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Abstract—This paper describes the design and development of 

an Autonomous Maritime System (AMS) for the 2022 RobotX 

Challenge by the Marine Robotics Group at the Georgia Institute 

of Technology. The AMS consists of a large autonomous surface 

vehicle (ASV) and a companion Unmanned Aerial Vehicle (UAV). 

The design process of the AMS was centered around 

accomplishing the tasks of the RobotX Challenge, with the 

additional consideration of creating a stable platform for 

experimentation. To achieve these goals, new technologies were 

incorporated into the AMS such as Robot Operating System 2 

(ROS2) and micro-ROS, and a new propulsion system featuring 

greater modularity was integrated into the WAM-V.  

I. INTRODUCTION 

The Marine Robotics Group (MRG) at Georgia Tech has 

competed in the RobotX Challenge in previous years. This 

year’s entry into the challenge attempts to remedy issues 

encountered by previous years’ teams, such as issues with 

propulsion in saltwater or difficulties in vehicle control. 

Additionally, in the four years between competitions, many 

new innovations have been developed, such as Robot Operating 

System 2 (ROS2) and micro-ROS, and the team has worked to 

incorporate these new technologies into the system. With these 

considerations, MRG has created a new ROS2 main software 

stack, Virtuoso, to replace the previous Adept software stack 

developed in ROS1, integrated a new holonomic propulsion 

system, and constructed a new Unmanned Aerial Vehicle 

(UAV). 

II. DESIGN STRATEGY 

The design strategy for this year’s competition encompasses 

a long timespan, as MRG has been planning to compete in the 

next RobotX Challenge since the last occurrence in 2018. Over 

the duration of a typical undergraduate education, many ideas 

have been explored, and many members have come and gone. 

As a result, one of the greatest necessities for the organization 

was to create software which members felt a sense of ownership 

over, and while this resulted in redevelopment of some existing 

capabilities, it provided an opportunity for incorporating new 

developments and making improvements over the previous 

system. Additionally, in the interest of saving time in 

development, Commercial Off-The-Shelf (COTS) hardware 

and software were incorporated into the design of the system. 

In 2018, the team had switched from an in-house software 

stack, ARCS, to ROS1 [3]. One of the reasons for this change 

was to allow for integration of externally developed libraries. 

With much of the robotics community switching to ROS2, and 

many of the developers of the ROS1 stack having graduated 

 
Fig 1. The WAM-V during testing at Sweetwater Creek State Park 

 

during the pandemic, the team made a similar shift from ROS1 

to ROS2 in the past year, first testing the ROS2 stack in the 

Virtual RobotX (VRX) Challenge [2]. The development of the 

new ROS2 stack is discussed in greater detail in Section II. 

Some of the benefits of utilizing ROS2 include more robust 

support of multi-robot systems and a more robust 

communication layer. As early adopters of ROS2 with legacy 

equipment, there have been several challenges with software 

compatibility as well, whether that is in the VRX simulation 

environment or with sensor systems. However, with ROS1 

support ending soon, this path will ultimately be more future-

proof and enable easier development going forward. 

A. WAM-V Design 

The Wave Adaptive Modular Vessel (WAM-V) that serves 

as the main vehicle for the competition has also been 

reconfigured since its appearance in 2018. The majority of 

efforts was concentrated on the propulsion system, as it is the 

most critical component across all tasks. Previous members 

reported encountering issues with the Torqeedo Cruise 2.0 

electric outboard motors when running in saltwater. 

Additionally, the team wanted to switch to a holonomic motor 

configuration to improve control of the vehicle. Such 

configurations had proven to be used to great success in past 

competitions [4]. As the previous motors were of questionable 

reliability and were too few in number for the new 

configuration, the team opted to redevelop the propulsion 

system from scratch. The new system was additionally 

constrained by supply-chain issues. Initially, trolling motors 

with integrated throttle systems were chosen, but constant lack 
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of supply ended up holding back development by a semester. 

More affordable 8-speed trolling motors were chosen instead, 

requiring the development of a separate throttling system, 

culminating in a new motor controller box with a micro-ROS 

interface. While this deviated from the original plan, the result 

was a propulsion system that allowed for easily replacing the 

parts with the heaviest wear – the motors themselves. 

The team’s main campus is not located particularly close to 

any bodies of water, and as a result, much of the software was 

developed in simulation, and subsystems were developed 

somewhat independently. The system is composed of many 

individual components which are designed rather 

independently, with sporadic integration testing. This design 

strategy resulted in high coupling within individual component 

systems, and as a result reduced interdependency and 

complexity arising from this. On the other hand, this has 

resulted in the need to tune as systems are integrated together. 

For example, the simulation motors do not behave similarly to 

the real motors. With reduced interdependency, there has been 

an increase in robustness, as modules can be swapped in and 

out, totally replaced, without completely disabling other 

systems. 

B. UAV Design 

A few of the tasks in the 2022 RobotX competition allow or 

require an Unmanned Aerial Vehicle (UAV) for completion. 

These tasks include Follow the Path, Wildlife Encounter, UAV 

Replenishment, and Search and Report. Due to time and 

resource constraints, the only tasks planned to involve the UAV 

for this team were the Search and Report and UAV 

Replenishment tasks. This was a strategic decision to ensure 

adequate performance for a few tasks rather than risk 

inadequate performance for a larger number of tasks, and the 

two tasks selected for development were the only two tasks that 

required the assistance of the UAV. The strategy and planned 

solutions for each of the UAV tasks can be seen in following 

subsections. 

 

 
Fig 2. The UAV in flight during testing 

 

1) Search and Report 

The Search and Report task is the only task that involves only 

the UAV. The task requires a UAV to takeoff from a platform 

and search a field for two letter markers, report the location of 

the markers, and then return and land on the launch platform 

identified by concentric circles. The area to search is marked by 

four markers, and the UAV is not allowed to go outside the 

markers during the search.  

The plan for completing the Search and Report task was for 

the UAV to discretize the search area in to a list of GPS 

waypoints, takeoff, travel to each waypoint in the search area, 

and at each waypoint use the onboard camera to scan the ground 

below for a letter using a text detection and recognition 

algorithm. Once all the waypoints had been reached or both 

markers were found, the UAV would then return to the launch 

location where it would attempt to land on the launch platform 

using the concentric circles on the platform as a guide.  

Using the onboard GPS, the UAV could record the initial 

position and use the relative position of the area boundaries 

with respect to the launching platform to approximate the GPS 

coordinates of the cones. With the GPS location of the 

boundaries known, the area was then discretized into a grid of 

several GPS points for the UAV to travel. This was a simple 

solution to stay within the boundary. Solutions that are more 

sophisticated could use computer vision to detect when the 

UAV approaches the boundary by recognizing the orange 

cones, but the benefits of this method were deemed too small 

for the complexity it would introduce to the system as an 

additional computer vision algorithm would strain the onboard 

computer. 

Once the UAV has the list of GPS waypoints making up the 

search area, it can then takeoff and visit each location to check 

for the markers to find. To recognize the letters within the 

search area, the UAV would not only need to detect letters but 

also interpret the letters. For this, OpenCV and Machine 

Learning methods were used. OpenCV is a library used for 

image processing and is common in many computer vision 

applications. By combining the OpenCV image processing with 

the Python package Pytesseract, used for detecting letters, the 

UAV was able to detect any letters observed by the onboard 

camera. If any part of the video feed was detected to contain 

letters, a portion of the image captured in the video feed 

containing the letters was analyzed using the EAST deep 

learning model. The Pytesseract package does have the 

capability to determine text, but it was shown to be less reliable 

than the EAST deep learning model, so both were used. 

Implementing a deep learning model for text recognition added 

complexity and increased strain on the companion computer, 

but this was an allowable tradeoff for the increase in accuracy 

of detecting the letters in the search area.  

Using Pytesseract, a bounding box around recognized text 

can be created, and the center of the bounding box can be 

calculated. Once the UAV had located a letter within the video 

feed, the next step was to center the UAV over the letter to 

record the location. By maneuvering the UAV so the letter was 

centered in the video feed, the UAV was able to get a better 

estimate on the GPS location of the letter. Because there is some 

uncertainty in the GPS location, the GPS location was recorded 

over a series of 3 seconds and the average location was 

recorded. This average location was then used as the location of 
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the letter.  

Once the UAV had travelled to each waypoint in the search 

area or found both markers, the UAV would then travel to the 

launch location and land on the launch platform. The simplest 

solution would be for the UAV to rely solely on GPS location 

and return to the GPS location of launch. However, this method 

relies on GPS modules with a high level of accuracy, which 

increase the cost of the UAV. The GPS used on the UAV is 

accurate within a few meters, which is unacceptable for landing 

on the platform with a size of approximately 1.5m x 1.5m. A 

very complex solution could rely on computer vision and 

machine learning methods to identify the shapes on the landing 

platform. The decided approach relied on computer vision, but 

did not employ machine learning. Using the video feed during 

landing, OpenCV processing was used to identify shapes in the 

feed of the camera. By identifying the location of the center of 

the concentric circles in the video feed, the UAV attempted to 

maneuver during landing until the center of the circles was 

centered in the video feed. This allowed the UAV to land on the 

launch platform.   

The plan previously described for completing the Search and 

Report task shapes the design of the UAV. With the goal of 

autonomous letter detection, a companion computer and camera 

were required on the UAV to process images. However, by 

minimizing the computation power required for image 

processing by forgoing a strong emphasis on machine learning 

methods, a smaller and cheaper companion computer can be 

used. Similarly, with the assistance of computer vision in the 

landing phase, a precise GPS is not required, allowing a cheaper 

model to be used instead. Both of these decisions allow for a 

cheaper vehicle without significantly sacrificing the ability to 

complete the task.   

 

2) UAV Replenishment  

The UAV Replenishment task requires a UAV to launch 

from the WAM-V, locate a platform containing colored tins, 

collect a colored tin, and then deposit the tin on another 

platform before returning to the WAM-V. The plan for 

completing this task was for the WAM-V to maneuver 

alongside one of the UAV landing platforms. From here, it 

would remain stationary until the UAV returned from the 

mission. The UAV would then launch and use the shape 

detecting computer vision algorithms to locate and land on the 

landing platform, where it would collect a tin using a retractable 

magnet. The UAV would then takeoff again and begin a search 

pattern looking for the other platform, where it would then land 

and deposit the tin by retracting the retractable magnet. Upon 

depositing the tin, the UAV then takes off again and returns to 

the location of its initial launch and lands on the WAM-V. 

Landing on the WAM-V is enabled through ArUco marker 

localization on the WAM-V landing pad using a method similar 

to the UAV landing on the landing platforms of the various 

tasks.  

 Based on the description of the task, it has significant 

overlap with the capabilities developed for the Search and 

Report task. Therefore, the ability to search an area, detect and 

recognize shapes and the ability to land on the launch platforms 

were taken directly from the solutions for the Search and Report 

task. The added capabilities that needed development were to 

add a communication link between the UAV and the WAM-V 

and to add a way to grab the tins. A communication link from 

the UAV to the WAM-V was established using ROS 2. When 

the WAM-V was in the correct position to begin the UAV 

Replenishment task, it would communicate this with the UAV 

using ROS 2. The UAV would then proceed to complete the 

task by taking off, searching the area for the landing platform 

containing the tins, landing on platform, and then taking off to 

find the other platform before returning to the WAM-V.  

The method for obtaining the tin utilized a simple magnet that 

could attract the metal tin. Solutions that are more sophisticated 

would allow the use of computer vision to distinguish the tins 

by color, but due to resource constraints, the UAV was planned 

to just land on the platform and attract whichever tin was within 

range to a retractable magnet located on the landing gear. To 

remove the tin from the magnet, the magnet would retract and 

separate from the tin.  

III. VEHICLE DESIGN 

The vehicle design has largely revolved around two main 

ideas: 

• Long-term robustness 

• Integration of new technologies 

These ideas can be seen in the design of the WAM-V’s 

propulsion system, the new ROS2 software stack, and the 

overall design of the UAV. 

A. WAM-V Mechanical Design 

 Mechanical design on the WAM-V was mainly focused on 

the integration of the new motor configuration, the UAV 

landing platform, and a sensor bar. 

 To implement a holonomic control system, the team opted to 

reconfigure the WAM-V with four total thrusters, two fore and 

two aft, configured with thrust vectors which form a diamond. 

The system was designed for typical transom-mount trolling 

motors with mounting clamps with minimal additional 

customization.  

 The fore motors required new motor mounts. These mounts 

are affixed the sides of the WAM-V pontoon skis. The initial 

mounts were constructed from single-bar 8020 aluminum 

extrusion and featured 3D-printed plastic mount points. 

Following initial testing at the lake, significant twisting was 

noticed in the motor mounts. To resolve this, the mounts were 

reinforced, with the mounting bars consisting of a 2-wide 8020 

bar and a 1-wide 8020 bar, forming a stronger L-shaped bar. 

This proved to be much stronger and held up to higher motor 

thrusts at subsequent lake tests. 

 The aft motors did not require new motor mounts and were 

attached to the existing mount points on the stability pods where 

the electric outboards were located previously. 

 The competition also required the development of a raised 

UAV landing platform. Due to the main WAM-V platform 

holding the main electronics, the raised platform needed to sit 

above these components to provide a safe and flat location for 

the UAV to take-off and land from. The raised platform was 
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constructed from 8020 extrusion and features a white landing 

pad with 3 ArUco markers. 

 The system also features a sensor bar mounted to the front of 

the WAM-V. This sensor bar holds a camera, LIDAR, and other 

sensors. The purpose of this system is to enable testing of sensor 

systems while not onboard the WAM-V to allow for reuse of 

the same configuration on multiple platforms. Ideally, similar 

configurations can be used on vehicles for other competitions 

such as RoboBoat. 

B. WAM-V Electrical Design 

The electrical system on the WAM-V is a complete redesign 

from 2018. Changes were made to the motors, base power 

supply, and the motor controller. Sensor systems remained 

mostly unchanged from previous years. 

Past outboard motors were reported to be unreliable in 

saltwater in recent years, so new saltwater trolling motors were 

chosen to replace them. These trolling motors operate at 12 

volts as opposed to the 24 volts required by the previous 

outboard motors.  

 

 
Fig 3. WAM-V Electrical System Block Diagram 

 

Initially, the selected Minn Kota trolling motors were 

equipped with integrated digital speed control. However, due to 

supply chain issues, these motors were difficult to acquire and 

held up propulsion development for a semester. In retrospect, it 

would have been wiser to switch to an alternative after the first 

delays in acquiring the motors. The motors that were ultimately 

chosen were Newport Vessels NV-Series 8-speed 55lb trolling 

motors. These motors lack digital speed control, resulting in the 

need to implement this functionality externally. Motors of this 

variety tend to be more affordable and easily acquired. The 

switch to these motors proved useful, as the propulsion system 

is one of the systems subjected to the most wear. This new 

design allows for the propulsion system to undergo routine 

maintenance with less costly replacements. 

The main power system is now based on a 12-volt supply, 

instead of 24-volt supply due to the switch from 24-volt 

outboard motors to 12-volt trolling motors. Additionally, 12-

volt batteries tend to be more easily acquired than 24-volt 

batteries, especially of the Torqeedo brand. Utilizing DC/DC 

switching regulators, the 24-volt batteries the team already 

possesses were able to be reused.   

In order to allow for the computer to communicate with the 

propulsion system, a new motor controller was necessary. This 

motor controller needed to be mechanically robust, support 

communication with ROS2, and allow for digital speed control 

of the motors.  

Previous motor controllers built by MRG often consisted of 

Arduino Mega boards connected to various independent 

components by jumper cables. Jumper cables can often have 

intermittent contact and can easily come loose, costing precious 

time as the wiring must be reintegrated. If the cables are 

connected incorrectly, this can be dangerous, possibly causing 

unpredictable behavior. To resolve this issue, MRG 

manufactured a single-layer printed circuit board (PCB) using 

an in-house mill. In-house manufacturing allowed for working 

out several critical issues in the board through quick iterative 

design. 

 

 
Fig 4. WAM-V Motor Controller Hardware 

 

The motor controller board consists of multiple components, 

including a microcontroller and interfaces to various COTS 

electrical hardware components. The microcontroller is an 

Arduino Due, selected due to community support of micro-ROS 

for this board. Micro-ROS is the recommended software for 

enabling communication between microcontrollers and ROS2 

and allows for swapping in the physical motor interfaces for the 

simulation interfaces without significant adjustment. Initially, a 

Raspberry Pi Pico was also under consideration, but since the 

Arduino platform was more familiar to the team, the Arduino 

was chosen for the first version of the motor controller.  

The board also has chips providing an interface with Pulse 

Width Modulation (PWM) modules manufactured by Walfront 

for controlling individual motor speed. The modules were 

chosen due to reviews indicating successful use with trolling 

motors and support for the necessary power draw. The control 

interface for the modules included a 100K linear potentiometer 

for throttle and an ON-OFF-ON switch for direction control. 

The interfaces connected to the module through JST-XH 

connectors. To replace the interfaces, the board includes 100K 
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digital potentiometer boards and MUX chips. These 

replacements allow for the Arduino to control the motor speeds. 

However, the digital potentiometer tolerances are rather 

relaxed, and as a result, the throttle is limited by the chip with 

the lowest maximum resistance. Additionally, JST-XH crimps 

are challenging to complete properly, and as a result, some 

cables required rework. 

The motor controller also features an OrangeRX R615X 6 

channel R/C receiver. This receiver enables remote control of 

the motor controller, essentially allowing the WAM-V to be 

operated as a large R/C boat. The receiver is also connected to 

a BattleSwitch relay, which is incorporated into the Emergency 

Stop (E-Stop) system. The relay is failsafe, disabling the boat 

in the case of a lost R/C signal.  

The light tower is also connected to the motor controller 

board, allowing for the motor controller to reflect the 

operational status of the vehicle. This includes kill status, R/C 

and autonomous control, and micro-ROS connection status. 

The motor controller can be powered independently, 

allowing for the WAM-V to be operated even without a 

computer onboard. Powering the board properly is something 

that requires more consideration, as it needs to be protected 

from the propulsion system and cannot handle the 12-volt 

supply from the main power supply.  

A revision of the board is in development with a Teensy 4.1 

replacing the Arduino, due to full micro-ROS support and 

compatibility with the developed Arduino code. Future 

revisions will address issues in cable reliability and chip 

tolerances, and possibly integrate power regulation and 

protection circuitry. New boards will be professionally 

fabricated for greater longevity.  

The WAM-V’s autonomy system is completely independent 

from the motor control system, apart from a micro-USB for the 

motor controller. This design  enables reuse of the autonomy 

system with minimal reconfiguration for other vehicles. 

Sensors include an IMU, a LIDAR, a GPS, and a camera. Most 

hardware has remained unchanged from 2018, except for the 

GPS. The GPS had proven unreliable in RoboBoat 2019, and 

was replaced for this reason. All other hardware was 

performing well. The IMU is a LORD MicroStrain 3DM-GX3-

25. This IMU is convenient because it has a built-in attitude 

filter that estimates attitude based on magnetometer, 

accelerometer, and rate gyroscope data. The LIDAR is a 

Velodyne VLP-16, utilized in previous years. The GPS module 

is a ZED-F9P, which offers RTK functionality. The onboard 

camera is a Logitech C920 webcam. The main computer is a 

2016 Intel NUC. These systems run off a 12-volt power supply, 

optionally provided by the same supply as the propulsion. 

Additionally, a small TP-Link Wi-Fi router was powered by the 

NUC, though this system will likely be replaced by the time of 

the competition to improve range. With ROS2, by simply 

sharing the same LAN network, it is possible to publish and 

subscribe to data between computers, making Wi-Fi an ideal 

option for remote connections. 

C. WAM-V Software Design 

The new ROS2 software stack builds off of many openly 

available packages, and was developed through the use of the 

Virtual RobotX [2] simulation environment. The software stack 

handles localization, control, and perception. 

Localization utilized the GPS and IMU to estimate the 

attitude, position, and velocity of the vehicle. Initially, position 

and velocity were estimated with an Extended Kalman Filter 

fusing IMU acceleration, attitude, and GPS position. However, 

the IMU acceleration was found to be too noisy for this purpose. 

Instead, the inputs to the EKF were changed to be GPS position, 

GPS estimated velocity, and IMU attitude data. The package 

robot_localization was used for this [5]. The vehicle uses two 

main coordinate frames, wamv/base_link which is attached to 

the center of mass of the vehicle, and odom which has its origin 

at the vehicle stating position with axes corresponding to local 

magnetic ENU.  

A controller package was created to follow paths from the 

navigation package. The controller consists of four main parts 

— an outer loop that commands a vehicle velocity, an inner 

loop that outputs vehicle force and torque commands, a last-

meter PID controller that is intended for use once the vehicle is 

close to its target, and a control mixer that outputs vehicle 

thruster commands based on the force and torque commands. 

The target attitude is the direction such that the vehicle’s +x 

axis is parallel to the desired velocity until the vehicle comes 

within a specified distance of its target, at which point the goal 

attitude specified by navigation package is set as the target. The 

outer loop takes the vehicle position and target path as its inputs. 

It calculates a desired velocity as a sum of two vectors. The first 

of these is a vector directly towards the line between the closest 

point on the path and the next point on the path. The second is 

the vector from the closest point on the path to the next point on 

the path. These vectors are scaled such that if the vehicle is 

further from the path, the vector towards the path is favored. In 

addition, the velocity magnitude is decreased if the vehicle is 

pointing away from the target velocity so that the vehicle can 

rotate itself to face in the direction of travel. This is preferred 

since the hydrodynamics of the vehicle favor motion in the 

surge direction. The main inner loop PID controller takes in the 

vehicle’s current velocity, target velocity, and target attitude 

and outputs a goal X and Y force as well as torque. The last-

meter PID controller takes in vehicle velocity, position, and 

attitude as well as target position and attitude and outputs X and 

Y force as well as torque commands. The last-meter PID 

controller is implemented so that station keeping can be tuned 

separately from the vehicle behavior between goals. The control 

mixer is what sends individual thruster commands based on 

target X and Y force as well as torque. The rear thruster 

commands are scaled down in magnitude to not induce 

excessive torque with Y force commands. In addition, the 

commands to all thrusters are scaled so that the maximum 

magnitude is 1.0, but the ratios of all thruster commands are 

kept. 

PID tuning was done in simulation. When the vehicle was 

tested with these gains, it was found that the overall drag on the 

vehicle appeared greater than in simulation, so the gains were 

scaled up to increase the responsiveness of the vehicle.  

The processing package of Virtuoso takes in raw camera and 
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raw LIDAR data. For the camera data, the images are 

downsampled to be used by the perception package. The 

LIDAR data is first passed through a ground filter from 

Autoware.auto that removes any LIDAR points on the water. 

Non-ground points are then passed to a self-filter that removes 

any LIDAR points hitting the WAM-V. Finally, the self-filtered 

points are passed to a shore filter. In simulation, the shore filter 

filters any LIDAR within a polygon created from GPS 

coordinates on the shore. For the competition and for practice 

runs, the shore filter removes any points behind the LIDAR and 

any points further than 15 meters to the left and right of the 

LIDAR. 

The perception package uses LIDAR data to identify buoys. 

The processed LIDAR is first passed through a Euclidean 

clustering package developed by Autoware.auto. From the 

clustering, the location, width, and height of the buoys in front 

of the WAM-V are estimated. To ensure that a randomly 

incorrect clustering does not lead us to incorrectly detecting the 

location of a buoy, multiple consecutive clusterings identifying 

the buoy in the same location are detected before publishing the 

location of a found buoy. Upcoming developments include 

algorithms to scan the code using camera data and identify 

docking locations using camera data.  

The navigation package uses Nav2, a sophisticated open-

source navigation software, to create paths for the robot to 

follow. When the package receives a goal to navigate to (from 

the autonomy package), it calculates a path to that goal through 

Nav2’s path planning action. Once Nav2 publishes the path that 

it has created for our controller server to use, the navigation 

package checks to see how we are progressing through the path, 

and it publishes a success message when it has successfully 

navigated to the goal (by using comparing our odometry to the 

goal pose). The navigation package can also handle navigating 

through multiple set waypoints. To do this, it will navigate to 

each waypoint in the order received, generating a path to each 

using Nav2 in order to avoid obstacles between waypoints. 

When all waypoints are completed, the server publishes a 

success message. 

The autonomy package serves as the “brains” of the robot, 

coordinating all the other packages. Depending on the task we 

are running, the autonomy server will launch certain nodes of 

each package, as some may be necessary for one task but not 

another. It then uses information from the perception and 

localization servers to send goals for navigation to the 

navigation server. For example, for the dynamic navigation 

demonstration, the autonomy server uses the information on 

buoy locations from the perception server to send a goal 

waypoint to the navigation server. 

D. UAV Design 

Designing a UAV is an iterative process. In order to select an 

appropriate combination of motors, frames, propellers, and 

batteries, some estimation is required on the final weight of the 

UAV to ensure the selected combination is sufficient to lift the 

takeoff weight. However, this is difficult without having 

selected the mentioned parts because they contribute a 

significant portion of the weight as well. The UAV design 

process therefore requires a rough estimate on the final takeoff 

weight of the UAV. This rough estimate can then be used to 

select a combination of motors, propellers, and batteries 

sufficient to lift the takeoff weight. After finding a suitable 

combination, the estimated takeoff weight can then be 

improved based on the parts selected to confirm the chosen 

combination is sufficient. Even without the motors, frame, and 

battery selected, some of the sensors and electronics can be 

chosen based on what the UAV needs to accomplish during the 

tasks. By selecting the sensors and electronics, a better estimate 

on the takeoff weight can be obtained.  

 

1) Sensors and Electronics 

Depending on the UAV application, there is a variety of 

different sensors and electronics that can be used. Based on the 

tasks selected for the UAS, the vehicle needs to be able to not 

only record but also process images from the surroundings, pick 

objects up, and then land within the area of a landing platform. 

This means the UAV will need to carry a camera, an onboard 

computer for image processing, a grabbing mechanism, a GPS 

for localization, and a range finder to use for landing. 

Additionally, the vehicle also needs a flight controller to 

maintain steady flight.  

There are several options for a UAV flight controller. 

Because the UAV is responsible for autonomous flight and 

decision making, the flight controller is required to be 

compatible with a companion computer that can do most of the 

high-level thinking. Alternative methods would be to do the 

flight control and the higher-level computations on the same 

computer, but this would introduce more complexity and would 

require a more powerful computer. Two popular flight 

controllers that are commonly used with companion computers 

include Navio and Pixhawk. Based on availability, the Pixhawk 

was selected as the flight controller, although they both are very 

similar. The Pixhawk is also compatible with the Raspberry Pi, 

a commonly used companion computer.  

The Raspberry Pi was selected as the companion computer 

to do high level calculations like computer vision and decision 

making. By using the Python package Dronekit, the Raspberry 

Pi is able to communicate back and forth with the Pixhawk 

flight controller. This communication allows UAV data to be 

sent to the Raspberry Pi, which can then send movement 

commands to the Pixhawk.  Alternatives to the Raspberry Pi 

include Beagleboards and Nvidia Jetson Nanos. The Raspberry 

Pi offers a larger support community than the Beagleboard, and 

although the Jetson Nano might be more suitable for Machine 

Learning applications, the Raspberry Pi offers a more compact 

package, making it the more suitable option.  

For the UAV to detect shapes and letters, a camera is required 

to sense the environment. Because a Raspberry Pi was chosen 

as the companion computer, a Raspberry Pi camera was chosen 

as the onboard camera because it is compact with easy 

implementation into the companion computer.  

The final sensor required is the range finder to assist in the 

precision landing on the launch platforms of various tasks. The 

maximum range for different range finders varies greatly, with 

the price increasing as the range increases. Because the range 
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finder assists in landing only and not in obstacle avoidance, the 

maximum range required could be 10m or less. Several higher-

end models with longer range would be unnecessary. The 

selected model was the TF Mini Plus due to its budget-friendly 

price and maximum range of 12m, which is higher than the 

planned flight altitude of approximately 5m, so it is sufficient. 

After having selected the required electronics previously 

described a closer guess for the final weight of the UAV is 

achieved. The only components remaining are the motors, 

propellers, frame, and battery. 

 

2) Mechanical Design 

The UAV was designed with considerations to the 

competition rules as well as to the types of tasks it was expected 

to complete. The first design decision made for the UAV was 

to determine if emphasis was to be placed on maneuverability 

and agility or on endurance and lift capability. Because the tasks 

for the UAV included searching areas, assisting the WAM-V in 

navigation, and delivering a payload, the UAV was designed 

with more of an emphasis on endurance and lift capability. A 

UAV of this type typically has a larger frame, larger propellers, 

and a larger battery for increased endurance and lift at the cost 

of agility and speed, which was deemed as an acceptable cost. 

However, the competition rules and WAM-V size placed 

limitations of the UAV frame size and weight.. According to 

the rules, the UAV had to weigh under 7 kg and float in water. 

Additionally, the UAV would have to fit on the WAM-V. 

Therefore, the goal was to maximize the lift capability and 

flight time of the UAV while still adhering to those constraints.  

To start, the frame was the first piece to be selected because 

there are size constraints due to the available space on the 

WAM-V and weight limits from the competition rules. 

Additionally, the frame would need to house all of the 

previously mentioned electronics and sensors. Because the 

UAV was meant for endurance and lift, a six-rotor frame was 

desired because a similar size UAV with four motors would not 

lift as much or stay airborne as long. Therefore, based on these 

conditions, an S550 frame was chosen as the UAV frame 

because it was compact enough to be under the 7 kg weight limit 

and fit on the WAM-V while still providing plenty of space for 

the electronics and sensors. Common batteries for UAVs of the 

size being designed include a 3 cell or 4 cell LiPo battery. While 

a 3 cell battery is more compact and weighs less, the 4 cell 

battery gives motors more lift with the additional voltage. For 

this reason, the goal was to use a 4 cell battery. The exact 

specifications for the battery would require knowledge on how 

many amps are required for operation, which is dependent on 

the onboard electronics and motors. Since the all the onboard 

electronics are already known, it is easy to estimate their 

combined required amperage. However, the type of motors will 

change the amperage requirement, so motor and propeller 

selection was next.  

To select the motors and the propellers, it is important to get 

an estimate for how much a single motor can lift with a given 

battery and propeller combination. Common specifications to 

check for motor selection is the Kv rating, which specify how 

many rotations per minute a motor will spin per volt provided. 

The Kv ratings can range anywhere from 800 Kv up to over 

2000 Kv. Typically, higher Kv motors produce less torque but 

spin very quickly, making them very suitable for racing UAVs 

with smaller propellers. Lower Kv motors have more torque for 

turning larger propellers, making them very suitable for the 

current application. The HobbyPower 920 Kv motors were 

selected because they are compatible with the 4 cell battery and 

provide enough lift when six of them are paired with 1045 

propellers. The lift estimate was obtained from data sheets 

provided by the manufacturers.  

With the motors selected, the speed controllers can then be 

selected based on the expected amperage requirement from the 

motors. The maximum amperage expected to be drawn from the 

motors was about 22 amps, so 30 amp ESCs were selected. The 

total amperage of the UAV was then calculated with the motors 

selected. Based on the estimate amperage requirement for the 

UAV to operate, a 35C 5000mAh 4S was selected.  

E. Transportation Logistics 

The crates used for the WAM-V in previous years are rather 

large, and due to the geography around the location in which 

the vessel is stored, they are rather difficult to move. This year, 

the team opted to use 3 crates from Shark Crates which are 

collapsible and can be assembled piece-by-piece. While 

disassembled, the crates are portable by a small group of people, 

allowing for the crates to be constructed in a more suitable 

location accessible by forklifts. The dimensions for the crates 

are as follows: 

• Main crate: 96x48x54 inches 

• Pontoon crates: 123x20x37 inches 

 

 
Fig 5. New equipment crates that can be assembled by hand outside of 

the building. 

IV. EXPERIMENTAL RESULTS 

A. WAM-V Simulation-based Testing 

 

The Virtual RobotX [2] simulation environment was utilized 

for much of the software development. Our design 

configuration for the WAM-V differs from the default WAM-

V in the simulation, so we created configuration yaml files with 

our design and used them to test the appropriate WAM-V 

design in simulation. For this configuration, we had four motors 

rather than two on the WAM-V and angled in a holonomic 

manner. The sensor location on the WAM-V were also changed 
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to better match the configuration of the sensors on the physical 

WAM-V.  

 

For each task we wanted to test in simulation, we first opened 

the VRX-provided simulation, and set up the task with buoys. 

Then, we launched the ROS1-ROS2 bridge and our software to 

see if WAM-V could complete the desired task autonomously. 

Additionally, we could verify certain parts of our software stack 

were working by using tools like Rviz to visualize the data 

being published to certain topics (e.g., filtered LIDAR, 

Euclidean clusterings, odometry, path plans, etc.). Below are 

examples of our task setup in simulation for certain tasks: 

 

 
Fig 6. Dynamic navigation demonstration. 

 

 
Fig 7. Enter and Exit Gates 

 

 
Fig 8. Follow the Path 

 

B. WAM-V Lake Testing 

The WAM-V was tested at a local reservoir three times prior 

to the competition.  

 

1. The objectives of the first lake test included learning 

vehicle deployment strategies and testing the new 

propulsion system. All objectives were achieved and 

exceeded. 

2. The objectives of the second lake test were to improve 

vehicle deployment strategies, test motor control over a 

micro-ROS interface, test remote networking and 

control with tmux, and test sensors, localization, and 

navigation. Issues were encountered with configuring 

auxiliary device ports on the main computer. Data was 

collected. 

3. The objectives of the third lake test were to test 

improvements made to the micro-ROS interface, sensor 

interfaces, and navigation. Issues from the previous test 

were resolved, and information for debugging 

navigation was obtained. Data was collected. 

Without any previous members present, the team relearned 

how to deploy the WAM-V over the several lake tests. 

C. WAM-V Headless Testing 

With the WAM-V heading out, testing of localization will 

have to be carried out without the vehicle. The sensor bar has 

enabled testing of localization and perception without the 

WAM-V platform present. 

D. UAV Simulation Testing 

1) Simulation Environment 

To test the UAV behaviors and performance of the tasks, a 

simulated UAV was tested first. Using a simulated UAV to 

test the ability to complete tasks allowed for more rapid 

testing. However, a simulation environment was required for 

the different tasks the UAV would be completing. The 

simulation environment used was Gazebo, which is a popular 

simulation environment due to its ability to communicate 

with ROS, which can be used to control both a simulated and 

physical robot system. From [1], Gazebo is recommended to 

simulate robot systems with physical counterparts. To use 

Gazebo, a world file is required that contains models of the 

items in the world. To simulate the UAV, a model of the 

Parrot quadcopter was used. Although the physical UAV 

used had six rotors, the Parrot quadcopter model was 

sufficient for testing algorithmic performance for the tasks. 

With a world file specifying the objects and UAVs within the 

world, the next step was to simulate the UAV software for 

actually completing tasks.  

 ArduPilot is an open-source autopilot system for 

controlling vehicles, and it is used on the Pixhawk flight 

controller of the UAV. One of the benefits of using 

ArduPilot, is that it can be used to connect with Gazebo for 

Software in the Loop (SITL) simulations. By combining 

ArduPilot with Gazebo, a simulated UAV can behave as if it 

were in the real world due to the physics engine within 

Gazebo and the UAV can respond as it would in the physical 

world using the ArduPilot.  
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 The last remaining component for testing a simulated 

UAV is creating scripts that can be used for completing the 

tasks. A combination of DroneKit and ROS were used for 

completing the tasks with Python scripts. DroneKit can be 

used in the simulation and the physical system to 

communicate with the ArduPilot in the flight controller. This 

communication could be to obtain UAV state information 

like position and velocity to be used in the Python scripts, but 

DroneKit can also send movement commands to ArduPilot 

to execute.  

 Within the model of the Parrot quadcopter was a 

downward facing camera on the UAV. This camera publishes 

video feed captured from the camera to a ROS topic. 

Therefore, within the Python scripts to complete the tasks, a 

ROS node was created that subscribed to the topics 

containing the captured video feed. This allowed the video 

feed to be analyzed within the Python scripts for various 

tasks.  

2) Search and Report Task 

As mentioned, testing the tasks within the Gazebo 

environment required a world task containing the items 

featured in the tasks. From the task description, the Search 

and Report task contains four cones marking the boundaries 

of the search area, one letter marker of an “R”, one letter 

maker of an “N”, and a landing platform with concentric 

circles. This description was used to create the world file. A 

overhead view of this world can be seen in the image below 

with the Parrot quadcopter on the landing platform.  

 
Fig 9. The Search and Report simulated world. Within the world contains 

the landing platform and UAV (bottom right), four cone markers 
(two are shown), and the "R" and "N" letters for the UAV to find. 

 

Within the Python script for completing this task, the 

search area was divided into various GPS coordinates 

based on the initial GPS location of the UAV. Using 

DroneKit, these GPS coordinates were then sent to the 

flight controller. The flight controller then proceeded to 

make the UAV takeoff to an altitude of 5m, where it would 

then travel to the each GPS coordinate in the list sent by 

DroneKit. At each GPS point, the camera on the UAV 

would record the footage of the ground below and publish 

that to the ROS topic. Within the Python script for 

completing the task, this footage was taken and analyzed 

to find any letters within the feed. When a letter was 

detected, the script would attempt to determine which letter 

it was. The below pictures show some of the results of the 

UAV attempting to recognize the letters seen.  

 
Fig 10. The UAV recognizing the text from the onboard camera. The 

left image is the raw footage, and the right image is the image after 

processing and analyzing. The UAV predicts the image contains the 

text "RI" instead of just the shown "R." 

 
Fig 11. The UAV attempting to recognize the letter "N" shown in the 

image. The left is the raw footage captured while the right is the 

image after text detection and recognition. The UAV can correctly 
predict the text. 

As seen in the previous photos, the UAV was able to detect 

and predict letters with mixed results. When attempting to 

find the letter “R,” it was not uncommon for the UAV to 

predict other letters were included along with the “R.” 

Reasons for this could be the way the “R” appears in the logo, 

and solutions could entail further image processing to filter 

out some extraneous noise.  However, this is not a significant 

issue. If the UAV can predict an “R” is involved in the photo, 

then the UAV determined the location of the “R” to have 

been found, even if the UAV predicted other letters were with 

it.  

The UAV was able to detect the “N” with more success 

than the “R.” A reason for this could have to do with the 

difference in the colors of the logos. However, sometimes the 

UAV would predict other letters alongside the “N,” similar 

to the “R.” Therefore, as long as “N” was within the predicted 

text, then the UAV assumed the “N” was found. This 

approach would only be problematic if the “R” and the “N” 

would appear together, but this has never happened in 

simulation.  

Once the UAV detects the “R” and the “N,” it then 

attempts to return to the launch location to land on the 

landing pad. Like detecting and recognizing text, the UAV 

again relies on video feed from the camera, but this time it 

attempts to detect the circles of the landing platform to assist 

in the landing. A shape detector was used to find shapes 

within the video feed using OpenCV. Knowing the landing 

platform was a square, the UAV attempted to initially locate 

the square within the video feed and identify the center of the 

square. Eventually, the UAV would be too close to the 

ground to identify the entire landing platform, so it would 

switch to attempting to find the center point of the circles at 

about 1m. This center point was used as a guide for the UAV 
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to maneuver until the center point of the landing platform or 

circles was centered in the video feed. The image below 

shows the UAV attempting to land on the platform.  

 
Fig 12. The UAV using shape detection to find center point of the 

landing platform to use for landing maneuvers. The left image is the 

raw footage, and the right image is the image after processing and 

analysis identifying the platform bounding box and center point.  

Within simulation, the UAV struggled to find the circles. 

Part of this could be due to the low resolution of circles, 

resulting in a pixelated look. Therefore, the strategy was 

modified a bit to have the UAV just look for the square of the 

platform to use as a guide. This was sufficient in simulation 

even though as the UAV decreased in altitude, the entirety of 

the platform was outside the view of the camera, resulting in 

the UAV losing track of the center of the platform at low 

altitudes. Despite this, the UAV was still able to see the 

platform until it was just a few meters off the ground, 

resulting in a successful landing on the platform. However, 

for the physical system, the UAV will attempt to use the 

circles since they will be in the camera view for longer and 

the circles can appear less pixelated.  
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