
Georgia Tech Marine Robotics Group 1 of 10

Virtuoso

A New Architecture for RobotX 2022

Sean T. Fish, Manuel Roglan, Douglas S. Chin, Jeffrey T. Pattison, and Jorge L. Ortiz Solano

Abstract—This paper describes the design and development of

an Autonomous Maritime System (AMS) for the 2022 RobotX

Challenge by the Marine Robotics Group at the Georgia Institute

of Technology. The AMS consists of a large autonomous surface

vehicle (ASV) and a companion Unmanned Aerial Vehicle (UAV).

The design process of the AMS was centered around

accomplishing the tasks of the RobotX Challenge, with the

additional consideration of creating a stable platform for

experimentation. To achieve these goals, new technologies were

incorporated into the AMS such as Robot Operating System 2

(ROS2) and micro-ROS, and a new propulsion system featuring

greater modularity was integrated into the WAM-V.

I. INTRODUCTION

The Marine Robotics Group (MRG) at Georgia Tech has

competed in the RobotX Challenge in previous years. This

year’s entry into the challenge attempts to remedy issues

encountered by previous years’ teams, such as issues with

propulsion in saltwater or difficulties in vehicle control.

Additionally, in the four years between competitions, many

new innovations have been developed, such as Robot Operating

System 2 (ROS2) and micro-ROS, and the team has worked to

incorporate these new technologies into the system. With these

considerations, MRG has created a new ROS2 main software

stack, Virtuoso, to replace the previous Adept software stack

developed in ROS1, integrated a new holonomic propulsion

system, and constructed a new Unmanned Aerial Vehicle

(UAV).

II. DESIGN STRATEGY

The design strategy for this year’s competition encompasses

a long timespan, as MRG has been planning to compete in the

next RobotX Challenge since the last occurrence in 2018. Over

the duration of a typical undergraduate education, many ideas

have been explored, and many members have come and gone.

As a result, one of the greatest necessities for the organization

was to create software which members felt a sense of ownership

over, and while this resulted in redevelopment of some existing

capabilities, it provided an opportunity for incorporating new

developments and making improvements over the previous

system. Additionally, in the interest of saving time in

development, Commercial Off-The-Shelf (COTS) hardware

and software were incorporated into the design of the system.

In 2018, the team had switched from an in-house software

stack, ARCS, to ROS1 [3]. One of the reasons for this change

was to allow for integration of externally developed libraries.

With much of the robotics community switching to ROS2, and

many of the developers of the ROS1 stack having graduated

Fig 1. The WAM-V during testing at Sweetwater Creek State Park

during the pandemic, the team made a similar shift from ROS1

to ROS2 in the past year, first testing the ROS2 stack in the

Virtual RobotX (VRX) Challenge [2]. The development of the

new ROS2 stack is discussed in greater detail in Section II.

Some of the benefits of utilizing ROS2 include more robust

support of multi-robot systems and a more robust

communication layer. As early adopters of ROS2 with legacy

equipment, there have been several challenges with software

compatibility as well, whether that is in the VRX simulation

environment or with sensor systems. However, with ROS1

support ending soon, this path will ultimately be more future-

proof and enable easier development going forward.

A. WAM-V Design

The Wave Adaptive Modular Vessel (WAM-V) that serves

as the main vehicle for the competition has also been

reconfigured since its appearance in 2018. The majority of

efforts was concentrated on the propulsion system, as it is the

most critical component across all tasks. Previous members

reported encountering issues with the Torqeedo Cruise 2.0

electric outboard motors when running in saltwater.

Additionally, the team wanted to switch to a holonomic motor

configuration to improve control of the vehicle. Such

configurations had proven to be used to great success in past

competitions [4]. As the previous motors were of questionable

reliability and were too few in number for the new

configuration, the team opted to redevelop the propulsion

system from scratch. The new system was additionally

constrained by supply-chain issues. Initially, trolling motors

with integrated throttle systems were chosen, but constant lack

Georgia Tech Marine Robotics Group 2 of 10

of supply ended up holding back development by a semester.

More affordable 8-speed trolling motors were chosen instead,

requiring the development of a separate throttling system,

culminating in a new motor controller box with a micro-ROS

interface. While this deviated from the original plan, the result

was a propulsion system that allowed for easily replacing the

parts with the heaviest wear – the motors themselves.

The team’s main campus is not located particularly close to

any bodies of water, and as a result, much of the software was

developed in simulation, and subsystems were developed

somewhat independently. The system is composed of many

individual components which are designed rather

independently, with sporadic integration testing. This design

strategy resulted in high coupling within individual component

systems, and as a result reduced interdependency and

complexity arising from this. On the other hand, this has

resulted in the need to tune as systems are integrated together.

For example, the simulation motors do not behave similarly to

the real motors. With reduced interdependency, there has been

an increase in robustness, as modules can be swapped in and

out, totally replaced, without completely disabling other

systems.

B. UAV Design

A few of the tasks in the 2022 RobotX competition allow or

require an Unmanned Aerial Vehicle (UAV) for completion.

These tasks include Follow the Path, Wildlife Encounter, UAV

Replenishment, and Search and Report. Due to time and

resource constraints, the only tasks planned to involve the UAV

for this team were the Search and Report and UAV

Replenishment tasks. This was a strategic decision to ensure

adequate performance for a few tasks rather than risk

inadequate performance for a larger number of tasks, and the

two tasks selected for development were the only two tasks that

required the assistance of the UAV. The strategy and planned

solutions for each of the UAV tasks can be seen in following

subsections.

Fig 2. The UAV in flight during testing

1) Search and Report

The Search and Report task is the only task that involves only

the UAV. The task requires a UAV to takeoff from a platform

and search a field for two letter markers, report the location of

the markers, and then return and land on the launch platform

identified by concentric circles. The area to search is marked by

four markers, and the UAV is not allowed to go outside the

markers during the search.

The plan for completing the Search and Report task was for

the UAV to discretize the search area in to a list of GPS

waypoints, takeoff, travel to each waypoint in the search area,

and at each waypoint use the onboard camera to scan the ground

below for a letter using a text detection and recognition

algorithm. Once all the waypoints had been reached or both

markers were found, the UAV would then return to the launch

location where it would attempt to land on the launch platform

using the concentric circles on the platform as a guide.

Using the onboard GPS, the UAV could record the initial

position and use the relative position of the area boundaries

with respect to the launching platform to approximate the GPS

coordinates of the cones. With the GPS location of the

boundaries known, the area was then discretized into a grid of

several GPS points for the UAV to travel. This was a simple

solution to stay within the boundary. Solutions that are more

sophisticated could use computer vision to detect when the

UAV approaches the boundary by recognizing the orange

cones, but the benefits of this method were deemed too small

for the complexity it would introduce to the system as an

additional computer vision algorithm would strain the onboard

computer.

Once the UAV has the list of GPS waypoints making up the

search area, it can then takeoff and visit each location to check

for the markers to find. To recognize the letters within the

search area, the UAV would not only need to detect letters but

also interpret the letters. For this, OpenCV and Machine

Learning methods were used. OpenCV is a library used for

image processing and is common in many computer vision

applications. By combining the OpenCV image processing with

the Python package Pytesseract, used for detecting letters, the

UAV was able to detect any letters observed by the onboard

camera. If any part of the video feed was detected to contain

letters, a portion of the image captured in the video feed

containing the letters was analyzed using the EAST deep

learning model. The Pytesseract package does have the

capability to determine text, but it was shown to be less reliable

than the EAST deep learning model, so both were used.

Implementing a deep learning model for text recognition added

complexity and increased strain on the companion computer,

but this was an allowable tradeoff for the increase in accuracy

of detecting the letters in the search area.

Using Pytesseract, a bounding box around recognized text

can be created, and the center of the bounding box can be

calculated. Once the UAV had located a letter within the video

feed, the next step was to center the UAV over the letter to

record the location. By maneuvering the UAV so the letter was

centered in the video feed, the UAV was able to get a better

estimate on the GPS location of the letter. Because there is some

uncertainty in the GPS location, the GPS location was recorded

over a series of 3 seconds and the average location was

recorded. This average location was then used as the location of

Georgia Tech Marine Robotics Group 3 of 10

the letter.

Once the UAV had travelled to each waypoint in the search

area or found both markers, the UAV would then travel to the

launch location and land on the launch platform. The simplest

solution would be for the UAV to rely solely on GPS location

and return to the GPS location of launch. However, this method

relies on GPS modules with a high level of accuracy, which

increase the cost of the UAV. The GPS used on the UAV is

accurate within a few meters, which is unacceptable for landing

on the platform with a size of approximately 1.5m x 1.5m. A

very complex solution could rely on computer vision and

machine learning methods to identify the shapes on the landing

platform. The decided approach relied on computer vision, but

did not employ machine learning. Using the video feed during

landing, OpenCV processing was used to identify shapes in the

feed of the camera. By identifying the location of the center of

the concentric circles in the video feed, the UAV attempted to

maneuver during landing until the center of the circles was

centered in the video feed. This allowed the UAV to land on the

launch platform.

The plan previously described for completing the Search and

Report task shapes the design of the UAV. With the goal of

autonomous letter detection, a companion computer and camera

were required on the UAV to process images. However, by

minimizing the computation power required for image

processing by forgoing a strong emphasis on machine learning

methods, a smaller and cheaper companion computer can be

used. Similarly, with the assistance of computer vision in the

landing phase, a precise GPS is not required, allowing a cheaper

model to be used instead. Both of these decisions allow for a

cheaper vehicle without significantly sacrificing the ability to

complete the task.

2) UAV Replenishment

The UAV Replenishment task requires a UAV to launch

from the WAM-V, locate a platform containing colored tins,

collect a colored tin, and then deposit the tin on another

platform before returning to the WAM-V. The plan for

completing this task was for the WAM-V to maneuver

alongside one of the UAV landing platforms. From here, it

would remain stationary until the UAV returned from the

mission. The UAV would then launch and use the shape

detecting computer vision algorithms to locate and land on the

landing platform, where it would collect a tin using a retractable

magnet. The UAV would then takeoff again and begin a search

pattern looking for the other platform, where it would then land

and deposit the tin by retracting the retractable magnet. Upon

depositing the tin, the UAV then takes off again and returns to

the location of its initial launch and lands on the WAM-V.

Landing on the WAM-V is enabled through ArUco marker

localization on the WAM-V landing pad using a method similar

to the UAV landing on the landing platforms of the various

tasks.

 Based on the description of the task, it has significant

overlap with the capabilities developed for the Search and

Report task. Therefore, the ability to search an area, detect and

recognize shapes and the ability to land on the launch platforms

were taken directly from the solutions for the Search and Report

task. The added capabilities that needed development were to

add a communication link between the UAV and the WAM-V

and to add a way to grab the tins. A communication link from

the UAV to the WAM-V was established using ROS 2. When

the WAM-V was in the correct position to begin the UAV

Replenishment task, it would communicate this with the UAV

using ROS 2. The UAV would then proceed to complete the

task by taking off, searching the area for the landing platform

containing the tins, landing on platform, and then taking off to

find the other platform before returning to the WAM-V.

The method for obtaining the tin utilized a simple magnet that

could attract the metal tin. Solutions that are more sophisticated

would allow the use of computer vision to distinguish the tins

by color, but due to resource constraints, the UAV was planned

to just land on the platform and attract whichever tin was within

range to a retractable magnet located on the landing gear. To

remove the tin from the magnet, the magnet would retract and

separate from the tin.

III. VEHICLE DESIGN

The vehicle design has largely revolved around two main

ideas:

• Long-term robustness

• Integration of new technologies

These ideas can be seen in the design of the WAM-V’s

propulsion system, the new ROS2 software stack, and the

overall design of the UAV.

A. WAM-V Mechanical Design

 Mechanical design on the WAM-V was mainly focused on

the integration of the new motor configuration, the UAV

landing platform, and a sensor bar.

 To implement a holonomic control system, the team opted to

reconfigure the WAM-V with four total thrusters, two fore and

two aft, configured with thrust vectors which form a diamond.

The system was designed for typical transom-mount trolling

motors with mounting clamps with minimal additional

customization.

 The fore motors required new motor mounts. These mounts

are affixed the sides of the WAM-V pontoon skis. The initial

mounts were constructed from single-bar 8020 aluminum

extrusion and featured 3D-printed plastic mount points.

Following initial testing at the lake, significant twisting was

noticed in the motor mounts. To resolve this, the mounts were

reinforced, with the mounting bars consisting of a 2-wide 8020

bar and a 1-wide 8020 bar, forming a stronger L-shaped bar.

This proved to be much stronger and held up to higher motor

thrusts at subsequent lake tests.

 The aft motors did not require new motor mounts and were

attached to the existing mount points on the stability pods where

the electric outboards were located previously.

 The competition also required the development of a raised

UAV landing platform. Due to the main WAM-V platform

holding the main electronics, the raised platform needed to sit

above these components to provide a safe and flat location for

the UAV to take-off and land from. The raised platform was

Georgia Tech Marine Robotics Group 4 of 10

constructed from 8020 extrusion and features a white landing

pad with 3 ArUco markers.

 The system also features a sensor bar mounted to the front of

the WAM-V. This sensor bar holds a camera, LIDAR, and other

sensors. The purpose of this system is to enable testing of sensor

systems while not onboard the WAM-V to allow for reuse of

the same configuration on multiple platforms. Ideally, similar

configurations can be used on vehicles for other competitions

such as RoboBoat.

B. WAM-V Electrical Design

The electrical system on the WAM-V is a complete redesign

from 2018. Changes were made to the motors, base power

supply, and the motor controller. Sensor systems remained

mostly unchanged from previous years.

Past outboard motors were reported to be unreliable in

saltwater in recent years, so new saltwater trolling motors were

chosen to replace them. These trolling motors operate at 12

volts as opposed to the 24 volts required by the previous

outboard motors.

Fig 3. WAM-V Electrical System Block Diagram

Initially, the selected Minn Kota trolling motors were

equipped with integrated digital speed control. However, due to

supply chain issues, these motors were difficult to acquire and

held up propulsion development for a semester. In retrospect, it

would have been wiser to switch to an alternative after the first

delays in acquiring the motors. The motors that were ultimately

chosen were Newport Vessels NV-Series 8-speed 55lb trolling

motors. These motors lack digital speed control, resulting in the

need to implement this functionality externally. Motors of this

variety tend to be more affordable and easily acquired. The

switch to these motors proved useful, as the propulsion system

is one of the systems subjected to the most wear. This new

design allows for the propulsion system to undergo routine

maintenance with less costly replacements.

The main power system is now based on a 12-volt supply,

instead of 24-volt supply due to the switch from 24-volt

outboard motors to 12-volt trolling motors. Additionally, 12-

volt batteries tend to be more easily acquired than 24-volt

batteries, especially of the Torqeedo brand. Utilizing DC/DC

switching regulators, the 24-volt batteries the team already

possesses were able to be reused.

In order to allow for the computer to communicate with the

propulsion system, a new motor controller was necessary. This

motor controller needed to be mechanically robust, support

communication with ROS2, and allow for digital speed control

of the motors.

Previous motor controllers built by MRG often consisted of

Arduino Mega boards connected to various independent

components by jumper cables. Jumper cables can often have

intermittent contact and can easily come loose, costing precious

time as the wiring must be reintegrated. If the cables are

connected incorrectly, this can be dangerous, possibly causing

unpredictable behavior. To resolve this issue, MRG

manufactured a single-layer printed circuit board (PCB) using

an in-house mill. In-house manufacturing allowed for working

out several critical issues in the board through quick iterative

design.

Fig 4. WAM-V Motor Controller Hardware

The motor controller board consists of multiple components,

including a microcontroller and interfaces to various COTS

electrical hardware components. The microcontroller is an

Arduino Due, selected due to community support of micro-ROS

for this board. Micro-ROS is the recommended software for

enabling communication between microcontrollers and ROS2

and allows for swapping in the physical motor interfaces for the

simulation interfaces without significant adjustment. Initially, a

Raspberry Pi Pico was also under consideration, but since the

Arduino platform was more familiar to the team, the Arduino

was chosen for the first version of the motor controller.

The board also has chips providing an interface with Pulse

Width Modulation (PWM) modules manufactured by Walfront

for controlling individual motor speed. The modules were

chosen due to reviews indicating successful use with trolling

motors and support for the necessary power draw. The control

interface for the modules included a 100K linear potentiometer

for throttle and an ON-OFF-ON switch for direction control.

The interfaces connected to the module through JST-XH

connectors. To replace the interfaces, the board includes 100K

Georgia Tech Marine Robotics Group 5 of 10

digital potentiometer boards and MUX chips. These

replacements allow for the Arduino to control the motor speeds.

However, the digital potentiometer tolerances are rather

relaxed, and as a result, the throttle is limited by the chip with

the lowest maximum resistance. Additionally, JST-XH crimps

are challenging to complete properly, and as a result, some

cables required rework.

The motor controller also features an OrangeRX R615X 6

channel R/C receiver. This receiver enables remote control of

the motor controller, essentially allowing the WAM-V to be

operated as a large R/C boat. The receiver is also connected to

a BattleSwitch relay, which is incorporated into the Emergency

Stop (E-Stop) system. The relay is failsafe, disabling the boat

in the case of a lost R/C signal.

The light tower is also connected to the motor controller

board, allowing for the motor controller to reflect the

operational status of the vehicle. This includes kill status, R/C

and autonomous control, and micro-ROS connection status.

The motor controller can be powered independently,

allowing for the WAM-V to be operated even without a

computer onboard. Powering the board properly is something

that requires more consideration, as it needs to be protected

from the propulsion system and cannot handle the 12-volt

supply from the main power supply.

A revision of the board is in development with a Teensy 4.1

replacing the Arduino, due to full micro-ROS support and

compatibility with the developed Arduino code. Future

revisions will address issues in cable reliability and chip

tolerances, and possibly integrate power regulation and

protection circuitry. New boards will be professionally

fabricated for greater longevity.

The WAM-V’s autonomy system is completely independent

from the motor control system, apart from a micro-USB for the

motor controller. This design enables reuse of the autonomy

system with minimal reconfiguration for other vehicles.

Sensors include an IMU, a LIDAR, a GPS, and a camera. Most

hardware has remained unchanged from 2018, except for the

GPS. The GPS had proven unreliable in RoboBoat 2019, and

was replaced for this reason. All other hardware was

performing well. The IMU is a LORD MicroStrain 3DM-GX3-

25. This IMU is convenient because it has a built-in attitude

filter that estimates attitude based on magnetometer,

accelerometer, and rate gyroscope data. The LIDAR is a

Velodyne VLP-16, utilized in previous years. The GPS module

is a ZED-F9P, which offers RTK functionality. The onboard

camera is a Logitech C920 webcam. The main computer is a

2016 Intel NUC. These systems run off a 12-volt power supply,

optionally provided by the same supply as the propulsion.

Additionally, a small TP-Link Wi-Fi router was powered by the

NUC, though this system will likely be replaced by the time of

the competition to improve range. With ROS2, by simply

sharing the same LAN network, it is possible to publish and

subscribe to data between computers, making Wi-Fi an ideal

option for remote connections.

C. WAM-V Software Design

The new ROS2 software stack builds off of many openly

available packages, and was developed through the use of the

Virtual RobotX [2] simulation environment. The software stack

handles localization, control, and perception.

Localization utilized the GPS and IMU to estimate the

attitude, position, and velocity of the vehicle. Initially, position

and velocity were estimated with an Extended Kalman Filter

fusing IMU acceleration, attitude, and GPS position. However,

the IMU acceleration was found to be too noisy for this purpose.

Instead, the inputs to the EKF were changed to be GPS position,

GPS estimated velocity, and IMU attitude data. The package

robot_localization was used for this [5]. The vehicle uses two

main coordinate frames, wamv/base_link which is attached to

the center of mass of the vehicle, and odom which has its origin

at the vehicle stating position with axes corresponding to local

magnetic ENU.

A controller package was created to follow paths from the

navigation package. The controller consists of four main parts

— an outer loop that commands a vehicle velocity, an inner

loop that outputs vehicle force and torque commands, a last-

meter PID controller that is intended for use once the vehicle is

close to its target, and a control mixer that outputs vehicle

thruster commands based on the force and torque commands.

The target attitude is the direction such that the vehicle’s +x

axis is parallel to the desired velocity until the vehicle comes

within a specified distance of its target, at which point the goal

attitude specified by navigation package is set as the target. The

outer loop takes the vehicle position and target path as its inputs.

It calculates a desired velocity as a sum of two vectors. The first

of these is a vector directly towards the line between the closest

point on the path and the next point on the path. The second is

the vector from the closest point on the path to the next point on

the path. These vectors are scaled such that if the vehicle is

further from the path, the vector towards the path is favored. In

addition, the velocity magnitude is decreased if the vehicle is

pointing away from the target velocity so that the vehicle can

rotate itself to face in the direction of travel. This is preferred

since the hydrodynamics of the vehicle favor motion in the

surge direction. The main inner loop PID controller takes in the

vehicle’s current velocity, target velocity, and target attitude

and outputs a goal X and Y force as well as torque. The last-

meter PID controller takes in vehicle velocity, position, and

attitude as well as target position and attitude and outputs X and

Y force as well as torque commands. The last-meter PID

controller is implemented so that station keeping can be tuned

separately from the vehicle behavior between goals. The control

mixer is what sends individual thruster commands based on

target X and Y force as well as torque. The rear thruster

commands are scaled down in magnitude to not induce

excessive torque with Y force commands. In addition, the

commands to all thrusters are scaled so that the maximum

magnitude is 1.0, but the ratios of all thruster commands are

kept.

PID tuning was done in simulation. When the vehicle was

tested with these gains, it was found that the overall drag on the

vehicle appeared greater than in simulation, so the gains were

scaled up to increase the responsiveness of the vehicle.

The processing package of Virtuoso takes in raw camera and

Georgia Tech Marine Robotics Group 6 of 10

raw LIDAR data. For the camera data, the images are

downsampled to be used by the perception package. The

LIDAR data is first passed through a ground filter from

Autoware.auto that removes any LIDAR points on the water.

Non-ground points are then passed to a self-filter that removes

any LIDAR points hitting the WAM-V. Finally, the self-filtered

points are passed to a shore filter. In simulation, the shore filter

filters any LIDAR within a polygon created from GPS

coordinates on the shore. For the competition and for practice

runs, the shore filter removes any points behind the LIDAR and

any points further than 15 meters to the left and right of the

LIDAR.

The perception package uses LIDAR data to identify buoys.

The processed LIDAR is first passed through a Euclidean

clustering package developed by Autoware.auto. From the

clustering, the location, width, and height of the buoys in front

of the WAM-V are estimated. To ensure that a randomly

incorrect clustering does not lead us to incorrectly detecting the

location of a buoy, multiple consecutive clusterings identifying

the buoy in the same location are detected before publishing the

location of a found buoy. Upcoming developments include

algorithms to scan the code using camera data and identify

docking locations using camera data.

The navigation package uses Nav2, a sophisticated open-

source navigation software, to create paths for the robot to

follow. When the package receives a goal to navigate to (from

the autonomy package), it calculates a path to that goal through

Nav2’s path planning action. Once Nav2 publishes the path that

it has created for our controller server to use, the navigation

package checks to see how we are progressing through the path,

and it publishes a success message when it has successfully

navigated to the goal (by using comparing our odometry to the

goal pose). The navigation package can also handle navigating

through multiple set waypoints. To do this, it will navigate to

each waypoint in the order received, generating a path to each

using Nav2 in order to avoid obstacles between waypoints.

When all waypoints are completed, the server publishes a

success message.

The autonomy package serves as the “brains” of the robot,

coordinating all the other packages. Depending on the task we

are running, the autonomy server will launch certain nodes of

each package, as some may be necessary for one task but not

another. It then uses information from the perception and

localization servers to send goals for navigation to the

navigation server. For example, for the dynamic navigation

demonstration, the autonomy server uses the information on

buoy locations from the perception server to send a goal

waypoint to the navigation server.

D. UAV Design

Designing a UAV is an iterative process. In order to select an

appropriate combination of motors, frames, propellers, and

batteries, some estimation is required on the final weight of the

UAV to ensure the selected combination is sufficient to lift the

takeoff weight. However, this is difficult without having

selected the mentioned parts because they contribute a

significant portion of the weight as well. The UAV design

process therefore requires a rough estimate on the final takeoff

weight of the UAV. This rough estimate can then be used to

select a combination of motors, propellers, and batteries

sufficient to lift the takeoff weight. After finding a suitable

combination, the estimated takeoff weight can then be

improved based on the parts selected to confirm the chosen

combination is sufficient. Even without the motors, frame, and

battery selected, some of the sensors and electronics can be

chosen based on what the UAV needs to accomplish during the

tasks. By selecting the sensors and electronics, a better estimate

on the takeoff weight can be obtained.

1) Sensors and Electronics

Depending on the UAV application, there is a variety of

different sensors and electronics that can be used. Based on the

tasks selected for the UAS, the vehicle needs to be able to not

only record but also process images from the surroundings, pick

objects up, and then land within the area of a landing platform.

This means the UAV will need to carry a camera, an onboard

computer for image processing, a grabbing mechanism, a GPS

for localization, and a range finder to use for landing.

Additionally, the vehicle also needs a flight controller to

maintain steady flight.

There are several options for a UAV flight controller.

Because the UAV is responsible for autonomous flight and

decision making, the flight controller is required to be

compatible with a companion computer that can do most of the

high-level thinking. Alternative methods would be to do the

flight control and the higher-level computations on the same

computer, but this would introduce more complexity and would

require a more powerful computer. Two popular flight

controllers that are commonly used with companion computers

include Navio and Pixhawk. Based on availability, the Pixhawk

was selected as the flight controller, although they both are very

similar. The Pixhawk is also compatible with the Raspberry Pi,

a commonly used companion computer.

The Raspberry Pi was selected as the companion computer

to do high level calculations like computer vision and decision

making. By using the Python package Dronekit, the Raspberry

Pi is able to communicate back and forth with the Pixhawk

flight controller. This communication allows UAV data to be

sent to the Raspberry Pi, which can then send movement

commands to the Pixhawk. Alternatives to the Raspberry Pi

include Beagleboards and Nvidia Jetson Nanos. The Raspberry

Pi offers a larger support community than the Beagleboard, and

although the Jetson Nano might be more suitable for Machine

Learning applications, the Raspberry Pi offers a more compact

package, making it the more suitable option.

For the UAV to detect shapes and letters, a camera is required

to sense the environment. Because a Raspberry Pi was chosen

as the companion computer, a Raspberry Pi camera was chosen

as the onboard camera because it is compact with easy

implementation into the companion computer.

The final sensor required is the range finder to assist in the

precision landing on the launch platforms of various tasks. The

maximum range for different range finders varies greatly, with

the price increasing as the range increases. Because the range

Georgia Tech Marine Robotics Group 7 of 10

finder assists in landing only and not in obstacle avoidance, the

maximum range required could be 10m or less. Several higher-

end models with longer range would be unnecessary. The

selected model was the TF Mini Plus due to its budget-friendly

price and maximum range of 12m, which is higher than the

planned flight altitude of approximately 5m, so it is sufficient.

After having selected the required electronics previously

described a closer guess for the final weight of the UAV is

achieved. The only components remaining are the motors,

propellers, frame, and battery.

2) Mechanical Design

The UAV was designed with considerations to the

competition rules as well as to the types of tasks it was expected

to complete. The first design decision made for the UAV was

to determine if emphasis was to be placed on maneuverability

and agility or on endurance and lift capability. Because the tasks

for the UAV included searching areas, assisting the WAM-V in

navigation, and delivering a payload, the UAV was designed

with more of an emphasis on endurance and lift capability. A

UAV of this type typically has a larger frame, larger propellers,

and a larger battery for increased endurance and lift at the cost

of agility and speed, which was deemed as an acceptable cost.

However, the competition rules and WAM-V size placed

limitations of the UAV frame size and weight.. According to

the rules, the UAV had to weigh under 7 kg and float in water.

Additionally, the UAV would have to fit on the WAM-V.

Therefore, the goal was to maximize the lift capability and

flight time of the UAV while still adhering to those constraints.

To start, the frame was the first piece to be selected because

there are size constraints due to the available space on the

WAM-V and weight limits from the competition rules.

Additionally, the frame would need to house all of the

previously mentioned electronics and sensors. Because the

UAV was meant for endurance and lift, a six-rotor frame was

desired because a similar size UAV with four motors would not

lift as much or stay airborne as long. Therefore, based on these

conditions, an S550 frame was chosen as the UAV frame

because it was compact enough to be under the 7 kg weight limit

and fit on the WAM-V while still providing plenty of space for

the electronics and sensors. Common batteries for UAVs of the

size being designed include a 3 cell or 4 cell LiPo battery. While

a 3 cell battery is more compact and weighs less, the 4 cell

battery gives motors more lift with the additional voltage. For

this reason, the goal was to use a 4 cell battery. The exact

specifications for the battery would require knowledge on how

many amps are required for operation, which is dependent on

the onboard electronics and motors. Since the all the onboard

electronics are already known, it is easy to estimate their

combined required amperage. However, the type of motors will

change the amperage requirement, so motor and propeller

selection was next.

To select the motors and the propellers, it is important to get

an estimate for how much a single motor can lift with a given

battery and propeller combination. Common specifications to

check for motor selection is the Kv rating, which specify how

many rotations per minute a motor will spin per volt provided.

The Kv ratings can range anywhere from 800 Kv up to over

2000 Kv. Typically, higher Kv motors produce less torque but

spin very quickly, making them very suitable for racing UAVs

with smaller propellers. Lower Kv motors have more torque for

turning larger propellers, making them very suitable for the

current application. The HobbyPower 920 Kv motors were

selected because they are compatible with the 4 cell battery and

provide enough lift when six of them are paired with 1045

propellers. The lift estimate was obtained from data sheets

provided by the manufacturers.

With the motors selected, the speed controllers can then be

selected based on the expected amperage requirement from the

motors. The maximum amperage expected to be drawn from the

motors was about 22 amps, so 30 amp ESCs were selected. The

total amperage of the UAV was then calculated with the motors

selected. Based on the estimate amperage requirement for the

UAV to operate, a 35C 5000mAh 4S was selected.

E. Transportation Logistics

The crates used for the WAM-V in previous years are rather

large, and due to the geography around the location in which

the vessel is stored, they are rather difficult to move. This year,

the team opted to use 3 crates from Shark Crates which are

collapsible and can be assembled piece-by-piece. While

disassembled, the crates are portable by a small group of people,

allowing for the crates to be constructed in a more suitable

location accessible by forklifts. The dimensions for the crates

are as follows:

• Main crate: 96x48x54 inches

• Pontoon crates: 123x20x37 inches

Fig 5. New equipment crates that can be assembled by hand outside of

the building.

IV. EXPERIMENTAL RESULTS

A. WAM-V Simulation-based Testing

The Virtual RobotX [2] simulation environment was utilized

for much of the software development. Our design

configuration for the WAM-V differs from the default WAM-

V in the simulation, so we created configuration yaml files with

our design and used them to test the appropriate WAM-V

design in simulation. For this configuration, we had four motors

rather than two on the WAM-V and angled in a holonomic

manner. The sensor location on the WAM-V were also changed

Georgia Tech Marine Robotics Group 8 of 10

to better match the configuration of the sensors on the physical

WAM-V.

For each task we wanted to test in simulation, we first opened

the VRX-provided simulation, and set up the task with buoys.

Then, we launched the ROS1-ROS2 bridge and our software to

see if WAM-V could complete the desired task autonomously.

Additionally, we could verify certain parts of our software stack

were working by using tools like Rviz to visualize the data

being published to certain topics (e.g., filtered LIDAR,

Euclidean clusterings, odometry, path plans, etc.). Below are

examples of our task setup in simulation for certain tasks:

Fig 6. Dynamic navigation demonstration.

Fig 7. Enter and Exit Gates

Fig 8. Follow the Path

B. WAM-V Lake Testing

The WAM-V was tested at a local reservoir three times prior

to the competition.

1. The objectives of the first lake test included learning

vehicle deployment strategies and testing the new

propulsion system. All objectives were achieved and

exceeded.

2. The objectives of the second lake test were to improve

vehicle deployment strategies, test motor control over a

micro-ROS interface, test remote networking and

control with tmux, and test sensors, localization, and

navigation. Issues were encountered with configuring

auxiliary device ports on the main computer. Data was

collected.

3. The objectives of the third lake test were to test

improvements made to the micro-ROS interface, sensor

interfaces, and navigation. Issues from the previous test

were resolved, and information for debugging

navigation was obtained. Data was collected.

Without any previous members present, the team relearned

how to deploy the WAM-V over the several lake tests.

C. WAM-V Headless Testing

With the WAM-V heading out, testing of localization will

have to be carried out without the vehicle. The sensor bar has

enabled testing of localization and perception without the

WAM-V platform present.

D. UAV Simulation Testing

1) Simulation Environment

To test the UAV behaviors and performance of the tasks, a

simulated UAV was tested first. Using a simulated UAV to

test the ability to complete tasks allowed for more rapid

testing. However, a simulation environment was required for

the different tasks the UAV would be completing. The

simulation environment used was Gazebo, which is a popular

simulation environment due to its ability to communicate

with ROS, which can be used to control both a simulated and

physical robot system. From [1], Gazebo is recommended to

simulate robot systems with physical counterparts. To use

Gazebo, a world file is required that contains models of the

items in the world. To simulate the UAV, a model of the

Parrot quadcopter was used. Although the physical UAV

used had six rotors, the Parrot quadcopter model was

sufficient for testing algorithmic performance for the tasks.

With a world file specifying the objects and UAVs within the

world, the next step was to simulate the UAV software for

actually completing tasks.

 ArduPilot is an open-source autopilot system for

controlling vehicles, and it is used on the Pixhawk flight

controller of the UAV. One of the benefits of using

ArduPilot, is that it can be used to connect with Gazebo for

Software in the Loop (SITL) simulations. By combining

ArduPilot with Gazebo, a simulated UAV can behave as if it

were in the real world due to the physics engine within

Gazebo and the UAV can respond as it would in the physical

world using the ArduPilot.

Georgia Tech Marine Robotics Group 9 of 10

 The last remaining component for testing a simulated

UAV is creating scripts that can be used for completing the

tasks. A combination of DroneKit and ROS were used for

completing the tasks with Python scripts. DroneKit can be

used in the simulation and the physical system to

communicate with the ArduPilot in the flight controller. This

communication could be to obtain UAV state information

like position and velocity to be used in the Python scripts, but

DroneKit can also send movement commands to ArduPilot

to execute.

 Within the model of the Parrot quadcopter was a

downward facing camera on the UAV. This camera publishes

video feed captured from the camera to a ROS topic.

Therefore, within the Python scripts to complete the tasks, a

ROS node was created that subscribed to the topics

containing the captured video feed. This allowed the video

feed to be analyzed within the Python scripts for various

tasks.

2) Search and Report Task

As mentioned, testing the tasks within the Gazebo

environment required a world task containing the items

featured in the tasks. From the task description, the Search

and Report task contains four cones marking the boundaries

of the search area, one letter marker of an “R”, one letter

maker of an “N”, and a landing platform with concentric

circles. This description was used to create the world file. A

overhead view of this world can be seen in the image below

with the Parrot quadcopter on the landing platform.

Fig 9. The Search and Report simulated world. Within the world contains

the landing platform and UAV (bottom right), four cone markers
(two are shown), and the "R" and "N" letters for the UAV to find.

Within the Python script for completing this task, the

search area was divided into various GPS coordinates

based on the initial GPS location of the UAV. Using

DroneKit, these GPS coordinates were then sent to the

flight controller. The flight controller then proceeded to

make the UAV takeoff to an altitude of 5m, where it would

then travel to the each GPS coordinate in the list sent by

DroneKit. At each GPS point, the camera on the UAV

would record the footage of the ground below and publish

that to the ROS topic. Within the Python script for

completing the task, this footage was taken and analyzed

to find any letters within the feed. When a letter was

detected, the script would attempt to determine which letter

it was. The below pictures show some of the results of the

UAV attempting to recognize the letters seen.

Fig 10. The UAV recognizing the text from the onboard camera. The

left image is the raw footage, and the right image is the image after

processing and analyzing. The UAV predicts the image contains the

text "RI" instead of just the shown "R."

Fig 11. The UAV attempting to recognize the letter "N" shown in the

image. The left is the raw footage captured while the right is the

image after text detection and recognition. The UAV can correctly
predict the text.

As seen in the previous photos, the UAV was able to detect

and predict letters with mixed results. When attempting to

find the letter “R,” it was not uncommon for the UAV to

predict other letters were included along with the “R.”

Reasons for this could be the way the “R” appears in the logo,

and solutions could entail further image processing to filter

out some extraneous noise. However, this is not a significant

issue. If the UAV can predict an “R” is involved in the photo,

then the UAV determined the location of the “R” to have

been found, even if the UAV predicted other letters were with

it.

The UAV was able to detect the “N” with more success

than the “R.” A reason for this could have to do with the

difference in the colors of the logos. However, sometimes the

UAV would predict other letters alongside the “N,” similar

to the “R.” Therefore, as long as “N” was within the predicted

text, then the UAV assumed the “N” was found. This

approach would only be problematic if the “R” and the “N”

would appear together, but this has never happened in

simulation.

Once the UAV detects the “R” and the “N,” it then

attempts to return to the launch location to land on the

landing pad. Like detecting and recognizing text, the UAV

again relies on video feed from the camera, but this time it

attempts to detect the circles of the landing platform to assist

in the landing. A shape detector was used to find shapes

within the video feed using OpenCV. Knowing the landing

platform was a square, the UAV attempted to initially locate

the square within the video feed and identify the center of the

square. Eventually, the UAV would be too close to the

ground to identify the entire landing platform, so it would

switch to attempting to find the center point of the circles at

about 1m. This center point was used as a guide for the UAV

Georgia Tech Marine Robotics Group 10 of 10

to maneuver until the center point of the landing platform or

circles was centered in the video feed. The image below

shows the UAV attempting to land on the platform.

Fig 12. The UAV using shape detection to find center point of the

landing platform to use for landing maneuvers. The left image is the

raw footage, and the right image is the image after processing and

analysis identifying the platform bounding box and center point.

Within simulation, the UAV struggled to find the circles.

Part of this could be due to the low resolution of circles,

resulting in a pixelated look. Therefore, the strategy was

modified a bit to have the UAV just look for the square of the

platform to use as a guide. This was sufficient in simulation

even though as the UAV decreased in altitude, the entirety of

the platform was outside the view of the camera, resulting in

the UAV losing track of the center of the platform at low

altitudes. Despite this, the UAV was still able to see the

platform until it was just a few meters off the ground,

resulting in a successful landing on the platform. However,

for the physical system, the UAV will attempt to use the

circles since they will be in the camera view for longer and

the circles can appear less pixelated.

V. ACKNOWLEDGEMENTS

The efforts made working towards this competition extend

far beyond the team attending the RobotX Challenge and

beyond the current membership of the Marine Robotics Group.

The team thanks all the members who worked towards this

competition over the past four years, and alumni who have

remained in contact to advise on development. Special thanks

to Akhil Sadhu, Nicholas Graham, Nicolas Marsilio, Avery

Sawyer, Bezayit Urgessa, Aaron Wu, Allison Fister, Shawn

Coutinho, Ryan Otsuka, Saahas Yechuri, Yash Chitale, Tyler

Campbell, Vinny Ruia, and Eric Phan.

The team also thanks Dr. Michael Steffens for advising the

project, Tanya Ard-Smith for assisting logistical efforts, and

Prof. Dimitri Mavris and the Aerospace Systems Design

Laboratory (ASDL) for supporting the project and the group at

large.

The Marine Robotics Group also thanks sponsors and other

organizations who have assisted the team in preparation for this

competition, as well as previous competitions which the group

was unable to attend due to global circumstances. Those

sponsors and supporters include Greenzie, Fischer Connectors,

Altium, Connect Tech Inc., and Pattent. Additionally, MRG

thanks the Georgia Tech Student Government Association,

Georgia Tech Student Organization Finance Office, Georgia

Tech Student Foundation, and the School of Aerospace

Engineering Student Advisory Council for their support.

APPENDIX – REFERENCES

[1] M. Korber, “Comparing Popular Simulation Environments in the Scope
of Robotics and Reinforcement Learning,” 2021.

[2] B. Bingham et al., "Toward Maritime Robotic Simulation in Gazebo,"

OCEANS 2019 MTS/IEEE SEATTLE, 2019, pp. 1-10, doi:
10.23919/OCEANS40490.2019.8962724.

[3] D. Dulle et al., “Georgia Tech Marine Robotics Maritime RobotX

Challenge 2018,” Presented at RobotX 2018, 2018, [ONLINE].
Available:

https://robonation.org/app/uploads/sites/2/2019/09/GT_RX18_Paper.pdf

[4] D. Frank et al., “University of Florida: Team NaviGator AMS,” Presented
at RobotX 2016, 2016, [ONLINE]. Available:

https://robonation.org/app/uploads/sites/2/2019/09/UF_RX16_Paper.pdf

[5] T. Moore. Robot_localization wiki. [Online] Available:
http://docs.ros.org/en/noetic/api/robot_localization/html/index.html

https://robonation.org/app/uploads/sites/2/2019/09/GT_RX18_Paper.pdf
https://robonation.org/app/uploads/sites/2/2019/09/UF_RX16_Paper.pdf

