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Abstract – Autonomous Marine Systems (AMS) are 

made up of one or multiple autonomous vessels that 

must coordinate and make decisions based on 

information detecting in the marine environment. 

This paper intends to demonstrate the approach 

pursued by the JCU Robotics team based at James 

Cook University of Townsville, Australia in designing 

and controlling an AMS for the RoboNation RobotX 

International Competition. 

I. INTRODUCTION 

The Parker-McKeough AMS is comprised of two 

composite systems: the McKeough Uncrewed Surface 

Vehicle (USV) and the Parker Uncrewed Aerial Vehicle 

(UAV). The McKeough USV is the designation of JCU 

Robotics’ WAM-V platform, sporting an aerial 

deployment pad which hosts the Parker UAV quadcopter. 

A variety of new tasks were added to ROBOTX 2022 

introducing the requirement of UAV capability. These 

tasks include Task 4 - Wildlife Encounter, Task 8 - UAV 

Replenishment, and Task 9 - UAV Search and Report. To 

complete these, the UAV must be autonomously 

deployed to conduct close area search and report 

operations with a suite of sensors before retrieval.  

II. DESIGN STRATEGY 

A. McKeough USV 

1. General Design Overview 

Manoeuvring behaviour of USVs is governed by a 

common three-level control architecture, composed of 

path and motion planning, dynamic control, localisation 

and mapping. Data acquired from perception sensors such 

as LiDAR, RADAR and cameras advise system 

behaviour in an intelligent manner from identification of 

obstacles, features, and mapping of the surrounding 

environment. The development and investment towards 

automation of terrestrial, marine and air vehicles has 

gained considerable interest in recent years for the 

purpose of minimising risk to human operators. In 

particular, marine operations ranging from search-and-

rescue to oceanographic surveying can be highly volatile 

due to rapidly changing environmental conditions, which 

has increased the need for advanced autonomy of USVs. 

2. Obstacle Avoidance 

To detect buoys and determine their colour, computer 

vision will be utilised. In the outdoor environment, the 

unpredictable changes in lighting conditions, reflections 

from the water, shadows, and background noise will 

negatively affect the accuracy of the outcome. Therefore, 

the following steps should be considered to counteract 

these challenges: 

1. Capture image. 

2. Apply Gaussian filter to minimise undesired 

background noise. 

3. Transform filtered image into HSV and Lab 

colour space to detect green and red buoys 

respectively. Subsequently, apply thresholding 

(upper and lower bounds) within each channel of 

its colour space to remove other objects of 

different colours. 

4. Apply open and close morphology to remove 

salt and pepper noise. 

5. Use OpenCV to detect the contour of the 

threshold image and find the bounding box of the 

detected obstacles if their contour area is greater 

than the threshold area. 

The threshold parameters can be determined from a 

HSV and Lab colour thresholder which can be 

implemented in Python. Specifically, HSV and Lab 

parameters such as upper and lower bound values are 

identified based on their colour properties. Subsequently, 

these threshold values can be imported to the main 

program for real time operations.  

It is assumed that the WAM-V should be able to change 

direction fast enough in any situation when obstacles are 

detected. For efficiency purposes of the Python code, it 

should be sufficient to consider the closest obstacles 

position of each colour i.e., red and green. If there are 

multiple obstacles of the same colour detected, only the 

closest detected red and/or green buoy positions are 

processed for path planning for efficiency.  

The calculation of distance and angle between the 

camera and detected obstacles in the robotic field is 

critical for an ASV to navigate its surroundings, thus what 

follows is a summary of approaches for measuring 
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distance and angle of detected objects to the camera using 

a single camera. Distance estimation requires three main 

parameters, detected pixel height, reference height and 

distance to the obstacle. Specifically, the mentioned 

parameters are used to calculate the focal length of the 

camera and subsequently the estimated distance. Figure 1 

depicts the reference height of the captured object (height 

b), real-time captured image (height a) and actual object 

height (height h). Using the geometrical relationship 

between the height (b), height (h) and known distance, the 

focal length can be calculated using (1). Since the height 

of the object remains unchanged in object plane, the 

distance (d) of the object from the camera can be 

calculated using (2). 

 

Figure 1 Height of Captured Image vs. Actual Image 

𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ =  
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑘𝑛𝑜𝑤𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑘𝑛𝑜𝑤𝑛 ℎ𝑒𝑖𝑔ℎ𝑡
(1) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
 𝑘𝑛𝑜𝑤𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑝𝑖𝑥𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
(2) 

The angle between objects from the camera requires 

information from the camera's horizontal field of view 

(HFOV), resolution of the captured object plane and 

centroid of the detected obstacles. The angle can be 

calculated using (3). Where x is the x-centroid of the 

obstacle and W is the width of the captured object plane. 

 

𝐴𝑛𝑔𝑙𝑒 =  
 (𝑥 − 

𝑊
2

) ∗
𝐻𝐹𝑂𝑉

2
𝑊
2

(3) 

 

 

Figure 2 Layout of the Object Plane 

 

B. Parker UAV 

The approach to the design of the UAV was to find the 

most efficient manner to achieve a craft capable of 

providing a stabilised platform with a flight duration of 

approximately 20 minutes and AUW of less than 7kg. 

After various design simulations and calculations the 

team arrived on a modified Jormungandr - Midgard 

Serpent X - Class racing frame -True X quadcopter, with 

a drive system consisting of four Xnova M4808-700kV, 

throttle limited to 490kV, fitted with 15x7x3 propellers. 

This combination allows for a total AUW lift capacity of 

5.5kg, for approximately 20 minutes when powered by a 

4S6P, 18650, 18000mAh Li-ION battery. 

III. VEHICLE DESIGN 

A. McKeough USV 

1. System Identification and Control 

Model-based control methods such as sliding mode, 

model predictive, and model reference adaptive controls 

have demonstrated superior performance in terms of 

stability and accuracy, and effort is typically made in 

improving system identification procedures to estimate 

hydrodynamic derivatives more accurately.  

Identification theory is integral to parameterisation of 

mathematical models used to represent dynamical 

systems. For marine vessels hydrodynamic forces and 

moments are complex functions of the vessel’s motion 

through the fluid and require significant effort to be 

determined (Grey-box modelling is used).  

Grey-box modelling is based on formulating a simple 

model which captures the most relevant dynamics and 

characterising unmodelled behaviour as an uncertainty 

term. The uncertainty terms (hydrodynamic derivatives) 

are obtained from empirical data using offline or online 

methods. Manoeuvring theory is used to develop the 

WAM-V model, with the general manoeuvring equation 

of motion represented in (4). 

(𝑀𝑅𝐵 + 𝑀𝐴)�̇� +  (𝐶𝑅𝐵(𝑣) +  𝐶𝐴(𝑣))𝑣 +  (𝐷𝑙(𝑣) +  𝐷𝑛(𝑣))𝑣 =  𝜏 +  𝜏𝑒𝑥𝑡 (4) 

Where 𝑀𝑅𝐵 and 𝑀𝐴 are the rigid-body and added-mass 

system inertia matrices, 𝐶𝑅𝐵 and 𝐶𝐴 are the rigid-body and 

added mass coriolis and centripetal matrices, 𝐷𝑙  and 𝐷𝑛 

are linear are matrices of linear and non-linear damping 

terms, 𝜏 is a vector of propulsion forces and moments, and 

𝜏𝑒𝑥𝑡  is a vector of external disturbances such as wind or 

current. 

The system is over-actuated with four thrusters in 3 

degrees of freedom, described by Figure 3. Each 

propulsion unit is characterised by a thrust force 𝑇𝑝, 𝑇𝑠, 𝑇𝑙  

and 𝑇𝑟 which produce longitudinal and lateral force 
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components. Yawing moment 𝐵 denotes centreline-to-

centreline side hull separation while 𝐿𝑐𝑔  denotes distance 

between bow plane of engine pods with respect to centre 

of gravity. 

 

Figure 3 Propulsion system of the WAM-V with thrust produced on port 

and starboard sides from two fixed aft thrusters, in addition to fore 

mounted motors on the left and right. 

The linear thrust model (5) is used to describe output 

thrust as a function of input motor command. As 

demonstrated, n is input motor command in revolutions 

per minute (RPM), 𝑛𝑚𝑎𝑥 is maximum rated motor RPM, 

and 𝑇𝑚𝑎𝑥  is the maximum force produced by motors at 

full throttle. 

𝑇 =  
𝑛

𝑛𝑚𝑎𝑥

𝑇𝑚𝑎𝑥 (5) 

2. Communication 

Communication between different subsystems is a key 

element that allows the WAM-V to traverse through its 

environment safely, efficiently and effectively. 

Subsystems such as computer vision, path planning 

subsystem must clearly communicate with the control 

system of the WAM-V in addition to performing its 

intended function. These subsystems are processed using 

Raspberry Pi (RPI), hence, there are various popular 

methods to communicate between the two such as serial 

GPIO (general purpose input/output), USB serial and 

USB-TTL to Rx/Rx. Serial GPIO communication is 

chosen since the connections only require three low-cost 

jumpers. A VNC Viewer on PC is required to connect to 

the Raspberry Pi. There are several viewers available, 

however Real VNC was used as it is the simplest to set 

up. 

Local Wi-Fi network allows all RPI’s on WAM-V to be 

connected to the same network for remote access and 

monitoring. Local network will employ Netgear N300 

Wireless ADSL2+ Modem Router DGN2200 to provide 

local network connection between RPI’s and PC. 

B. Parker UAV 

JCU Robotics’ approach to this challenge incorporates 

a modified Jormungandr Midgard Serpent X-Class racing 

frame with sensors including the Here3 RTK-enabled 

GNSS module, an IRLOCK PixyCam precision landing 

system and a PixyCam RGB Camera. 

1. Command and Control 

The command and control of the UAV is managed by 

an mRo R15 Pixracer Flight Controller with PX4 protocol 

via RFD900 modem. The RFD900 is configured as a 

slave within a Multimodal network between the WAM-V 

and Ground station and a remote-controlled manual 

operation fall back. 

2. Safety Features 

Within the design of the UAV, safety was always at the 

forefront of the approach. For overwater operation 

considerations, a floatation system capable of handling 

7kg was fitted to the frame. A core challenge here was to 

design the floatation ring high enough to prevent 

electronics from being submerged while minimising 

sensor obstruction. Regarding control, precautions such 

as geofencing capability and a ‘Return to Home’ function 

have been implemented for all flight modes. 

To reduce the possibility of battery fire, a lithium-ion 

battery cell was selected rather than the traditional 

lithium-polymer batteries used in common recreational 

and commercial UAVs. 

IV. EXPERIMENTAL RESULTS 

A. McKeough USV 

1. Indoor Object Detection Experiment Results 

The experiment was firstly examined in an indoor 

environment which would have minimal effects from 

sunlight and no water reflection presence. It was first to 

perform colour thresholding to remove all other objects 

except green and red cones using HSV and Lab 

programmed colour thresholder, respectively. The 

resulting threshold HSV and Lab output images are 

shown in Figures 4 and 5. The threshold values are shown 

in Table 1. These values are subject to change with 

different environmental conditions. 
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Figure 4 Original image (a), merged HSV threshold image and original 
image (b), threshold image in HSV without morphological (c) and with 

morphological operations (d) in an indoor environment. 

 

Figure 5 Threshold image in Lab with and without morphological 

operations (a) and (c) respectively. Merged threshold image in Lab and 

original image (b) and (d) in an indoor environment. 

Table 1 Upper and lower threshold values in HSV and Lab 

 Lower Values Upper Values 

Hue 85 95 

Saturation 114 255 

Value 77 255 

Luminance 60 214 

Chrominance A 152 255 

Chrominance B 141 255 

Figure 4d and Figure 5d illustrate the effectiveness of 

Gaussian filters in object detection. Green (green 

bounding box) and red (red bounding box) cones 

presented in the original image data in Figure 4a and 

Figure 5b, respectively, were detected with almost 

identical shape and size. It is known as a true positive of 

two in this instance since two cones were presented and 

detected. Yellow dots indicate the centroid of the detected 

object. Whereas without a Gaussian filter, many objects 

were improperly detected, as evidenced by the presence 

of several extra bounding boxes in the same scenario as 

in Figure 6b. The presence of undesired noise led to false 

edge and colour detection. Consequently, false positives 

occurred when the objects were absent from the original 

data but appeared as detected. According to the 

experiment outcomes, Gaussian filters substantially 

smoothed image data and improved the edges detection 

as well as prevented false positives. In addition, the use 

of kernel size (5, 5) demonstrated high overall edge 

detection performance without compromising quality of 

image data. 

Figure 4d and Figure 5d depict the significant 

improvement when applied morphological operations in 

obstacle detection compared to the ones without. There 

was an obvious enhancement in noise removal when 

applied this CV technique. It would enable CV to avoid 

inadvertent detection when objects were tiny and far 

away. Specifically, Figure 4c shows that a small portion 

of red cone was detected which could be an issue if 

applied to the same values of HSV during the 

deployment. The detection can simply be sunlight in the 

afternoon. Hence, the use of morphological operations 

improved obstacle detection, removed imperfections in 

the threshold images and delivered a fuller information on 

the structure of the image. 

 

Figure 6 Object detection using Gaussian filter (a) and without Gaussian 

filter (b) (with all other mentioned CV techniques for both cases) in an 

indoor environment 

2. Outdoor Object Detection Experiment Results 

The proposed image based local path planning was 

deployed at Australian Institute of Marine Science in 

Townsville on James Cook University WAM-V as a trial 

before the 2022 Maritime RobotX competition. Figure 7 

depicts WAM-V deployed on water with computer 

vision, GPS subsystem, and RPI’s subsystems, Netgear 

N3000 router for communication between WAM-V and 

client PC.  
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The camera captured real time images of the robot’s 

workspace and tracks all the obstacles within its field of 

view. The camera sent all the image data to the Client PC. 

The path-planning algorithms then calculated the position 

data with the help of image data. After establishing 

wireless connection between robot and the client PC, the 

client program sent the heading position data to the 

WAM-V. The process was repeated until reaching the 

target. 

 

Figure 7 WAM-V on water during deployment. 

 

Figure 8 Original image data without filtering. 

The obstacle map consists of 1920 x 1080 cells during 

deployment and running at a constant rate of 50 Hz. 

However, the image size was reduced to 640x320 for 

efficiency purposes as. As the image was captured in the 

sea, the presence of waves and water reflection were 

challenging to detect the obstacles in that format. 

Especially, when the true colour of the buoys were 

affected due to sunlight and uneven illumination. This 

section will focus on object detection when using various 

CV techniques in Python with preliminary results in 

MATLAB. Specifically, it will compare the differences 

between when deployed the WAM-V in water with 

simulation in a video. 

Figure 9 shows the effectiveness of HSV and Lab colour 

space selection when performing colour thresholding. 

Specifically, other objects were effectively eliminated 

except green and red buoys via HSV and Lab colour 

thresholding technique, respectively. Threshold values 

for HSV and Lab are shown in Table 2. These values are 

subject to change with different environmental 

conditions.  

 

 

Figure 9 Threshold image using HSV (a), merged threshold HSV image 

and original image (b) and Lab colour space (c) merged threshold HSV 

image and original image (d). 

Table 2 Outdoor upper and lower threshold values in HSV and Lab 

 Lower Values Upper Values 

Hue 85 95 

Saturation 114 255 

Value 77 255 

Luminance 60 214 

Chrominance A 152 255 

Chrominance B 141 255 

 

Gaussian filter and colour-based segmentation would be 

useful to eliminate any background noise as well as other 

objects except red and green buoys. However, the 

captured image was firstly converted into HSV and Lab 

format before applying mentioned CV techniques. After 

colour-based segmentation, applied dilation function to 

remove noise. As shown in Figure 9, only green or red 

buoys were present. Subsequently, threshold images were 

combined in one frame and labelled with a bounding box 

around as shown in Figure 10. The green and red 

bounding box represented green and red buoy, 

respectively. The yellow dots indicated the centroid of 

detected objects. 
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Figure 10 Object detection using Gaussian filter (a) and without 
Gaussian filter (b) (with all other mentioned CV techniques for both 

cases). 

Figure 10a illustrates the effectiveness of the Gaussian 

filter in object detection. Red and green buoys were 

correctly detected with proper shape and features. In 

addition, the use of kernel size (5, 5) demonstrated high 

overall edge detection performance without 

compromising quality of image data. Both obstacles 

presented in the original image data were detected with 

almost identical shape and size. It is known as a true 

positive of two in this instance since two buoys were 

presented and detected. Whereas without a Gaussian 

filter, many objects were improperly detected, as 

evidenced by the presence of several extra bounding 

boxes in the same scenario as shown in Figure 4b. The 

presence of undesired noise led to false edge and colour 

detection. Consequently, false positives occurred when 

the objects were absent from the original data but 

appeared as detected. According to the experiment 

outcomes, Gaussian filter substantially smoothed image 

data and improved the edges detection as well as 

prevented false positives.  

Even though not all characteristics of the buoys were 

detected, the WAM-V was still able to perform obstacle 

avoidance algorithm using APF since it was aware of 

obstacles in its path. 

The preliminary obstacle detection in MATLAB faced 

many problems with water reflection that led to objects 

detected higher than expected. That could cause a greater 

issue if deployed on the WAM-V due to the obstacle 

detection subsystem would output a closer distance than 

expected. Consequently, the WAM-V might incorrectly 

perform obstacle avoidance earlier than expected and 

collide with the obstacles. The use of polarised lenses 

reduced water reflection and increased visual clarity of 

the buoys, particularly in bright conditions during 

deployment. From initial experimentation was almost no 

presence of water reflection in the image data. The buoys 

were detected with a similar shape and size. 

Consequently, the use of polarised lenses improved 

accuracy of distance estimation as well as path planning 

as a result. 

 

3. Outdoor Path Planning Results 

Higher level path planners can only be achieved if an 

accurate obstacle information is provided as well as its 

initial and target position. Since it was assumed that the 

initial and target position were provided, obstacle 

detection is critical for autonomous navigation in 

complex outdoor environments. Specifically, high 

accuracy of distance estimation was the most important 

factor that contributed to accurate position determination 

in path planning. This section will evaluate accuracy of 

distance estimation and behaviour of path planning 

trajectory with various distance variations. 

The effectiveness of a single use camera is evaluated for 

distance estimation based on known height and distance 

from the camera in the reference image (see Table 3). For 

the experiments, an ELP-SUSB1080P01-L36 camera 

with IMX322 Sensor 0.01 Lux low illumination was used. 

To estimate distance, it was first to capture red buoy as a 

reference image (see Figure 11) to find the focal length of 

the camera using (1) because it was difficult to accurately 

measure the distance between camera and the buoy in 

water, hence, the focal length estimation was executed 

indoor instead. Subsequently, the distance could be 

estimated when deployed in water using (2). The result 

for distance estimation is shown in Figure 10a and Figure 

12. The summary of distance estimation is shown in Table 

3. It indicated that the measured and estimated distance 

were almost identical. There was only a small difference 

between these results which can be overcome by adding 

the difference small delta (Δx) value to (2) as shown in 

(6). In this case the Δx was +13cm. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑘𝑛𝑜𝑤𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑝𝑖𝑥𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
+ ∆𝑥 (6) 

 

Figure 11 Reference image to estimate focal length and distance 

between red buoy and the camera. 
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Figure 12 Distance estimation using single camera. 

Table 3 Green buoy specifications, measured and estimated distance. 

Radius 

(cm) 

Height 

(cm) 

Measured 

Distance 

(cm) 

Estimated 

Distance 

(cm) 

Delta 

Value 

Δx 

(cm) 

50 60 400.78 413.78 +13 

50 60 520 533 +13 

 

4. Trajectory Evaluation 

This section is to focus on obstacle avoidance and 

behaviour of the WAM-V trajectory. It was to consider 

the effectiveness of the APF algorithm if there were 

variations in distance between the two buoys. 

Specifically, each buoy was placed 6m apart so that the 

WAM-V would be expected to traverse in the middle of 

its trajectory. Whereas a side-by-side situation, it was 

expected the WAM-V to perform obstacle avoidance to 

divert itself away from the two obstacles. As shown in 

Figure 13a, the trajectory was successfully planned in 

between the two buoys which would expect the WAM-V 

to behave the same way because the distance between two 

buoys was twice its physical width. On the other hand, 

when the two buoys were side by side, the trajectory 

performed object avoidance on the left side of the two 

buoys towards the target position as shown in Figure 13b.  

A new trajectory was updated with a sampling time of 

100ms for running the algorithm in real time on the 

WAM-V; however, due to the existence of the 

asynchronous subsystem, a new trajectory is only 

recalculated every 2 seconds instead. However, the boat 

moved reasonably slow, it was expected the WAM-V to 

react responsively to obstacles within 3 seconds. Hence, 

2 seconds update should allow enough time for the 

WAM-V to perform obstacle avoidance.  

In both cases, the trajectories were not the shortest path 

from the initial position to the target, however, it planned 

the WAM-V to move along its path, modified its position 

and orientation as necessary to avoid collisions. 

Additionally, the path with two buoys side by side was 

not the smoothest possible solution during deployment. 

However, a local path planner using APF accomplished 

its goal by modifying the WAM-V configuration to 

minimise the potential on the robot and therefore 

attempted to eliminate collisions. 

 

Figure 13 Detected objects (red dots) (a) and path planner when two 
buoys were 6m apart (b) and side by side (c) approaching the target 

position (green dot). 

 

Figure 14 Detected buoys from far distance (24m). 

Figure 14 indicates the effectiveness of the detection 

that could detect the buoys from approximately 24.8m 

and perform obstacle avoidance and adjusted trajectory at 

early stage. That would allow the WAM-V to have 
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enough time to adjust its heading, velocity and manoeuvre 

appropriately. 

V. PLATFORM ASSESSMENT AND FUTURE DEVELOPMENT 

A. McKeough USV 

The integration of image processing and local path 

planning has been developed and tested on the WAM-V 

using various CV techniques to detect obstacles and APF 

for obstacle avoidance. In addition to reducing the need 

for expensive test facilities, the use of the model-free 

approach on stationary obstacles allowed for testing in 

open water, which was vital for real-world scenarios. 

The project involved two main parts such as vision-

based obstacle detection and local path planning. In the 

obstacle detection part, the WAM-V successfully 

detected most features and size of the green and red 

buoys. The use of polarised lenses vastly reduced the 

presence of water reflection, hence, the detected objects 

appeared without any an increase in size due to water 

reflection. Consequently, the accuracy of distance 

estimation and path planning were also improved and 

optimised, respectively. 

In path planning, the WAM-V also successfully 

performed obstacle avoidance when detected obstacles 

were 6m and side by side. When obstacles were 6m apart 

the trajectory traversed in between the detected buoys. 

Whereas when they were side by side, it performed 

obstacle avoidance and adjusted the trajectory. In both 

cases, the trajectory was not the shortest path possible, 

however, it enabled the WAM-V to reconfigure its 

original trajectory and attempted to eliminate collisions. 

However, at this stage there is no communication with the 

system identification subsystem, hence, it will be future 

work to communicate between two subsystems to 

autonomously guide the WAM-V. 

Future work will focus on deployment of 

aforementioned image processing and local path planning 

on multiple obstacles. In addition, the successful obstacle 

avoidance on two buoys will provide opportunity to 

integrate with harmonic potential functions (HPFs) which 

is a special type of APF which solve the issue of local 

minima where the WAM-V is stuck in the same position 

over and over again. Furthermore, an 2D nonholonomic 

fluid motion planner will be applied with HPFs to plan a 

much smoother plan when performing obstacle 

avoidance. 

B. Parker UAV 

The designed UAV presently has only been capable of 

manual hover flight. Due to delays in battery acquisition 

and other time and budget constraints, more advanced 

control and testing of the design has not been able to be 

practically achieved. However, the design does provide a 

robust and simple platform for future integration within 

the multi domain scenario, with the ability to be 

reconfigured with different sensors. 

Future improvement and development of the UAV will 

include progression of the autonomous control systems, 

HSI sensor integration, inclusion of the UAV 

Replenishment capability alongside on-vessel standby 

recharging. There is also potential for an alternate hybrid 

drone frame for longer distance flights. 

V. CONCLUSION 

A variety of challenges arose in the lead up to 

competition. Many of these were indicative of the core 

challenges that define a task of this scale and range from 

standard system definition, identification and execution to 

logistical, administrative and organisational issues. 

Experiences such as these leave JCU Robotics better 

positioned to respond to challenges in future projects and 

competitions of the same broad-reaching scale. 
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