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Abstract—This paper describes the architecture and
implementation of a heterogeneous team comprising of
unmanned surface vehcile (USV) and aerial vehicles (UAV) for
the RobotX Challenge 2022. The modularity designs of sensor
tower, autonomy box, and communication modules provide
hardware-in-the-loop (HIL) developments. This work tackles
the sim-to-real gap of learning-based models. We generate a
virtual RobotX perception dataset with realistic appearances
and automatic labelling. The Gazebo simulation provided by
Virtual RobotX (VRX) consists of physical engines of high
fidelitous current, wind and sensors streams, which are used
to develop deep reinforcement learning algorithms of collision
avoidance and navigation. We show that a deep RL policy of
USV learns the vehicle dynamics in maritime environments
implicitly and outperforms other models only trained on UGV.
For fleet management, we consider situational awareness of
human supervisor at base station by including a virtual reality
(VR) interface. We develop a behavior tree for each RobotX
2022 task with reusable subtrees and nodes for the USV
and UAV. Quantitative Evaluations of collision avoidance and
RobotX tasks are carried out in simulation, and the proposed
approaches are deployed and tested in a real wave adaptive
modular vehicle (WAM-V) platform.
For a supplementary video visit: https://vimeo.com/758819296
For team webpage visit: https://arg-nctu.github.io/robotx-2022/

Index Terms—Deep Reinforcement Learning, Heterogeneous
Robot Team, Sim-to-real, Fleet Management, WAM-V, Behavior
Tree

I. INTRODUCTION

RobotX competition has brought together universities and
research teams around the world since 2014. Each team have
developed both hardware designs and software algorithms for
the unmanned surface vehicle (USV) platform. Perceptions
and autonomous navigation support real-time decision-making
to perform well-defined tasks such as path following, docking,
etc., and avoid collisions at the same time.

A. Autonomy Challenge

Nevertheless, Building an autonomous unmanned marine
system is challenging in many aspects. The hardware should
include waterproof design, compact electronics, together with
cooling system are crucial for weather conditions. The nav-
igation and control system should consider wind and wave
conditions and cope with dynamics and uncertainties of
the marine environments. Those challenges remain without
baselines and standardized evaluations because benchmarking
in marine environments is hard. Recently, The open-source
Virtual RobotX (VRX) simulator [1] is proposed to support
the development and evaluation of USVs operating in such

Fig. 1: We proposed an autonomous surface/aerial system with
modular design. The system is capable of running in real
robots and simulations.

environments. More importantly, there are still big questions
arisen from the previous RobotX competitions.

1) What are the gaps between real and virtual environments
and how to bring the gaps closer?

2) How could the developed system/techniques be general-
ized to other robots or in other environments?

3) What are the basic principles to manage a team of
heterogeneous robots in multiple tasks and to advance
the developments?

Our approaches in the RobotX Competition 2022 are built
upon our recent developments. The Duckiepond [2] is moti-
vated by the Duckietown [3] and include a fleet of USVs with
low-cost, modular designs of sensing, autonomy, and control
components. Subsequently, a heterogeneous team of unmanned
ground vehicle and blimp robot is designed for search and
rescue missions [4]. For potentially foggy or dark environem-
nts, we develop a sensor tower of millimeter-wave (mmWave)
radar, which is lightweight and inexpensive, for learning-based
autonomous navigation. A cross-modal contrastive learning for
representation (CM-CLR) method is proposed maximizes the
agreement between mmWave radar data and LiDAR data [5].
We also leverage the use of ultra-wideband (UWB) for center-
meter accuracy localization for autonomous navigation [6].
Our recent work on an immersive VR interface and simulation
environment [7] allow the monitoring and control of real
robots remotely. Many of the techniques developed over the
years have been adopted for RobotX 2022.

https://vimeo.com/758819296
https://arg-nctu.github.io/robotx-2022/


B. Autonomy Objectives

We summarize our objectives as follows:
1) Modular designs of sensing, autonomy, control, and

communication. Our WAM-V system include 4 sensor
towers, 3 autonomy boxes, control and communication,
and 6 localization anchors. We also include an quadrotor
UAV with a vacuum-based soft gripper in the heteroge-
neous team. All of the modular components have been
developed for several iterations since 2018.

2) Sim-to-real Learning-based Perception and Auton-
omy. Our team relies heavily on Unity to render realistic
training data with automated ground truth labels for
perception tasks. We leverage the use of VRX Gazebo
simulators [1] to train deep reinforcement learning (RL)
for collision-free navigation policy. In particular, we
tackle the problems of a) sim-to-real gap of virtual and
real visual appearances, b) curriculum transfer learning
from UGV to USV in maritime environments.

3) Heterogeneous robot fleet management and interface.
Our system adopts the recent efforts of the Duckietown
platform for flexible fleet managements using the Duck-
ietown Shell (DTS). The fleet can be discovered with
heartbeat (1Hz) health status of sensors and computing
units. We also include an immersive VR interface for
fleet monitoring.

II. ENGINEERING DESIGN DECISIONS

A. Problem Statements and Challenges

• Autonomous Navigation Our USV is assumed to operate
in the environments with some static floating objects,
signs, and natural interference, such as wind and wave.
We aim at developing collision avoidance control policies
for goal navigation, whose goal is assigned by GPS or
the target from learning-based perceptions.

• Learning-based Perception Due to the light conditions,
viewing angles and distances in the images, we utilize
deep-learning-based approach to recognize the targets,
such as the dock with the color blocks, and the light
buoy either on or off.

• Fleet Localization The key localization challenge for a
heterogeneous robot team is to estimate precise relative
positions, in order to fuse the observations obtained form
the USV and the UAV. The technology we utilize is SBL-
UWB localization for precise relative positions between
the vehicles within a 20m range.

B. System Architecture

As shown in Fig. 2, the proposed system is designed to
tackle the challenges of heterogeneous robot team, perception
& autonomy, and localization & communication. For this chal-
lenge, our heterogeneous robot team consists of an USV and
an UAV. Both of them are capable of autonomous navigation
to a target position. They are able to recognize the specific
objects in the environment through training via EfficientDet in
the simulator. As to autonomous operations, we rely on deep

reinforcement learning (RL) for goal navigation and collision
avoidance, serving as the local planner in Fig. 3.

For fleet management, we designed behavior tree involving
control flow, condition, and action nodes for each task. Even
though all tasks need to be performed autonomously, we
value the functionality of situational awareness of the human
supervisor at the base station. VR interface provides immersive
information from the sensors and transmitted in real time via
our high bandwidth customized WiFi module (TVL). Xbee
module is for heartbeat and system monitoring. Furthermore,
we also apply our developed localization technology, SBL-
UWB, at the anchors, so the localization and even short-range
goal point navigation can be also realized through measuring
the distance to other anchors nearby in real time. We list
different kinds of our developed sensors for each task in
Table. I.

TABLE I: The application of our developed sensor module
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Obstacle avoidance v v v
T2: Entrance exit gate v v v
T3: Follow the path v v v
T4: Wildlife encounter v v v v
T5: Scan the code v v v
T6: Detect and dock v v v
T7: Find and fling v v v
T8: UAV Replenishment v v v
T9: UAV search and report v v v

III. WAM-V AND HARDWARE DEVELOPMENTS

Wave Adaptive Modular Vessel (WAM-V) is an ultra-light,
modular vessel. We design a two-layer payload with 4 semi-
spherical-shaped sensor towers, shown in Fig. 4. The upper
layer is landing platform for UAV with a composite AprilTag
markers. The lower layer houses the sensing, computing, and
control units.

A. Design Considerations and Objectives

The hardware and functional requirements are:
• On-board computation over wide field-of-view (FOV)

video streams for task-relevant object detection;
• Navigation toward a given goal (subgoal);
• High frame rate, low latency, and high reliability for

localization and mapping;
• Manipulator with sufficient payloads for the launcher and

HSI camera;
• Communication to enable heartbeat and emergency stop;
• Waterproof and prevention from overheat.

B. Propulsion Components

1) Propulsion Design Selection: Our propulsion system is
tightly coupled with the autonomy function, in which a deep
RL model outputs angular and linear velocities. We includes
a Roboteq controller connecting to two Minn Kota thrusts for
heading and two Torqeedo Cruise 6.0TS for linear velocity,
shown in Fig. 4. We install two motors at front for heading



Fig. 2: System architecture: (1) Proposed heterogeneous team of UAV and USV; (2) algorithms used for perception and
autonomy; and (3) fleet managements.

Fig. 3: We consider the deep RL policy a local planner,
whereas the task-relevant planner is implemented by behavior
tree.

control instead of one motor to prevent frequent forward
and reverse operations. We have considered other propulsion
designs, but each has some drawbacks:

• Differential drive was used in our team for RobotX
2018 competition. However, such design is insufficient
to provide agile movements, in particular for detect and
dock task. We also found the motors might be damaged
under the uses of frequent forward and reverse operations.

• Omni-directional drive is considered and implemented
given the 4 motors installed. However, we found the
sim-to-real capability less effective due to the weight
distributions on the payload. An extra calibration may
be required.

(a) WAM-V Overview

(b) Propulsion Designs

Fig. 4: WAM-V payload and propulsion design.

2) Power Supplies and E-Stop: An emergency stop can
be activated by a remote control to shut the power to the
propulsion system immediately. The control and communi-
cation system is packed in waterproof case, and consumes
24 volts as input through a connector to support Roboteq
controller and the cooling module. A power converter is used
to step down to 12 volts for wireless communication system.

3) Analysis of USV Acceleration/Deceleration in Maritime
Environments: As shown in Fig. 5(a), we increase the control
commands (normalized between 0 and 1) and observe the



(a) Control commands are gradually increased.

(b) Control commands are set to max (dash line) then gradually decreased.

Fig. 5: Control commands vs. vehicle velocity in maritime
environments.

responses of the vehicle velocities. We found that there have
been significant delays while the vehicle is in low speed, but
the delays decrease when the velocity is above 1.3 m/s. In
Fig. 5(b) we set the control commands to max, and the vehicle
reach to 2.1 m/s after 9 seconds. There exist a few seconds
delay of responses to decreased control commands, but the
delay is shorter in low velocity. We found similar effects in
real and simulation environments.

C. Sensor Tower

Sensor tower is a standalone multi-modal perception mod-
ule containing the sensors, and computing units, and power
supply (a Li-Fe battery). We have developed two variants
of sensor tower based on stereo vision and LiDAR ranging,
shown in Fig. 6. We use three stereo vision sensor tower
at the forefront of the payload for object detection, and one
LiDAR tower at a lower level of WAM-V for navigation and
obstacle detection. Note that sensor tower is only responsible
for providing visual perceptions, but not the computations of
the autonomy and control, i.e., the deep RL algorithm in our
system.

The implementation to such isolation of distributed, multi-
machine system is motivated by overcoming the challenges
we faced in the RobotX 2018 competition. Compared to our
“all-in-one” design in 2018, where all sensors were plugged
into a centralized industrial PC, there exists several significant
drawbacks:

• Occasional latency issue is observed due to the high
bandwidth data streams from multiple sensors.

• Computing resource requirement is different for each
sensor. For example, stereo cameras usually need to
compute depth map via semi-global matching algorithms,
which may be accelerated by FPGA or GPU.

• Power consumption for each sensor via USB port or
external sources need to be carefully considered to guar-
antee stable operations.

1) Stereo Vision with FPGA and GPU: Stereo camera pro-
vides both RGB and depth images for outdoor environments,
which is ideal for many tasks. We include a ZED stereo camera
with precise depth sensing within 15m. However, the field
of view (FOV) 90◦(H)×60◦(V) is limited and and computing
requirements is high. ZED camera comes with NVidia Jetson
device for depth computation on GPU . We also include an
FPGA (Field Programmable Gate Arrays) board (AMD Xilinx
KV260) for accelerating parallel processing with lower power
consumption. However, we found a decreased frame rate on
carrying out both depth computation and object detection on
one device. Currently the depth computation is performed on
GPU, and object detection is on FPGA device.

2) Range Sensing with LiDAR and mmWave Radar: .
We utilize a VLP-16 LiDAR (Velodyne’s Puck) of 16 beams

with 905-nm wavelength for detection obstacles within 50
meters. The LiDAR inputs are used in our deep RL network for
autonomous navigation and collision avoidance. An alternative
ranging sensing in adverse (such as foggy) environment is
the mmWave radar, which uses the electromagnetic wave that
can penetrate the small particles. We arranged 4 single-chip
mmWave radars reaching 270 degrees FOV. The sparse and
noisy point clouds from mmWave radar can be reconstructed
to more dense LiDAR-like signals via a conditional generative
model (cGAN) developed by our previous work [5].

(a) Stereo vision (b) LiDAR

Fig. 6: Variants of sensor tower designs. (a) a stereo cam-
era with FPGA and GPU computing units; (b) LiDAR and
mmWave.

D. Active Vision HSI Camera

The Hyperspectral Imaging (HSI) camera provided by
RoboNation OpenHSI is a line scan camera with a 10.7◦ FOV.
We reason that given such a narrow line-scaned FOV, the HSI
camera should be mounted either on a fast moving UAV, or
on a robot arm on WAM-V with precise active control of the



sensing platform (active vision). We decide to implement the
latter solution by considering the followings:

• The former requires POE electronics with too much
payload and power consumption on UAV.

• A precise active control pointing at target on UAV is
challenging.

We design a robotic arm (Trossen Robtics ViperX 300) with
the HSI camera mounted on the end effector with a laser
rangefinder to measure the distance to the target object, shown
in Fig. 7. We also include A a 48V Power Over Ethernet (POE)
to supply power. The HSI camera captures light of wavelength
of multiple spectral bands from visible light to near infrared
light (430 to 900 nm). The HSI camera sealed in a waterproof
enclosure prevents water failure. We used the open source
OpenHSI software for detecting color blocks, shown in Fig. 8.

Fig. 7: HSI camera mounted on a robotic arm with precise
active control.

Fig. 8: Spectrum distribution of RGB color block

E. Launch Machine

The launch machine consists of two main parts (1) the
feeding part, which is for projectile storage and feeding, and
(2) the launching part, which is for launching the projectile
to the target area. The pipeline for auto-launching, the launch
system will be integrated with the perception system. Once
the result comes from the perception system, the feeding part
will rotate and the projectile will be free-falling, with a poking

mechanism to ensure the projectile will touch the launching
spot.

F. Autonomy Box

1) Hardware in the Loop (HIL): The separation of percep-
tion and autonomy functionalities in hardware is to facilitate
hardware in the loop (HIL) development and testing. The
Autonomy boxes consist of a NVidia Jetson Nano computer
for deep RL inference. We set up a simulation environment
in workstation, where each autonomy box represents one
simulated robot. Each receives the observations of sensory
data, performs autonomy algorithms, and transmits control
commands as actions in the simulator.

2) Hardware Components for Health Status ans Safety:
We include a Raspberry Pi 3B and Arduino UNO to support
the health status.

• Temperature and humidity sensors. Monitoring the
temperature within the closed waterproof box and the
CPU temperature is crucial for system robustness or
in long-term operations (several days). The within-box
temperature may reach 60 to 70◦C under direct sunlight.

• XBee module for heartbeat. XBee is a communication
module of mesh network that uses ZigBee protocol of 900
MHz. The device has a low bandwidth and low power
consumption, which is well-suited for heartbeat.

• Electronics Safety and Protection. The autonomy box
is also designed to directly control Blue Robotics thruster
with a hardware protection by a disposable components
(fuse). We include two electric transducers: one is 15-
40V for thruster and the other is 12-24V to 5V for the
rest of the components. The function to cutoff the circuit
is for protection the low-voltage hardware and emergency
stop.

Fig. 9: Autonomy box (top) and hardware in the loop devel-
opments (bottom)



We used a software package, Duckietown Shell (dts), de-
signed by the Duckietown [3] community to monitor the health
status of the robot fleet.

G. High Bandwidth Communication for Situational Awareness

We include a high bandwidth customized Wi-Fi module
(TVL, provided by our industrial partner K-Best Inc.) TVL
includes adjustable 2.2 to 2.4 GHz frequency bands to min-
imize the interference by other Wi-Fi users. TVL is used as
our major communication among the shore-side base station,
WAM-V, and the UAV. The end-to-end effective range is up
to 6 km with an amplifier on each end. Such high bandwidth
communication is capable of VGA quality video streams to
enable monitoring and situational awareness of the human
supervisor at the shore side.

H. UAV with Soft Gripper

To accomplish UAV replenishment and search and report
tasks, we use a standard quadcopter. Although our team has
developed a robotic blimp in previous work [4], we consider
that aerial manipulation requires highly precise controls. Blimp
has a longer operation time, but is more challenging to control
under aerial dynamics and winds outdoors. Our focuses are on:

• A flying “sensor tower”. We consider the UAV as an
extended sensor tower, which is capable of scanning
a large area while cruising in the sky. Similar to our
sensor tower design, we include a ZED mini stereo
camera mounted toward the heading direction and tilted
down 60 degrees. The onboard computing unit is NVidia
Jetson Xavier NX is connected to a commonly used flight
controller PixHawk Pix32 via MAVROS protocol.

• Aerial manipulation with a soft gripper. Consider-
ing replenishment task requirements, we implement a
vacuum-driven origami soft gripper based on the magic
ball design proposed in [8]. The robust grasping capabil-
ity over two-finger gripper and waterproof make it suit-
able for the task. The soft gripper is installed beneath the
UAV with a short cable, which enable UAV to accomplish
replenishment without landing on the floating dock. We
include an Intel RealSense Depth Camera D435 mounted
downward inside the magic ball skin for detecting target
object, shown in Fig. 10.

• Fleet management over UAV and USV. We install an
additional Intel RealSense Depth Camera D435 mounted
backward and tilted down 60 degree as secondary de-
tection sensor, which is responsible for detecting a com-
posite marker of AprilTags on the top of WAM-V. The
relative position between WAM-V and UAV is important
to fuse observations of detection results.

I. Short baseline (SBL) UWB Localization between UAV and
USV

Given the uncertainty and insufficient precision of GPS
localization, we use Ultra-wideband (UWB) localization in
a short baseline (SBL) fasion. SBL has been used in the
navigation and localization of autonomous underwater vehicles

(a) (b)

Fig. 10: Drone with soft gripper overview.

(a) (b)

Fig. 11: (a) Top: the anchor module. Bottom: short baseline
(SBL) method has commonly used with acoustics for local-
izing autonomous underwater vehicle (AUV). Image courtesy
of Liam Paull. (b) The configuration of 6 anchors on WAM-V
and the tag on UAV.

(AUVs). In SBL, acoustic range sensors on a support vehicle
with access to GPS (e.g., a boat) are used to localize the scout
vehicle (AUV). In our work, we implemented SBL-UWB to
obtain the relative location of the UAV and WAM-V. Such
SBL-UWB method has been used in our previous work in [4].
Compared to other robotics applications, there have been
several work reporting UWB tag with inertial measurement
units (IMU) within an indoor environment with pre-deployed
stationary UWB anchors.

UWB is a low-power ranging sensor commonly used for
indoor localization. We have developed an integrated “anchor”
device including Pozyx UWB module, shown in Fig. 11. We
include 6 anchors as reference points on the WAM-V and
one on the UAV as “tag”. Pozyx UWB can range up to 30
meters and has accuracy up to 10-30 cm within 10m range
through trilateration. A 3D position can be determined by
performing ranging with four or more known reference points.
Though four anchors satisfy the minimum requirements for
3D localization, we install six anchors on our WAM-V to
improve the positioning performance, shown in Fig. 11. The
four anchors on the top layer of WAM-V are enough to localize
UAV, and two more anchors on the lower layer of WAM-V
are added to improve the performance.



IV. SOFTWARE DEVELOPMENTS

A. Design Considerations and Objectives

The requirements of the object detection and deep RL
algorithms are:

• Robust sim-to-real performance;
• Minimum human labelling;
• Multi-dimensional action space involving both navigation

and arm movement commands;
• Sample efficient, requiring minimum training time.

B. Sim-to-real Perception

Data collections in real world under different weather con-
ditions are challenging, and the generations of ground truth
labels are time consuming. We develop a virtual synthesis
environment automatic labelling tool in Unity simulator. The
choice of using Unity over other simulation platform is that
Unity provides variety of effects including realistic illumina-
tion rendering from different angle, different sky textures, and
water surface reflections or waves. Those features are ideal
for collecting a dataset of diverse and realistic images to train
a learning-based object detection model. Fig.12 demonstrates
some samples collected from different scenes.

Fig. 12: Several scenes are synthesized with automatic la-
belling tool developed in Unity simulator.

We collect a set of virtual objects via CAD modeling or
3D reconstruction scanning, such as the docking platform.
Our data generation pipeline first include 5 virtual scenes
with different weathers (cloudy, sunny, and etc). We then
spawn the virtual objects in the virtual environments; each
object or its parts can be set independently as a segmentation
label. Next, we define a camera view trajectory for collecting
observations from different perspectives. Finally, a Unity script
is configured to record raw image, segmented image, and depth
image, respectively, shown in Fig. 13. Initially we collect 5,000
training images and train on a EfficientDet D2 model [9]
similar to the settings in our previous work on underwater
object detection [10].

We collect our data in the simulator for training and in
the real world for testing. We set up a virtual world via Unity
and Gazebo (Section IV), and a real-world testing environment
similar to the Maritime RobotX Challenge 2022 in the artificial
lake of NYCU campus. We split training and testing data in
a ten-fold manner to investigate sim-to-real gap, and verify
our perception models by deployment in real-world tasks.
Taking the dock and deliver task for example, we found that
1) labelling only the color block yield poor results (mAP
is around 0.2), 2) viewing angles and distances should be
carefully considered, and 3) sim-to-real effectiveness is yet
to discovered with real-world testing data.

Fig. 13: Dock and deliver task setup in Unity: Left: virtual
environment setting with a camera view trajectory. Right:
generated raw, segmented and depth images.

C. Learning-based Collision Avoidance

Our team has developed deep RL algorithms in several of
our previous research using UGV [4], [5], [11]. We wish to
tackle the autonomy challenge of the model generalization
from trained for UGV to the use of USV.

1) Training Environment Settings: We leverage the uses
of VRX Gazebo environment [1] by selecting a forest en-
vironment environment in [12], which is an open space with
standalone obstacles. We mimic the obstacle distributions and
configured obstacles in VRX environment. Our goal is to
compare the deep RL models trained for UGV (such as
RLcave and RLforest) against the ones trained in the VRX
environment.

2) Vehicle Dimension Settings: Given that the vehicle di-
mensions are different between the UGV and USV, we reshape
laserscan ranges based on the length and width of the vehicle.

3) Reinforcement Learning Settings in VRX:
• Observations: We convert a three-dimensional LiDAR

point cloud into a one-dimensional laser scan, with a total
of 241 range values sampled from −120◦ to 120◦. The
resolution of laser scan is one degree. We concatenated 4
consecutive frames of range data and 10 frames in consist
of relative position toward goal, robot velocity and robot
angular velocity as a single observation space.



• Actions: Actions are designated as linear and angular
of the twist commands. Linear actions were normalized
to [−0.5, 1] since the wave has inertia when the agent
want to stop, and angular actions were normalized to
[−1, 1]. To enable a smooth movement, linear and angular
velocity was represented as a continuous rather than
discrete variable.

• Reward: We established a dense reward function as
follows: (1) toward the goal, (2) reaching the goal, (3)
penalty for collision, and (4) keep moving

V. INNOVATIVE DEVELOPMENTS FOR HETEROGENEOUS
ROBOT FLEET MANAGEMENT

A. PyIvP: Leverage the Use of MOOS-IvP for Core Function-
alities

We develop PyIvP (Python binding of the IvP C++ code) as
autonomy education materials for wider uses of the commu-
nities. MOOS-IvP includes two open source projects: MOOS
and Ivp Helm for core of autonomy middleware and for multi-
objective optimization between competing behaviors [13], re-
spectively. MOOS-IvP has been known for the well-organized
fleet managements, and widely used in the field of unmanned
surface vehicle and underwater acoustics for years. Our system
continues the supports of MOOS-ROS bridge [14] and we
develop non-ROS WebSocket for cross-machine messaging.

B. Immersive VR Interface for Situational Awareness

In any search and rescue missions, situational awareness of
a human supervisor over the robot fleet or human rescuers is
the key to save lives. Virtual reality has been known to provide
immersive experiences in the area of teleoperating robots over
traditional 2D interface with camera views. Although all tasks
need to be operated autonomously, we consider to include VR
with our high bandwidth communction for task monitoring
to improve situational awareness of human supervior at base
station.

We employed a consumer-grade VR device (Oculus Quest
2; $420) in fabricating an easy-accessible. The Oculus Quest
2 system provides a head-mounted display which comprises
a singular fast switching LCD panel with a refresh rate of
120 Hz and a resolution of 1832 × 1920 per eye. Our VR
monitoring system is developed in Unity 3D engine, which
is comoommly used by VR-developers. In order to utilize
ROS and Unity at the same time for robot site and VR
site, ROS# [15], we utilized an open-source software library
for Unity to communicate with ROS, and ROS-bridge [16],
providing a JSON API to access ROS functions for non-
ROS programs. The WebSocket protocols allow two-way
communications between ROS and Unity data transferring.
Here we carry out monitoring by transferring real-time sensor
data to the human supervisor. The setting is developed in our
previous work [17] on a mobile manipualtor (LoCoBot) and
has been applied to maritime applications demonstrated in
MOOS-DAWG2022 [18].

C. Behavior Tree

To manage a team of heterogeneous robots in multiple tasks
with complex state transitions, a high modularity framework
is indispensable. There have been some developments using
state machine, such as the SAMCH package. Although the
classic state machine approach, Finite State Machine (FSM),
has the upper hand in simple state transition and also easy
to understand or design, the trade-offs are modularity and
reactivity, which is inevitable owed to one-way control transfer
structure in FSM. This cons will be out of control when the
scale and complexity of the tasks increase.

Behavior Tree (BT) is a way to structure the transition
between different tasks as an autonomous agent. Although
BT was developed long ago in the computer game industry
in order to control non-player characters, it has been applied
to AI and robotics fields with tremendous success due to its
modularity and reactivity. BT uses two-way control transfer
governed by the different types of nodes in tree structure. BT
is often compose of subtrees that are independent between
the other subtrees. Each behavior in all of the subtrees can
be designed in a modular way while the designer does not
need to care about how it relate to subsequent behaviors in
the whole BT scope. Thanks to this property, BT is able to
build from a small set of simple components and all of the
simple components can be designed and tested individually.

On top of that, the interaction between the nodes even
provides the reactivity. The whole BT is always following the
logic created by the internal nodes and leaf nodes, shown as
follows:

• Control flow nodes define the logic and priority among
all of the behaviors.

• Condition nodes are responsible to trigger the BT while
condition changing, as well execute the corresponding
actions for the purpose of triggering next condition
changing. The process repeats until BT reaches a stable
condition, which also meets the designer’s expectation.

• Action nodes execute the robot actions such as navigation
and pattern block exploration.

We summarize the number of nodes and list three kinds
of reused subtrees in Table II. The WAM-V behavior sub-
trees include navigation via deep RL policy, heading, and
exploration; UAV behavior subtrees include navigation and
exploration. The higher values of the numbers of condition
operating subtrees and nodes show more complex tasks.

VI. SYSTEM PERFORMANCE

A. Core Functionality: Collision Avoidance

1) Metrics: Collision avoidance was evaluated according
to following metrics. Success rate showed that the robot
successfully reached the goal. Collisions represented the robot
collided on obstacles, we calculated the average collision times
of a route. Timeout represented the robot got trapped and failed
to reach the goal in 10 minutes. We evaluated each method 5
times for every task.



Fig. 14: Behavior tree for wildlife encounter task. Ellipse:
condition nodes; small rectangle: condition flow nodes; large
rectangle: action nodes.

TABLE II: Summarization of how often the subtrees are reused
and numbers of nodes in all tasks.
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T2: Entrance Exit Gate 6 - 3 16 10 8
T3: Follow the Path 1 5 4 24 14 12

T4: Wildlife Encounter 3 - 2 8 7 3
T5: Scan the Code 2 - 1 5 4 3

T6: Detect and Dock 1 - 1 1 1 1
T7: Find and Fling 2 - 1 5 4 3

T8: UAV Replenishment - 4 8 28 17 13
T9: UAV Search and Report - 3 5 12 7 6

2) Experiment Designs and Evaluation Environments: We
evaluated policies trained in different training environments.
The methods included:

• RLcave: The trained from scratch in the Cave environ-
ment [19] for an UGV. The policy tended to follow walls
while avoid obstacle.

• RLforest: A two-stage trained deep RL navigation policy
with RLcave weights and finetued in the Forest environ-
ment [12] for UGV.

• RLvrx: A deep RL policy trained in VRX environment
considering vehicle dynamics in maritime environments
for USV.

The results were shown in Table III. The proposed RLvrx

outperformed RLforest and RLcave with less collision and
shorter completion time during both routes. The number of
collisions of the deep RL policies trained for UGV were
higher, likely due to the fact that the models were incapable
of making turns early while encountered obstacles. Both UGV
policies required slow down the navigation speed to complete

TABLE III: Collision avoidance performance of different deep
RL models.

Model Success Timeout Avg.
Coll.

Avg.
Time.

Route1
RLcave 5/5 0/5 3.8 165.6
RLforest 5/5 0/5 1.4 120

RLvrx (Ours) 5/5 0/5 0.2 33.4
Route2
RLcave 5/5 0/5 2.8 177.4
RLforest 5/5 0/5 2 85.4

RLvrx (Ours) 5/5 0/5 0 28.6

TABLE IV: Evaluations of Path Following Tasks

Routes Success Timeout Avg.
Coll.

Avg.
Time.

Route 1 5/5 0/5 0 131.6
Route 2 5/5 0/5 0.2 139
Route 3 5/5 0/5 0.2 125.6

the task, and therefore the complete time was longer.

B. Core Functionality: Pattern Block Exploration

We further examined a core functionality of collision avoid-
ance with pattern block exploration, which was frequently
used in several tasks. We set up a testing environment of
200m × 50m, divided into 20 regions of 10m × 50m each.
Each region included 5 obstacles distributed randomly. The
simulated WAM-V performed the RLvrx policy similar to a
lawn machine and passed through each region. The experiment
was evaluated 5 rounds and the average completion time for
one route was about 24 minutes (1,438 seconds). Our VRX
policy was capable to avoid most of the obstacles (95.2%) and
successfully reached each goal in all 5 rounds. The navigation
results were shown in the supplementary video.

C. Path Following Task

Path following is a task in RobotX 2022 challenge. The
missions required not only to avoid collision, but also to
pass through between each pairs of red and green totems.
Exploration unseen totems and potential sub-goal points were
also required. We considered the UAV advantages of wider
field of view. A behavior tree (BT) was designed to control
the UAV actions of exploring, adjusting heading, and moving
forward. The UAV cruised above WAM-V and explored the
water surface nearby in order to detect totems.

We evaluated the task performances in three routes provided
by VRX. We set a baseline approach of assuming known sub-
goal points set between each pair of red and green totems, in
order to evaluate the collision avoidance capability. The results
are shown in Table IV. Our trained policy successfully avoided
collisions and met the criteria for completing path following
task.

D. Other RobotX Tasks

We have completed all behavior trees for each task. Due to
the limited pages we did not include the behavior trees. The
strategies of the tasks were described in the following sections.
We will carry out more comprehensive evaluations.



1) Detect and Dock: In the detect and dock mission, WAM-
V needed to detect the designated color and docked within
the corresponding bay. The processing pipeline started with
a trained EfficientDet model for object detection, mapped the
detected position and projected to a 3D location, and finally
performed a deep RL policy with the goal point while avoided
collisions.

2) Scan the Code: Due to the precarious weather and
changeable lighting conditions which may strongly impact the
color of the object, we chosed to use the point clouds gathered
from the LIDAR. First, for the preprocessing stage, we applied
RANSAC and and a filter to remove the points from the sea
level and random noises, leaving the objects remaining in the
point cloud. After the pre-processing we appled a clustering
algorithm (DBSCAN) to separate one object from another. We
then projected the object’s pointcloud to the 3D plane, and set
it as a goal point for the RL agent to move close to the light
buoy. We kept adjusting the angle between WAM-V and the
light buoy until the camera faced the light buoy’s LED directly.
Finally, the region of interests (ROI) was cropped to further
detected the color sequence.

3) Wildlife Encounter: First, WAM-V will do the pattern
block navigation until zed camera detect the floating platform.
Once we capture the floating platform, WAM-V will move
toward it and and align USV with the floating platform making
HSI has higher chance to scan the coating on the platform.
Our HSI camera is installed on a robot arm. It can change
the camera elevation to scan a trapezoid area. After HSI scan
finish, the USV start to complete specify path correspond to
platypus, turtle and crocodile.
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