Team Caleuche

1of8

Technical Design of Caleuche WAM-V Platform
for the 2022 RobotX Competition

Paula Martinez, Francisco Eterovich, Javiera Fuentes, Vicente Sufan, Gabriel Olguin, Tomas Contreras, Diego Galleguillos
and Cristian Nova.

Abstract—The Pontificia Universidad Catélica de Chile
participated for the first time in the Maritime RobotX
Challenge 2022, a competition that seeks to promote the
development of autonomous vehicles in marine environments.

This new team named Caleuche took on the task of
automating a Wave Adaptive Modular Vessel (WAM-V),
equipping the vehicle with a mechanical, electrical and
intelligent software system, along with the incorporation of a
drone that allows it to face the competition challenges. This is
how the first version of the Caleuche team was ready to
compete in RobotX Maritime Challenge 2022.

Being part of this competition has allowed unprecedented
technological development in our university, gaining
experience and knowledge which will allow us to continue to
improve for future versions of the competition.

1. INTRODUCTION

Every year the demand for unmanned surface vehicles
(USV’s) increases in scientific and defense areas, especially
for marine environments. Due to this, the need arose to
promote the development of these vehicles and equip them
to accomplish multiple goals in dynamic environments.

To promote the development of these technologies, the
Robotx Maritime Challenge was founded, which takes
place every two years and brings together student teams
from around the world, who carry out the task of
automating a Wave Adaptive Modular Vessel (WAM-V).

A. Background Overview

For the first time, Chile participated in some version of
the Maritime RobotX Challenge being its representative,
the Caleuche team. This document presents the work that
was developed from August 2021 to the competition in
November 2022, documenting its implementation systems
in the areas of mechanics, electricity, and software, along
with algorithm designs and the incorporation of a drone.

B. Software and Hardware Overview
The software was developed using the Robotic Operating
System (ROS) framework and external ROS packages. In
the robot, the software runs on multiple processing units
that communicate through the ROS multi-machine package
since they are on the same local network.

The processing hardware consists of four Single Board
Computers (SBCs), three Nvidia Jetson Nano, and one
Raspberry Pi (RPi).

Available sensors include one OS0 Ouster Light Detection
and Ranging (LIDAR), an OpenCV Al Kit with depth
perception PoE camera (OAK-D), and a Microstrain Global
Navigation Satellite System (GNSS) with an integrated

Inertial Navigation System (INS).
TABLE 1: Hardware Units

Units N | type

Nvidia Jetson Nano 4GB 3 Processing Unit

Raspberry Pi 3B+ 2GB 1 Processing Unit
Qak D POE (AF) 1 Vision Sensor
LORD 1 Navigation Sensor

3DMGQT7-GNSS/INS

Uniform OS0 LIDAR 1 Perception Sensor

II. DESIGN STRATEGY

A. Simulation Environment

To start with the challenges, it was decided to use the
official simulation environment of the competition, Virtual
RobotX[1] (VRX), developed in Gazebo within the ROS
environment. The simulator made it possible to replicate
most of the conditions that made up the competition tasks:
objects, physical environment properties, and even
personify simulated sensors so that they met the same
properties as the real ones, such as LIDAR, camera, IMU,
and GPS.

All of these features made VRX the ideal environment to

learn, develop, and test software without having to rely on
hardware or physical terrain, speeding up our workflow.

B. Task Selection

Since time was a scarce resource, the team decided to
prioritize five tasks to be developed. The first was task 0
since it is a requirement to pass this test in order to compete
in the others. The second task was HeartBeat since it allows
the WAM-V to report its status to both the team and the
judges. The other three tasks chosen were: Follow The Path

Team Caleuche

(task 3), Scan The Code (task 5), and Search & Rescue
(task 9) with the Drone team.

The decision was made taking into consideration the
capabilities and knowledge of the team, added to the
resources and time available.

C. Control

For control of the autonomous surface vessel (ASV), first,
it is necessary to eliminate part of the nonlinearities of the
system. To achieve this, force measurements were taken for
each of the motors to know the force exerted by each of
them at a certain level of power. With these results, a
linearizer was developed for each of the motors, which has
a function for transforming the signal coming from the
controller into a power signal corresponding to the
characteristics of each motor. Once this is done, it is
possible to apply control strategies for the wvehicle
movement, which are explained in section III.

D. Perception

At first, it was planned to build a 3D object perception
system using sensor co-registration between the OAK-D
camera and LIDAR. After some experiments, it was
decided that the camera, given its field of view, resolution,
and precision, did not make a useful contribution to the
system, so it was developed using LIDAR only.

To process the point clouds generated by the LIDAR, it
was decided to use Machine Learning (ML) techniques,
over Deep Learning (DL), due to the limited processing
capacity of the SBCs. LIDAR turned out to be the precise
sensor to detect objects in marine conditions. Due to water
reflecting light away from the sensor instead of uniformly
diffusing it, the only points detected by the LIDAR
belonged to objects above the water surface and outliers,
which was ideal for applying clustering algorithms and ML
classifiers.

E. Electrical

The electrical engineering team was tasked with powering
up sensors, SBCs, antennas, networking equipment, motor
systems, and emergency stop system, as well as developing
the communication system between the SBCs used by the
software team to control the motors. The design goal was to
make the systems previously mentioned as simple and
robust as possible. To achieve this, all the connections were
designed to be as close to plug and play as possible while
maintaining waterproof capabilities with standard
waterproof connectors.

To further simplify the assembly process, a large PCB was

designed and attached to one of the Pelican cases to manage
all connections from the SBC that control the system to the
electronics in each motor. This system made it easy to test,
debug and solve errors during testing.

FE Sofiware
The ROS framework was chosen for its versatility as a
communication system, for its compatibility with the

20f8

Virtual RobotX simulator, but mainly for its wide repertoire
of code tools and graphical interfaces, such as control
packages and the ROS visualizer (Rviz).

Most of the developers on the Caleuche team lacked
experience with tools like ROS and Gazebo and had never
worked on such large-scale robotics projects, so it was
necessary to take the “learning and then apply” ideology.
The first objective was to get to know VRX tools: Rviz,
Gazebo and the Unified Robot Description Format (URDF).
With this knowledge, it was possible to adapt the simulation
environment to start facing challenges in specific
conditions.

This “learn and then apply” ideology was maintained in
each of the fields in which software needed to be built:
control, perception, vision, and communication. It may have
caused development delays, but it increased the team's
ability to build robust solutions.

G. Drone

The Drone relies on MAVLink serial protocol from
ArduPilot framework and Python algorithms to achieve
autonomous flight and complete tasks. It is equipped with
one Raspberry Pi connected to a Pixhawk Flight Controller,
along with an RPi Camera and Time of Flight LiDAR
(TFLIDAR) sensors. To communicate with the drone from
the ground there are four up/downlink signals, a 2.4GHz
Frsky ACCST radio frequency, for manual operation,
manual arming and selection of flight mode. A 915MHz
MAVLink telemetry radio frequency, for flight parameters
monitoring using Mission Planner.tA 915MHz LoRa
connection between the Raspberry Pi and the ground station
for online tunneling between both components, which
allows for the modification of flight variables and
commands previous or during flight. Finally, there is an
SSH tunnel via Wi-Fi to access the Linux terminal of the
RPi aboard the drone.

III. VEnicLE DESIGN

A. Power and Propulsion System
1) Power Distribution
The electrical power for the motors came directly from
their respective batteries that are directly connected to them,
except the hardware installed inside the motors that was
powered by batteries installed in the Pelican cases that
supplied 5 Volts to the Spirit 1.0 motors and 9 Volts to the
Torgeedo Travelmotors. This design was chosen so that it
was easier to later implement the emergency stop system.
The two Jetson Nano boards are also powered by 5 Volts
and are in the same Pelican case as their batteries and the
two batteries for the hardware electronics in the motors that
were previously mentioned.
Finally, in order to power up the sensors there was a
second Pelican case containing a 24V Battery with three
Voltage dividers (5V, 12V and 24V) that delivered power to

Team Caleuche

the cameras, GNSS and LIDAR. A power inverter provided
220V AC power to the power over ethernet injector for the
long range antenna radio.

LY vy ~
. ——
& & | &
A
G
&/

Figure 1: Sensor power supply diagram

2) Emergency stop system

For the emergency stop system, power comes directly
from the batteries used to power up the electronics in the
motors, where this signal goes through a circuit with four
emergency stop buttons and finally through two relays so
that it is possible to enable a digital stop from one of the
Jetson Nano SBCs. The two relays were soldered to a
custom-made PCB that also has the connections that go
directly to the motors in order to simplify the assembly
process when running tests.

H1
Hiaader Maie-2.64_1x3

Ut
MODULD L2538

Figure 2: Emergency stop relay diagram

3) Propulsion System

The Caleuche's propulsion system began with two
thrusters at the stern in a forward direction, providing the
WAM-V with a differential motion configuration. From the
beginning, it was clear to the team that two additional
thrusters were needed to achieve full movement of the
WAM-V and not lose maneuverability if one or two other
motors were lost. The current configuration has two
thrusters at the stern and two other thrusters amidships the

3of8

WAM-V, each oriented at a fixed 30 degree point. The make
of the thrusters used were Epropulsion Spirit 1.0L 1kW and
two Torgeedo Travel 1103CL 1.1kW electric motors.

It was expected to achieve holonomic motion control with
the WAM-V, this required a mounting system that would
allow a 30 degree tilt with respect to the central axis of the
pontoons. The system had to meet several requirements:
maintain the angle despite the oscillations of the propulsion,
be easy to install and disassemble, perform well in marine
environments and adjust to the conditions of the available
motors. To carry out the final design, several preliminary
CAD models were made and compared with the conditions
of the real motor. Finally, the metal base of the upper part of
the propulsion and the presses that are attached to the pods
were used.

The design consisted of two parts, the first was a threaded
bar fixed to the propulsion presses, which is attached to
these through stainless steel sheets with perforations. The
other was a profile folded at 90 degree with a plate welded
at 30 degree to transmit this inclination to the motor, as
shown in Figure 3. b). The first prototype for the folded part
was 3D printed. After roughing it out and obtaining the
exact dimensions, the system could be installed on one of
the motors and tested with different power levels to
corroborate the results of the simulations in Fusion 360.

Once the prototype was approved, a final version made of
steel could be manufactured. This part was obtained by
folding a 20 X 20 mm profile at 90 degree, which was then
cut at the desired angle. A 10 mm steel plate was welded to
it, divided into a central part and 2 hooks to fix it to the
motor.

The parts met expected objectives in different tests and
contexts, as well as conforming to all the requirements set
by the team.

Figure 3: A. Testing of the initial prototype. B. CAD model of the frames.
C. Installation of final frame. D. Part cut with EDM method. E. Real test of
the implemented tilting system.

Regarding the propeller protections for the motors, they
had to be designed to withstand corrosive environments and
with high chlorine content, since it would be used in the
sea, lakes and swimming pools; besides having mechanical
resistance to ensure that the structure does not break or
deform, as this could mean catastrophic damage to the

Team Caleuche

motor. Finally, the mounting of this protection had to ensure
that the integrity of the motor was maintained, i.e., it could
not require disassembly of the system in order to be
mounted.

Based on the morphology of the propulsion motor and
various references of blade guards used by other teams
participating in the competition, such as the one from the
National University of Singapore (Bumblebee, 2022) shown
in Figure 2. a); the Caleuche’s Mechanics team determined
that the protection should be anchored to the propulsion
system shaft at the top and bottom of the motor by means of
a type of clamps, as shown in Figure 2; since in this way it
is possible to secure the position of the protection without
modifying the morphology of the propulsion system.

On the other hand, it was determined that the protection
should have two parts as shown in Figure 2.c): 1) the
mounting to the propulsion system shaft, and 2) the
protective casing for the blades; since in this way, it is
possible to mount the protection without having to alter the
motor. Consecutively, the design of Figure 2.c) was devised,
which complied with the previously defined requirements,
however, it had many parts joints which would imply longer
assembly time. Finally, an iteration was carried out with the
objective of minimizing the number of bolted joints
between the parts of the assembly, resulting in a final design
that meets the needs of the marine vehicle and is easy to
handle for assembly and disassembly. Figure 2 shows the
iterative process just mentioned.

Figure 4: Iterative process of propeller protection design. a) Design
reference; b) Preliminary design; c) Iteration of the preliminary design; d)
Final design.

This design considers that its elements are made of
stainless steel, in order to avoid corrosion and comply with
the required mechanical resistance. As a result, two
propeller guards were obtained for the WAM-V (one for
each motor), which were validated individually and together
with the catamaran during a pool test, as shown in Figure 3.

Figure 5: Propeller protection of the Caleuche equipment. a) Perspective
view; b) Side view and c¢) Front mounted view; d) Pool view.

4of 8

B. Communication System

1) Software

The communication system was built around a single
Local Area Network (LAN), which allowed every network
capable device to share the same address space, and to use
ROS as a distributed system with its machine to machine
package. The LAN had a mix of static IPs and dynamic IPs,
with most static devices being those that needed to run ROS
in machine to machine mode, as having static addresses
simplifies this setup.

Aboard the ASV there was a five TP Link port gigabit
unmanaged switch and a Mikrotik Hex Lite router running a
DHCP server, required for those devices not running in
link-local mode and without static addresses assigned. A
secondary Mikrotik Hex Lite router acted as a bridge on the
base, although this router could activate its DHCP server
and exit bridge mode if the wireless link was lost.

A single long distance wireless link using a pair of
Ubiquiti AirMax 5 GHz Rocket M5 radios at 19 dBi with
omnidirectional antennas provided connectivity between the
base station and the ASV, which given line of sight, could
reach link speeds of up to 300 Mbps and over 10 km with
latency no higher than 120ms. Although there was a single
LAN, communication between devices inside the ASV was
all over 1 Gbps links, while the wireless link had a
maximum throughput of 100 Mbps, and as such, no data
processing was done over on the base station, as sending
multiple videos feeds or LIDAR point clouds would
saturate this link. Only limited sensor visualization,
teleoperation commands, and autonomous mode selection
messages were sent to and from the base station. A backup
NRF link provides teleoperation capabilities should the
main wireless link fail.

2) Hardware

The telecommunication system had an antenna on top of
the WAM-V and one antenna on the base, which were
chosen because of their long range in open outdoor spaces,
similar to the competition venue in Australia. The
commands sent from the shore team will be received by this
antenna and processed by one of the Jetson Nano SBCs on
the ASV. Using an RS-485 module, the computer will send
the necessary data to move the robot in the chosen
direction. The two Torgeedo motors are equipped with an
Arduino Due each, while each Spirit 1.0 has an ESP32. In
both cases, the microcontrollers read the incoming
information and simulate the signal that the magnetic
encoder would produce in order to reach a certain speed in
each motor. The Arduino was chosen because there was
already material online where others had already hacked the
motors, so it was easier to replicate. While for the other
motors the choice required more freedom because we had to
start from scratch, so the ESP32was chosen for its small
size, low cost, built-in digital to analog converter and also

Team Caleuche

because its Bluetooth capability made debugging problems

on site much more manageable.
- \—I -

Figure 6: Hardware communication for each motor system.

Motor |
toruueedo

‘MuborSpmt'lo

C. Sensors System

In almost all the challenges, it was necessary to detect

objects that are around the ASV. As the LIDAR is the main

sensor responsible for detection, the entire mount was

designed in order to allow the LIDAR to have the largest
possible field of view.

The second sensor with the highest priority was the
camera, which was positioned in the bow in order to
classify the objects found in front of the ASV.

The GNSS/INS was placed just behind the LIDAR
mount, its small size, and setup making it easy to install.

All the sensors are on a disassembled steel structure, with
three levels, where the highest one houses the LIDAR, then
the cameras, status semaphore light and antenna. The
GNSS/INS rests on the main platform.

Figure 7: A visualization in Rviz of the ASV model, pointing out its main
components.

D. Control System

Two independent PID controllers were developed: one
for angular position (yaw) and one for linear velocity. For
its implementation, the ROS PID controller package was
used, which receives as input the reference value for each
variable, as well as the current state of the ASV and delivers
as output the actuation to the motors.

The reference values for the angular position (yaw) and
linear velocity are obtained from algorithms developed for
each of the tasks, where the frequency with which these
values are updated depends on the particular task. On the
other hand, the current state of the ASV, i.e., the angular
position and linear velocity, are obtained from the fusion of
GPS and IMU data in an extended Kalman filter.

In order to tune the PID controllers in the simulator and
in the field tests, a graphical interface was implemented in
ROS GUI Tools (RQT), which allows to dynamically
configure the gain values of the controllers, as well as to
visualize the time response of each of the controlled
variables.

Sof8

E. Software System
1) Localization
The Microstrain GNSS is the key piece of the location
system; it has a ROS driver which allows it to quickly
integrate it into the software architecture. GNSS was
configured to obtain the position in latitude, longitude and
height (LLH) coordinates and the orientation in the east,
north, up (ENU) system. Since the robot moves in 2D
space, it was necessary to project the spatial movement of
the ASV onto a plane. A relative projection algorithm was
developed using an approximation of the radius of the earth.
The angle of the ASV was obtained directly from the
information fusion between the GNSS and its IMU. With
this mechanism, it was possible to obtain the pose of the
ASV in real time, which was displayed in Rviz through a
URDF model of the ASV.

2) Perception

The LIDAR-based perception algorithm is made up of
three steps. The first is to condense the point cloud by
projecting it from 3D to 2D, in order to reduce the
computational consumption of post-processing. This step is
performed wusing the pointcloud-to-laserscan[2] ROS
package. The second step is to apply a hierarchical
clustering based on Euclidean distance, with this we
distinguish between the point clouds that make up the same
object. Finally, a classification is applied on the
characteristics of the resulting clusters, such as area and
number of points.

vironment 2D Pointcloud Cluster dassification

Simulate En

LIDAR Point Cloud Clustering

Figure 8: The complete Perception processing algorithm: 1) Point Clouds
projection from 3D space to 2D space. 2) Grouping of agglomerations. 3)
Cluster classification

3) Vision
Convolutional Neural Networks (CNN) were
implemented to detect and classify images. The OAK-D
camera was specially selected for this purpose; it is capable
of computing CNN thanks to its built-in Tensor Processing
Unit (TPU). It was easy to program and integrate to ROS
software thanks to the depthai[3] Python library.

Image datasets were created and organized on the
Roboflow[4] platform. YOLOVS35-s/n[5] models were
chosen as CNN for their excellent performance and short
training times.

Team Caleuche

The combination of all these tools accelerated the process
of developing and testing computer vision algorithms.

4) Task Planner
For each challenge, a sequence of states was developed to
dictate the operation of the ASV. For this purpose the
smach-ros[6)] package was used, this is a Python library to
develop, debug and visualize state machines. This turned
out to be very useful for structuring software, including
ROS services and actions.

IN_PORTAL

Figure 9: TaskO example of state machine system visualize with
smach_view.

ouesw — D — [— D
¥]

Rviz Judge info - — - +—— LY
] cove — R -
—_—

Figure 10: Software Architecture Summary

IV. DroNE DESIGN

A. Communication System

At the moment, there are four different types of
communication channels between the Drone Ground
Station (DGS) and the drone itself. First, there is a
radiofrequency link for manual operation, under the
ACCST communication protocol from FrSky technologies,
which is a standard remote communication in drones that
do not fly autonomously. It consists of a radio transmitter
(FrSky Taranis X9D) and the corresponding receiver L9R in
one drone, and the X8R in another. As mentioned, thatis a
standard 2.4 GHz link for manual operation of the drone,
under the OpenTX software, which allows it to fly in the
third person and enables simple commands to the flight
controller units to switch between flight modes that are
detailed in the control section.

The second communication system is a MAVLink
915MHz downlink that enables to get telemetry from
sensors onboard the aircraft, which will be detailed in the
corresponding section. This is a standard radio frequency
link between DGS and the aircraft and is generally used to
load missions and paths for autonomous flights, but it is not
suitable, for the moment, to highly customized flight paths
such as a precision landing algorithm, which is why a
Raspberry Pi is used in addition to the Flight Controller and

6of 8

this radio link. This communication system is limited to
basic functions typically described under open source
programs such as Mission Planner or QGroundStation, so it
is used at the moment only for downlink of the sensors
parameters and attitude of the aircraft.

The third communication system is between the DGS and
the Raspberry Pi which is an SSH tunnel that enables access
to the Raspbian operating system of the RPi. This way the
main computer can receive Python algorithms that will run
the flight paths and custom scripts such as the precision
landing. The internal communication between the
Raspberry Pi and the Flight Controller is via General Port
Input/Output (GPIO) serial communication. The connection
of the SSH tunnel is made by a Wi-Fi dedicated network
from a cell phone.

Finally, there is a LoRA connection between the drone
and the DGS, using a 915 MHz up/downlink and sending
light communication packages, with online dynamic
parameters, such as the ASV GPS coordinates, dynamic
waypoints and other significant information. This enables
the dynamic landing of the drone over the ASV platform.

B. Sensors System

There are four main sensors in the drone, a Raspberry Pi
camera, a TFLiDAR range finder, the IMU inside the Flight
Controller and the GPS sensor. With a combination of these
subsystems, the Drone is capable of flying autonomously
and land where indicated.

The Raspberry Pi camera is a OV5647 HD 5MP CMOS
camera, operating with a resolution of 2592*1944 px for
imaging and 800*600 px for precision landing CV
algorithms and a FOV of 59°.

The TFLiDAR rangefinder is the TFmini-S LiDAR is a
unidirectional laser range finder based upon time-of-flight
(ToF) technology, with 2° FOV and a maximum detection
distance of 12 meters. It is used in the landing tasks, giving
a more accurate estimation of the distance from the ground,
compared to the GPS and IMU data.

The GPS+IMU sensors are combined from the Flight
Controller unit, which is a Pixhawk 4 in one drone, and a
Pixhawk 3 in the backup one. The standard GPS and IMU
are used for both manual and autonomous flights using
Mission Planner or QGroundControl software, and describe
the vehicle’s main attitude while flying with great accuracy.

C. Control System

The solution for controlled flight is an off-the-shelf
solution from the existing Ardupilot controllers
implemented in the Pixhawk control board. There is a
standard PID controller which is tunable and calibrated
from the stock IMU from the drone. There are no further
developments over the controllers, rather than the
PID-tuning to match the criteria of the flights for the
competition.

D. Hardware implementation

Team Caleuche

In addition to the sensors previously mentioned, the drone
has 4 electric motors, 2213 for the main drone and 2212 for
the backup one. The 2-blade propellers for the main drone
are 9x4.5 inch and 10x4.5 inch for the backup one. All the
motors are equipped with 30A Electronic Speed Controllers
(ESC) and both drones are powered by a 4S 14.8V 6200
mAh battery. Additionally, there are a couple of telemetry
sensors for the main voltage and current drop, an optional
gimbal + FPV video transmitter (VTX) that could be used
for a direct analog video link with high FPS. Everything is
connected to the Pixhawk Flight Controller, including the
Raspberry Pi 3b+ which is executing the main flight
commands, and the 3 radiofrequency receivers mentioned in
previous sections. The electronics are mounted in a F450
drone frame modified to float above water for both the main
and backup drone.

V. EXPERIMENTAL RESULTS

A. Simulation Testing
1) Mechanical simulation:

Computational simulations were essential in the designs
devised by the Caleuche mechanics team. The team made
use of Autodesk Inventor CAD software for its finite
element (FEA) and computational fluid dynamics (CFD)
simulations.

One example was for the design of the propeller
protections of the motors in order to corroborate that the
structure will not be deformed during use, a CFD
simulation was performed considering an overestimated
speed of the catamaran of 3 m/s in the water, which allowed
determining that an average pressure of 50 kPa was exerted
on the faces orthogonal to the direction of rotation of the
motor. Based on this value, the behavior of the casing under
this pressure was analyzed using an FEA simulation, which
allowed determining that the design has a minimum safety
factor of 3.87 for the simulation conditions, as shown in
Figure 4.

Figure 11: Simulations of the final design performed in Autodesk Inventor.
a) CFD simulation; b) Stress analysis.

B. Lab Testing
Electrical test :
In terms of lab tests there are two worth mentioning that
were vital to the electrical teams progress. These tests had
the objective of discovering the range of values in which the

Torgeedo and the Spirit 1.0 motors worked, in other words

7 of 8

the values that the microcontrollers had to send in order to
control the speed of each motor.

In the case of the Spirit 1.0 the test consisted of tapping
into the signal read by the magnetic encoder when the
throttle was used and then mapping the signal into functions
on an ESP32. The results showed that these motors function
differently to the Torgeedo motors, sending an analog signal
instead of a digital message. There are 2 pins on the
controller board that receives an analog signal from the
ESP32 from 0 to 5V, where the sum of both voltages
determines the speed of the motor, and depending on the
order in which the DAC pins start to send the signal, the
direction of the motor is adjusted.

For the Torgeedo motor it was a simpler task since these
motors had been hacked by other people before and there
was a lot of material online. Because of this we just had to
adjust the ranges of values that had already been discovered
by other people and tuned them to the systems that we
developed and our model of the motor. For one of the
motors the forward drive values were: 540-2214 and for the
reverse direction : 2470-3900. For the other motor the
values were 50 - 1645 and 1932 - 3330 respectively.

C. Field Testing

During the field tests, measurements were made of the
force of the motors depending on the level of power sent as
a signal, in order to use this information to control the
vehicle. For this purpose, 1/8" steel cables were used, where
one end of the cable was tied to the vehicle and the other
end was connected to a dynamometer with a maximum
weight of 300 kg. The results obtained for the Spirit 1.0 and
Torgeedo motors are presented below.

Team Caleuche

Spirit 1.0

200

150

100

50

Force [N]

-50 4

=100 4

T T T T T T T r
=100 -75 —50 —-25 o 25 50 75 100
Level of power [%]

Torgeedo

200

100 -

Force [N]

=100 +

=200 4

=100 =75 =50 =25 o 25 50 5 100
Level of power [%]

Figure 12: force measurements for Spirit 1.0 and Torgeedo motors

From the results, it was evident that the Torqeedo motors
exert greater force at the same power level when compared
to the Spirit 1.0 motors, where the Spirit 1.0 motors reach a
maximum of 228.3 N at 100% and -116.6 N at -100%. The
Torgeedo motors reach a maximum of 269.5 N at 100% and
-187.2 N at -100%.

In addition, measurements were made of the speed values
delivered by the GPS when it is still, in order to determine
the noise level of the sensor, as well as to define if the data
are reliable and robust to close the speed control loop. The
results are presented below:

Linear velocity x [m's] Linear veloxity y [mis]

is fﬂ': .']'H f Y cj: H] ‘4.
:L: \.l.lhuhlﬂl ‘|.| fl | | I|Jl| oo k N
0008 | ﬂ’) ;» W

-0.010 1 ll'"

-0.015 1 'd o r ' IFN

5100 00 5600 80 8000 200 00 5500 30 @
measursment

Figure 13: velocity measurements with the GPS still

From the results, it was noted that, throughout the
measurements, the value of both speeds presented a low

8of 8

noise level, so it was determined that with these values it is
possible to make a speed control loop.

VI. ConNcLusioNs

During this year we worked on designing, building and
testing the autonomy of our WAM-V, developing and
integrating mechanical, electrical and software components,
along with navigation and control algorithms and the
integration of a drone with the USV. This is how the first
version of the Caleuche team’s WAM-V is ready to compete
in RobotX Maritime Challenge 2022.

Being part of this competition has allowed unprecedented
technological development in our university, which has
generated opportunities for research for both undergraduate
and postgraduate students, with a broad generational reach.

During this period, the team has had the opportunity to
learn and gain experience in the field, which will allow us
to continue to improve our WAM-V for future versions of
the competition.

VII. ACKNOWLEDGEMENTS

The team would like to thank our generous sponsors
MultiAcero and Pontificia Universidad Catolica de Chile.

In addition, we are grateful for all the help provided by
the mechanical workshop of the UC Mechanical
Engineering Department and UC Robotics Laboratory.

Finally, we would like to thank the Roboflow

organization, who granted us privileges to use their
platform.

VIII. REFERENCES

[1] B. Bingham and C. Aguero, Toward Maritime Robotic Simulation in
Gazebo, 2019, https://github.com/osrf/vrx.

[2] P. Bovbel and T. Foote, pointcloud_to_laserscan, 2015,
https://wiki.ros.org/pointcloud_to_laserscan

[3] DepthAl's Documentation — DepthAl documentation | Luxonis. (s. f.).
2022, https://docs.luxonis.com/en/latest/

[4] Roboflow: Give your sofiware the power lo see objects in images and
video. (s. f.). 2022, https://roboflow.com

[5] GitHub - ultralytics/yolovs: YOLOVS 4 in PyTorch > ONNX >
CoreML > TFLite. (s. f.). GitHub. 2022,
https://github.com/ultralytics/yolov5

[6] Bohren and I. L. Y. Saito, smach, 2018, http://wiki.ros.org/smach

