Execution

Figure 9: Architecture used to execute competitor code

We expect to receive multiple files from each competitor prior to the event associated with each phase of
the competition. These files will specify different aspects of the WAM-V configuration, as well as the team’s
controller. Please, see the VRX Wiki for an overview of how to participate in each phase, as well as detailed
instructions about how to submit a solution for a given event.

Performance for each task will be evaluated as follows:
1. Each team’s customized WAM-V will be generated.

2. A Docker container running the VRX simulation image will be executed. This container will execute

Gazebo with the VRX environment configured to run a particular task. Additionally, Gazebo will be

configured to record a log of the execution.

3. A ROS bag (log file) will capture all task messages containing the score.

3 All Gazebo topics to query ground truth information and other simulation aspects are available for debugging.

13 of 14

https://github.com/osrf/vrx/wiki/vrx_2022-overview


Virtual RobotX 2022
Competition

10 September 2021
Version 1.0

4. A team’s Docker container (running the team’s image) will be executed. It’s expected that the entry

point of this Docker instance spawns all the necessary elements of the team’s code.

5. The competitor’s code should interact with the simulation via the VRX API, determine the current

task via the VRX API, and try to solve it.

6. When the task has been completed or has timed out, the Gazebo log file and the ROS bag will be

saved and tagged appropriately.

This process will be repeated for each run of each task and for all the teams participating in the event. This
architecture allows the execution of the entire competition in batch mode. Teams may run a competition
themselves locally using the same set of tools that the organization will use during the official events. These
automatic evaluation tools are available in the vrx-docker repository. We encourage all teams to use it for
testing their solutions.

14 of 14

https://github.com/osrf/vrx-docker

