
RoboSeals 1 of 11

Designing the RoboSeals’ RobotX 2022 Challenge

John Bowes, Isabelle Colby, Bowen Thomas, Tom Hooper, Shuaipu Zhao, Jeremiah Ye and Adam Jenkins

Abstract—The RoboSeals are a newly formed RobotX team

combining students and staff from the University of South

Australia with mentors and alumni from the Student Robotics

Club of South Australia, Inc, with the assistance of industry

partners. For their 2022 entry into the competition, the team

used a highly distributed and modular system design that

allowed the project to be embedded within undergraduate

Information Technology degrees at the university. It was found

that this approach was viable, despite several challenges, and

the resulting entry incorporates ideas and technologies from

FIRST Robotics Competition entries with new approaches,

including swerve drive, vision processing, and communication

over a CAN bus using custom protocols.

I. INTRODUCTION

The Maritime RobotX Challenge is an exciting

opportunity for any university student. It involves

constructing and programing an Unmanned Surface Vehicle

(USV) to perform a series of autonomous tasks using the

WAM-V 16 platform. [1] This is challenging, but when

combined with a second robotics task – an Unmanned Aerial

Vehicle (UVA) – the competition gets even more interesting.

In 2021 the University of South Australia and the Student

Robotics Club of South Australia, Inc, (SRCSA) along with

industry partners, decided to find out if they were up to the

challenge and the RoboSeals were formed.

Over the next 18 months a core team consisting of a small

number of students from the university and the SRCSA,

along with academic advisors, mentors and industry

representatives, have been developing “Licorice Sticks”,

their entry for the 2022 competition. As will be described,

the team was much larger than that core group – the project

was embedded into undergraduate IT degrees at the

university through a capstone project course, and

accordingly a large number of students from the university

worked on different aspects of the project. This created

multiple challenges, most importantly that it required a

distributed architecture to be employed on the USV.

This paper explores those challenges, looks at the

solutions that were developed, and examines how and why

those approaches were taken, before looking at how the team

plans to complete the preparation of their entry.

II. BACKGROUND

UniSA is the largest university in South Australia and has

a strong STEM focus, offering degrees in information

technology, electrical and mechanical engineering, and

mechatronics. Although students at the university have

historically competed in small scale robotics competitions,

such as the Warman Challenge, [2] the university has had

little direct involvement in large scale robotics contests such

as that offered by RobotX.

As part of all undergraduate information technology

degrees at UniSA, final year students must complete a team-

based project through the ICT Capstone Project (ICT)

course. These projects are generally sourced from industry

partners but getting projects that fit well with student and

university requirements can be challenging. RobotX was

viewed as providing a means of generating multiple capstone

projects for students which can be aligned to specific student

capabilities.

The SRCSA, also known as the “RoboRoos”, is a

community robotics club that has a ten-year track record of

student robotics programs covering five different levels.

They have competed in the FIRST Robotics competition,

primarily in the FIRST Lego League (FLL) for primary and

middle school students, and the FIRST Robotics

Competition (FRC) for students in middle school through to

the end of high school.

Over the years that the SRSCA has been in operation,

many of their students have completed high school and gone

on to higher education. In some cases, this has been in areas

related to robotics, but often they must give up robotics to

pursue their degrees. For many years the SRCSA have been

looking for a university-level robotics challenge so that

alumni can continue to engage with robotics after they no

longer qualify to compete in the FIRST competitions.

Combining the two teams brought together the

programing and network skills of the students at UniSA with

the robotics and competition experience from the SRCSA

alumni, along with a large network of mentors and industry

partners from both sides. Ultimately, approximately 30

undergraduate UniSA students worked on the RobotX

project over 18 months, while 12 SCSRA students were also

involved. But bringing together two different groups

presented challenges, and while the two organisations

worked together, it was necessary to formulate a design

strategy that allowed for the needs of the ICT students while

still capitalizing on the strengths of the SRCSA members.

III. DESIGN STRATEGY

Due to the need to incorporate multiple independent teams

into the project it was decided to go with a highly distributed

and modular system design. Rather than focus on a single

high-powered computer, the USV was designed to use

multiple low powered embedded systems employing a mix

of microcontrollers and Single Board Computers (SBC).

Using this architecture, each team or subteam could

determine their own hardware and Operating System

RoboSeals 2 of 11

requirements, independently generate a solution, and then

have that unit incorporated into the overall system structure.

Although this approach creates its own set of problems,

one of the advantages of the design is that it allows the USV

to employ parts and code from the SRCSA’s FRC

experience. Accordingly, where possible the intent was to

use motors, controllers, electronics, and libraries from FRC,

although this limited the robot to the 12 VDC systems

employed in that competition. Another advantage to the

modular approach was that it permitted multiple teams to

work on one subsystem independently. As can be seen in

Table 1, GNSS positioning, buoy identification and

communications to the Technical Director were viewed as

essential subsystems, and thus multiple teams worked on

each of these tasks. Each team took their own approach, and

the final system will incorporate the most effective design

offered. On the negative side, highly distributed systems

become heavily dependent on the reliability of the

communication network, which requires more attention

being paid to onboard communications and the development

of internal communication protocols.

One of the goals of the project was to develop an

architecture that could be used both in future RobotX

competitions and in research projects. This fitted well with

the modular design and led to decisions which may not pay

off in the first competition, but are hoped to prove valuable

in later projects. Although the USV is hoped to be

competitive in 2022, it is primarily aimed at future

competitions with the 2022 competition employed as an

opportunity to learn more about how best to manage the

tasks.

Two major limitations had to be considered in the design

strategy. The first was that the team has a limited budget, and

accordingly price was a significant factor in the decisions.

The second was that the UniSA students are exclusively from

information technology degrees, so there is a lack of

mechanical and electrical engineering students in the team.

To some extent the SRCSA members were able to counter

this, but nevertheless the overall emphasis was of necessity

on software solutions rather than hardware.

Given this situation, the team set out to tackle the

competition using three levels of requirements:

• Level 1: “Minimum Viable Product” – a USV that

can qualify to enter the competition but will not

qualify for the semi-finals.

• Level 2: “Semi-Final Qualifier” – a USV that can

show proficiency in at least five tasks.

• Level 3: “Dream Boat” – a UV that has proficiency

in more than five tasks.

For level one a set of primary systems were identified:

• Command and control system

• Base station

• Propulsion

• Emergency stop system

• Batteries and power distribution

• Onboard communications

• Shore communications

• Light tower

• Heartbeat (Task 1)

• Basic vision system (identifying buoys)

• Basic navigation (moving between two points).

Assuming that this was successful, this would allow the

team to compete. To achieve Level 2, four tasks were

identified as viable goals:

• Task 5: Scan the Code

• Task 6: Detect and Dock

• Task 7: Find and Fling

• Task 3: Follow the Path

The first three involve identifying blocks of colour, and

prior experience with OpenCV in FRC competitions

suggested that this was viable. In addition, FRC competitions

regularly involve shooting balls at targets, and while

invariably challenging, this meant that there was some

experience to build on among the SRCSA team members.

“Follow the Path” required an accurate vision system

which was likely to prove to be more difficult to implement

that the colour and basic shape recognition in the first three

options. To try and handle this complexity, three teams were

assigned to the task: an initial UniSA team in late 2021 using

OpenCV, a second UniSA team in 2022 employing OpenCV,

and a SRCSA-based team using machine learning

techniques.

Level 3 was considered but involved some significant

complexities. Task 2, “Entrance and Exit Gates”

incorporates two independent systems – a method of

identifying an underwater beacon and a method of

identifying and traversing the gates. Some team members

expressed a particular interest in the second part of this, so

they continued down that line. However, this was not

considered a high priority.

There was also considerable interest within the team in the

UAV-based tasks. A UAV was purchased, and several team

members were assigned to the UAV. The biggest problem

faced, though, was regulatory rather than technical – under

Australian law, members of the team are required to hold a

Remote Pilot License (RePL) to operate the UAV. [3] This

is underway, but development has been necessarily limited

until it can be achieved. Nevertheless, team members have

been working with the provided Hyper Spectral Camera

(HSI) and with data transmission to and from the drone. If

nothing else, this will put the team on to the correct path for

future competition and research.

IV. VEHICLE DESIGN

Based on the design strategy, teams were assigned

modules as described in Table 1. A separate team worked on

the mechanical and electrical aspects of the USV, but as the

focus was largely on information technology, most of the

teams were working on software.

RoboSeals 3 of 11

Table I

MODULES

Subsystem Controller Team

Command and Control NI RoboRio SRCSA 1

TeleOp NI RoboRio SRCSA 2

Propulsion Control NI RoboRio SRCSA 2

Remote eStop Arduino Uno SRCSA 3

Shore Comms Various UniSA 1

Technical Director Comms Orange Pi UniSA 2

Technical Director Comms Orange Pi SRCSA 4

GNSS Positioning Arduino Uno UniSA 3

GNSS Positioning Odroid M1 SRCSA 5

Buoys (OpenCV) Raspberry Pi 4 8GB UniSA 4

Buoys (TensorFlow) Jetson Nano SRCSA 6

Wind Direction/Strength Arduino Uno UniSA 5

Shooter Control Raspberry Pi 4GB UniSA 5

Shooter Vision Raspberry Pi 4GB UniSA 6

Colour Sequence Raspberry Pi 4GB UniSA 6

Docking Odroid C4 UniSA 6

Gate Recognition Raspberry Pi 4 4GB UniSA 2

UAV Control Odroid M1 SRCSA 4

HSI Camera Raspberry Pi 4 4GB UniSA 7

The core part of the USV is the RoboRio, which serves as

the basis for communications back to the shore and as a

command-and-control system for the rest of the modules.

The navigation subsystem pulls data from a LiDAR, GPS,

and vision. Separate vision systems are employed for colour

recognition when docking and identifying the light sequence,

and the shooter has its own vision subsystem to identify the

target and to instruct the RoboRio on how best to position the

USV. The weather module feeds data into navigation,

docking and shooting. The heartbeat and the gates were

treated as independent systems due to the importance of the

heartbeat and the perceived complexity of navigating

through the gates. A high-level view of these systems is

included in Figure 1.

Fig 1. High level system diagram.

A. Propulsion

In examining entries from previous years three basic

propulsion models stood out: differential drive, where two

fixed aft-mounted motors use power control to adjust the

direction and speed of the USV; differential drive with bow

thrusters, where the bow thrusters are employed for fine

control of direction; and omnidirectional drives, where three

or four motors can push the robot in any direction. As noted

by the Embry-Riddle Aeronautical University and the

Queensland University of Technology teams in their 2018

technical reports, position holding and maneuverability with

only a differential drive had proven to be insufficient. [4] [5]

This matched well with the team’s prior experience in FRC

where omnidirectional drives are common, and the SRCSA

members had recently been involved in designing and

programming an omnidirectional drive for that competition.

Although the transition from land-based to a water-based

solution was unlikely to be trivial, it provided for a solid base

from which to start.

There are a number of different omnidirectional designs

used in FRC, but many of these cannot make the transition

to water. The two best candidates were an “X” drive, where

four wheels (or in this case, outboards) are in fixed positions

at each corner of the robot, positioned at 45 degrees to make

a “X” pattern. This has been employed in RobotX by teams

such as the University of Florida. [6] [7] X drives are

mechanically straight forward, but they sacrifice power for

maneuverability, as by necessity the motors always push

against each other when the robot is in motion. An

alternative, albeit more complicated solution, is to

independently rotate all four motors to change the direction

of thrust. This is commonly referred to as “swerve” or “crab”

drive. Swerve drives allow the robot to account for current

and wind by automatically adjusting power and direction of

each motor to maintain a target vector. Given the team’s prior

experience with swerve drive, it was felt that the added

mechanical and software complexity would be countered by

the increased maneuverability and no significant loss of

power.

Fig 2. Propulsion systems. On the left is a differential drive. Adjusting

power to the two motors allows the robot to turn. The centre and right

illustrations are of a swerve drive. By directing the thrust of the four motors

the boat can be made to turn or move sideways.

An examination of the motor configurations by prior

competitors led to the conclusion that 200lbs thrust would be

a good target for the USV. In particular, it was noted that the

Harbin Engineering University team, who competed in 2018,

had found 120lbs of thrust to be insufficient and had changed

to 240lbs. [8] In combination with the decision to use swerve

drive and the 12 VDC power limitation, this led to three main

options: four Minn Kota RT 55 motors; three Torqeedo

Base Station

Shooter RoboRio Weather

Heartbeat Comms Gates

Colour Nav

LiDAR

Vision

GPS

Team Dir.

RoboSeals 4 of 11

Travel 1103 motors in a triangular configuration; or three

Watersnake Advance Brushless Motors with a similar layout.

Given budgetary considerations, the three Watersnake

motors appeared to provide the best power to price ratio.

Unfortunately, ongoing supply shortages meant that these

proved to be unavailable, so a fourth option – four

Watersnake Venom SXW 54 motors – was selected instead.

This met the targeted maximum power of 200lbs but required

some modifications to the USV’s design.

In FRC swerve drives generally rotate 360 degrees, but

that requires the use of a slip ring (as used by the FRC team

“Dropbears” [9]) or a bevel gear with the drive motor

mounted on top of a vertical shaft (as employed by Swerve

Drive Specialties [10]). Neither solution was practical with

the Watersnake motors, so an alternative approach has been

employed. Rather than spinning the full 360 degrees, each

motor is limited to 180 degrees of rotation and the prop

rotation is reversed to cover the remaining 180 degrees. This

produces less thrust in some directions but was deemed to be

an acceptable compromise.

Control of the motors is handled through the RoboRio

using a similar approach to what had been employed on the

FRC robots. On the hardware level, the manual speed

controller was replaced with a Talon SX, which can be

controlled through both CAN and PWM. (Figure 3 below).

This was like the approach employed by the University of

Newcastle in 2018, who used Arduino microcontrollers to

control the power output on an otherwise manual system.

[11] Rotation was through a Neo 500 brushless motor

managed by a Spark Max motor controller. The Neo 500,

Spark Max and Talon SRX are all regularly employed in

FRC competitions, and the SRCSA team members have

considerable experience using all three. (Programming of the

RoboRio to manage the swerve drive was completed by one

of the current SRCSA students).

Fig 3. Talon SRX mounted into a Watersnake Venom SWX 54 motor

enclosure. By connecting the 12v output from the Talon to the 12v input on

the Watersnake the motor was quickly converted from manual to remote

control. With the cover replaced, the voltage window allows the operator to

see the LED indicator lights on the Talon. Also visible is the 3D-printed

pulleys for direction control.

In competition two limit switches at 0 and 180 degrees

allow the motor to be automatically calibrated on startup, and

when triggered during robot operation they reset the

calibration settings to counter any encoder drift or potential

slippage – both being significant issues with drives in FRC.

Comments by other teams on the RobotX forums led to

the decision to further manage propulsion by ramping the

power to the motors, rather than simply changing speed and

direction immediately.

B. Control and Power Unit

Power is distributed through two main channels – a

custom system to provide 12 VDC to each of the four main

motors at a maximum draw of 50A, and a Rev Power

Distribution Panel (PDP) to cover everything else. Power to

both systems is through two automatic over-current circuit

breakers rated to 120A at 12 VDC. Power to the motors is

routed through a relay, which can be shut down by any of

four emergency stop switches located on the boat or by a

remote switch located on shore. Power to each individual

motor is then run through individual 50A circuit breakers.

The speed controllers for each of the motors was software-

limited to 30A, but 50A was the maximum rating.

All other power passes through the PDP. The PDP is the

same model used in FRC competitions and includes a CAN

connector to report on power usage. The PDP provides

multiple 12 VDC channels at 20A and 30A. When 5 VDC is

required, it is provided through a Voltage Regulator Module

(VRM) connected to the PDP.

An initial electrical configuration was tested on the first of

the sea trials, but several concerns emerged. Most notably,

the design provided insufficient space for some the planned

modules, and the wiring required extensive setup on-site,

reducing the time the USV was able to be in the water.

Accordingly, much of the electrical system has been

redesigned.

Fig 4. Initial electrical configuration (on the left) with the redesigned

electrical system on the right. The new design allows for more components

and easier access. The RoboRio and other devices which need to be

regularly inspected are mounted on the top of the fold-down shelf and are

immediately apparent when the unit is opened.

Power is provided through eight 280Ah 3.2 VDC lithium

ferro-phosphate (LiFePO) batteries in two groups of four,

providing an overall 12 VDC at 2240Ah. These were coupled

with battery controllers capable of providing 150A per set.

LiFePO batteries were selected due to the improved safety

they offered over LiPo batteries. [12] Due to concerns about

RoboSeals 5 of 11

possible supply shortages, the batteries were selected prior to

the team gaining a full understanding of the power

requirements for the USV. However, it was calculated that

the propulsion would need a maximum of 60A per motor, so

the batteries were selected to provide sufficient power for the

propulsion and should cover any additional electrical

systems. In practice, the software limiting of the speed

controllers reduced the draw to 40A per motor.

C. Shore Communications

Communications between the robot and the base station

are a core requirement. A team of UniSA final year

Networking and Cybersecurity students were assigned to the

task under the supervision of an industry partner.

It was determined that the networking solution must

incorporate 2.4ghz connection and a 5ghz connection. The

5ghz antenna must remain within the Effective Isotropic

Radiated Power (EIRP) of 23dBm (200mW) with the 2.4ghz

limited to an EIRP of below 36dBm (4W). Accordingly,

three antennas were shortlisted for the USV: the Ubiquiti

AM-2G16-90, the AM-5G17-90 and the UMA-D. Based on

these options, three configurations were examined, outlined

in Figures 5, 6 and 7.

Fig 5. UniFi AC Mesh access point (UAP-AC-M), UniFi dual-band antenna

(UMA-D), UniFi Rocket M access point (M5) and airMAX Sector antenna

(AM-5G17-90).

Fig 6. UniFi AC Mesh access point (UAP-AC-M) coupled with UniFi dual-

band antenna (UMA-D).

Fig 7. Two UniFi Rocket M access points (M5) with two airMAX sector

antennas (AM-2G16-90 and AM-5G17-90).

The chosen solution was the approach in Figure 8: two

AirMAX Sector antennas (AM-5G17-90 and AM-2G16-90).

this allowed for sufficient coverage of the competition fields

and provide 17dBi and 16dbi signal strength. [13]

Fig 8. Final networking diagram.

One of the requirements for the competition is that a

remote emergency stop (eStop) system be installed. The

specific requirements included:

• The eStop must be a physical switch located onshore

• It must transmit to the boat without interference

• It must shut down all power to the motors when

triggered

• It needs to function without line-of-sight for 500m

• It must comply with Australian RF transmission

regulations

The Semtech SX1276 IC 915MHz LoRa long Range RF

Wireless Transceiver module was determined to meet the

requirements. Two LoRa shields and two Arduino

microcontrollers were sourced. Testing proved that they had

the required 500m range without line of sight. In the final

system, the shore-based transmitter sends a ping to the

receiver at a preset interval. If no pings are received the eStop

activates and power to the motors is cut. Alternatively, if a

“kill” message is sent by the transmitter (triggered by an

emergency stop button) the receiver cuts all power to the

motors. To return power a “reset” message needs to be sent

from the transmitter before normal operation is resumed.

To reduce possible conflicts, a communication protocol

was developed for the LoRa system, with each packet

containing a two-byte destination code and a two-byte sender

code. If the packet does not include a recognized sender and

is not addressed to the receiver it is ignored.

After the first round of sea trials, it was realized that the

operators needed to have information about the state of the

eStop without needing to inspect it on board. The transmitter

was modified as per Figure 9 to have two sets of indicator

LEDs. One set indicates the state of the transmitter (sending,

in reset mode, or stopped) and the other indicates the state of

the receiver (stopped, resetting, running). To facilitate this

the receiver on board the USV responds to pings with a status

update.

RoboSeals 6 of 11

Fig 9. Remote eStop. The top image displays the transmitter (on the left) and

the receiver (on the right). Each consists of an Arduino Uno, a LoRa shield,

and an assortment of indicator lights, buttons, and a relay. The final product

can be seen below, with the receiver (left) to be installed on the USV, while

the transmitter (right) is kept on shore.

D. Positioning

Two teams have been working on positioning. One has

been trialing GPS modules working with Arduinos and

SMBs, while the other has been working to integrate an Emid

Edge kit into the USV. [14]

The custom modules have had a degree of success. The

initial testing for this task was done using a u-Blox Neo-

6MV2 module and an external UFL ceramic antenna. A

popular choice amongst hobbyists, it requires relatively low

power (100ma) while boasting a horizontal position accuracy

of 2.5m. [15] The first prototype was built using a Raspberry

Pi 3, a bi-directional logic level converter, an LCD module,

and the GPS module. It was powered remotely with a

10000mAh power bank on the underside of the prototype.

Suitable testing locations with wide open areas and a good

viewing angle of the sky were selected. The testing device

was then placed on the ground for a period of 20-30 minutes,

and the data recorded to check for drift. For the first test

location an open field was used, and the device placed in the

centre of the field. Drift proved to be a significant problem,

with the recorded position moving over 40m during the 30-

minute test period.

Due to concerns about possible interference from nearby

buildings, a second series of tests were conducted over water.

These proved to be significantly more reliable, with the drift

ranging approximately 5m from the initial position during

the test periods. (Example results are shown in Figure 10).

The second tests showed promise, but the drift remained

greater than was considered viable for the competition. Three

more GPS modules have been sourced and are currently

undergoing further testing.

Fig 10. Drift from the custom GOS solution. The image on the left shows

the extensive drift that occurred within built-up areas. The colours represent

different times during the test and show that the drift did not decrease over

time. The second image is the same test device used on water and

demonstrates the much more accurate readings that were gained.

The Emid Edge product has provided a different set of

problems. While it appears to have greater accuracy than the

custom solutions, getting data off the Emid Edge has been a

challenge. Currently a SMB is reading data using a CAN bus

via the MAVLINK protocol, but more work remains to be

done.

E. Onboard Communications

Communications onboard the USV is primarily over the

CAN bus. The CAN bus is a common protocol in both

maritime and automotive applications and has been part of

the FRC competition in recent years. It provides for a robust,

easy to implement system consisting of two wires which are

connected to each device in sequence. A CAN bus was

required to communicate with some of the FRC components

on the USV, as well as to address the Emid Edge that was

proposed for navigation. Given that a CAN bus was going to

be necessary anyway, the decision was made to use it for

most onboard communications.

Initially the intention was to use the MAVLINK protocol

over the bus, as that was required to integrate with the Emid

Edge. However, the FRC components use their own

protocol, and running two different protocols over the same

bus risked problems. Accordingly, two CAN busses were

installed – one for navigation and one for the remaining

onboard communications, with a custom CAN router to

negotiate the movements between the two. As can be seen in

Figure 1, the navigation modules (GPS, LiDAR and one of

the vision systems) access the rest of the USV via a

navigation module. The navigation module manages data

transfer between the two CAN buses.

The use of the FRC protocol means that the priority setting

can be retained. Nevertheless, it is only a partial solution, as

it has previously been found that it is possible to flood the

CAN bus such that collisions can occur with a high

frequency. To get around this, all modules listen to the CAN

bus, but they only transmit after the Command and Control

unit has sent a “start” message, and stop once their role is

over. Thus, the shooter module does not transmit unless that

task is underway, and it ceases to transmit when shooting is

complete. A simple state machine in the Command and

Control module manages these activities.

RoboSeals 7 of 11

F. Vision: Colour recognition

Three of the tasks in the competition involve colour

recognition: Task 3 “Scan the Code”, Task 4 “Detect and

Dock” and Task 5 “Find and Fling”. This was tackled by

employing OpenCV in Python 3 and was implemented on a

Raspberry Pi 4.

The colour recognition code uses HSV thresholding to

make it easier to differentiate between colours (red, green,

and blue). Converting the pixel colours from RGB to HSV

allows the intensity to be separated from the colour

components which is much more suitable for computer

vision (easier handling of shadows and changes in lighting).

To identify the correct colours, HSV ranges for each target

colour must be set. Any HSV values outside of these ranges

are to be ignored. The result of thresholding is a black and

white image where the coloured object is shown as white,

and the surrounding space black. The program is then able to

identify the colour based on the white pixels and form

contours around each cluster of white pixels.

Like colour recognition, rectangle recognition was

developed using OpenCV in Python. The process of

rectangle recognition relies on the colour recognition system

to identify contours within the video or image. A polygon

approximation algorithm is then applied to each of these

contours to identify which contours are rectangles. The

rectangle with the largest area is selected as it has the highest

probability to be the Shape of Interest (SOI).

Given that the SOI will have known width and height it is

possible to calculate the distance between the SOI and

camera. This is accomplished by calculating the distances

relative to the closest (perceived as longest) vertical side and

the furthest (perceived as shortest) vertical side of the SOI,

and an average is taken. This will be the distance relative to

the centre of the SOI. Calculating the angle at which the SOI

is being viewed allows the robot to identify its position

relative to the SOI. When attempting to centre the camera

directly in front of the SOI, if the angle is negative, the robot

must shift to the right, and if positive, the robot must shift to

the left. The SOI is only visible within +/- 90 degrees from

zero (Directly in front of the SOI where its perceived width

is maximum); therefore, to calculate the angle, the formula

is:

𝜃 = 90 −
𝑝𝑒𝑟𝑐𝑖𝑣𝑒𝑑 𝑤𝑖𝑑𝑡ℎ

(
𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝐻
𝑊

)

90

Where H and W are the known height and width of the

SOI respectively. Perceived height and width use pixels as

the unit of measurement. The result of this formula is a

positive value, so the negative is applied to the value if the

length of the left vertical side is longer than the right.

In testing of this system, it soon became evident that the

calculated angle was only accurate when the SOI was in the

very centre of the camera frame along the x-axis (y-axis does

not have a significant effect on viewing angle). To mitigate

this issue, the SOI position from the centre of the frame is

calculated, this value indicates to the robot which direction,

and how far, it must rotate to keep the SOI centre of frame.

Fig 11. Rectangle recognition.

The colour sequence is captured by identifying the colour

displayed on the SOI in each video frame at 10 frames per

second to ensure that the colour is captured within the one

second that it is showing. This will result in consecutive

occurrences of the same colour. These are omitted from the

data and the indexes of all blanks (no colour displayed) are

retrieved. The sequence will be the data that was captured

between the first and second blanks. If the system has

captured a sequence that does not have a length of 3, the

system will retry capturing. In the “Scan the Code” task, the

LED panel will not be a solid colour as it is made up of a

matrix of LED lights. To ensure the colour and shape can be

recognised, the Gaussian Blur mask may need to be adjusted

to ensure the individual LED lights are blended to appear as

a solid colour.

G. Vision: Gate recognition

The gates in Task 2: “Entrance and Exit Gates” were

treated as a separate task to navigating the buoys, and thus a

separate team was assigned to the problem. Like the design

for tasks 3, 4 and 5, a colour detection algorithm was selected

to determine the relative position of the gates. The gate vision

system (which used OpenCV in Python) went through a

range of design choices and changes. It started with having a

stream class, a vision class and a main class to run the actual

program.

The stream class is tasked with handling different type of

streams, such as for using a camera, playing a video or

loading an image.

Initially, the vision class was to be tasked with handling

all the vision system functionality as an entire system on its

own, including a colour detector, edge (and contour) detector

for shape classification and an object tracker. Though it was

later discovered that these subsystems needed to be

preloaded as a set of configurations in a specific order,

instead of immediately loading them individually, as they

each affect the output of the current stream. For example, the

colour detector must be loaded first before the edge detector

to allow the program to classify the objects appropriately.

RoboSeals 8 of 11

While a monolithic system was first considered, it was

determined that the design should be adjusted to be more

flexible and customizable for the user in the consideration of

this program being applied to future endeavours. Therefore,

the monolith vision system class was scrapped, and instead a

composite based design was implemented, where each vision

subsystem (such as the colour detector, edge detector, object

tracker etc.) would be separate functional objects. This

allows the user to load individual vision subsystems in any

order that they desire, allowing for different combinations of

configurations.

However, this created considerable complexity, and thus

it was decided to further simplify the design and scrapped the

conventional composite design in replace of a single class

that would be tasked with handling everything related to the

stream’s configuration, while also preserving customization

and flexibility with an unconventional composite design.

This class (called stream settings) includes all the vision

subsystems as separate functions (and preloads them into a

set order) but it also allows the user to configure everything

that would assist both users of the system and future

developers that may improve on it. Stream settings with the

assistance of a threshold class allows the user to set specific

colour thresholds, edge thresholds, blur, dilation and erosion

and area thresholds, camera and resolution settings, as well

as also provides the option to enable or disable trackbars for

testing purposes (which provides developers the ability to

manually adjust thresholds until the object that they desire to

identify is aligned).

The colour detector went through a range of adjustments.

It was first tested with household objects with the goal to

make it a universal detector that could identify each colour,

and this was done with pixel based colour detection.

However, this was inefficient and highly inaccurate since if

the object that required detection was not completely in the

center of the camera, the colour could not be detected

correctly.

Therefore, a more refined solution was designed to

combine the lower and upper thresholds that defined each

colour into a single mask - this would allow the entire stream

to ignore all other colours that do not meet these thresholds

and proved to be a viable solution in comparison to the

original pixel based colour detection. However, when

applying this to detect images of the gates it did not perform

as expected and so the colour thresholds had to go through

further adjustments. It is believed that similarities in the

colour hues of the buoys, glare and shadows may be the

cause of these inaccuracies.

False positives were further reduced by passing the output

of the new colour detector through the edge detector and then

the contour detector. The contour detector was tasked with

identifying contours of the objects detected by the colour

detector and drawing boxes over the objects that were

identified, and then also calculating the area, perimeter, and

number of points that the object contained by using the x, y,

width and height values of the object. This created the ability

to single out objects that did not meet the area (and number

of corner points detected) criteria of the buoys.

Further problems occurred with the object tracker due to

how it is implemented in OpenCV. In OpenCV, the tracker

requires the manual use of a user to draw a box over the

object that they want to track, and this not only interrupts the

rest of the program but also does not fulfill the use case in

that the system is supposed to be completely autonomous.

Furthermore, when the object that was being tracked went

off screen, the tracker could not relocate it when put back on

screen. Thus, a second approach was implemented to use the

detected boxes from the contour detector as the objects to

track. Unfortunately, this strained the performance of the

program and there was still a problem of losing track of the

object when sent off screen. At the current moment in time,

the object tracker is inactive and will remain so until a

distance estimator has been implemented to assist with the

autonomous tracking process.

To account for the drift of the boat when it is immobile at

the start of a gate, a boundary-based position holding

implementation is currently being tested. This approach

focuses on the idea that further boxes can be drawn over the

detected objects to act as a boundary (to provide object

avoidance, collision protection and position holding), and the

center of the gate, (which the boat must align with), can be

identified through the center pixel of the camera. If this focal

point moves into the boundaries of the objects, then we can

assume that the boat is not centered and therefore we can

move it back to the correct position.

Fig 12. Two buoys identified in OpenCV. By keeping the buoys centered

in the image it is hoped that the boat can achieve a high degree of accuracy

when autonomously holding position.

If deemed appropriate, it is also planned to use this

implementation to measure the distance between the objects

and the focal point, to provide a viable distance estimator and

therefore also re-implement the object tracker into this

subsystem, if required.

H. Buoy Recognition

Although still at an experimental stage, two alternative

approaches are being trialed for buoy recognition. One is to

use machine learning via TensorFlow on Jetson Nanos. The

software has been installed, but this is currently untested.

The second, last minute, option was to include a LiDAR.

Given the complexity of using LiDARs a relatively simple

model was selected, the RPLIDAR S1-360 Degree TOF

Laser Scanner. LiDARs such as the S1-360 use a rotating

laser-based time-of-flight sensor to identify objects around

RoboSeals 9 of 11

the USV. High quality LiDARs with multiple channels can

provide very accurate data, but managing that data adds

considerable complexity. Simple LiDARs, on the other hand,

can use a single channel and may have difficulty identifying

round objects and objects with a low reflectivity, such as

black-colour buoys as used in the competition. However,

there is considerable promise when combined with a

functioning vision system (a LiDAR on its own would be

unable to detect the colour of the buoys). For initial testing

the LiDAR was fitted to an existing FRC robot at the same

height it was intended to be used on the USV, and current

testing involves both indoor and outdoor applications.

I. Shooter

Task 7, “Find and Fling”, requires the robot to aim and

shoot a ball at a goal identified by a coloured square.

Shooting has been a common task in FRC competitions,

where two primary approaches have emerged:

• Single wheel hooded shooters

• Double wheel shooters

Prior experience with double wheel shooters suggested

that they were complex and required extra maintenance yet

provided for faster exit speeds. This made aiming easier, but

at the same time they tended to have poorer accuracy.

Alternatively, hooded single-wheel shooters were simpler to

build and sacrificed exit speed and ease of aiming for

increased accuracy and topspin. In addition, the SRCSA

members have had more experience with hooded shooters,

and thus the shooter could be developed more efficiently by

building on prior experience. A hooded shooter design was

selected.

Fig 13. Hooded shooter design as incorporated onto the robot. It uses a

pneumatic cylinder to push the balls into the shooter mechanism, which

consists of a single wheel driven by a Falcon brushless motor. The design is

self-contained and incorporates a Raspberry Pi for shooter control and image

recognition, and a small LCD screen to assist with debugging.

J. Drone

The Splash Drone 4, a novel water-friendly drone, was

chosen for the Unmanned Aerial Vehicle (UAV) to address

concerns that, should control of the UAV be lost, it would

not survive contact with water. The Splash Drone 4 provides

an API for accepting TCP communication packets over WIFI

to the onboard computer. While a consumer-based

application does exist for controlling the Splash Drone 4, it

was necessary to construct a custom system to issue TCP

commands to the drone as required. Unfortunately, the

Splash Drone 4 documentation was not polished, having

been recently released, obscuring areas of the internal

implementation with missing/out-of-date information. An

initial investigation into the drone’s API involved writing a

basic client application to listen for broadcast byte-stream

output from the Drone’s TCP server and print it to the

console, giving a visual representation of drone interaction.

Strings of bytes extracted from the console were then cross-

referenced with the Splash Drone 4 documentation, verifying

that the drone was indeed working. The initial investigation

was conducted in both Java and Python but it was quickly

decided that building packets to interact with the drone

system was much simpler through a low-level language, for

which C++ was chosen. Despite an established connection to

the drone, it was determined that the received status-packets

were incompatible with the updated API documentation and

that the drone’s firmware needed updating.

What started out as a simple testing program — sending

packets to the drone — rapidly morphed into a code library

for building and receiving packets from the drone, including

unit tests verifying that each packet was built as expected.

QT, a library that intends to supplement the C++ standard

library, provided memory safety and made the handling of

TCP easier. Development, however, was slowed by a lack of

access to the drone which was only available on the premises.

Consequently, a simple dummy server was written in Java to

provide a testing method for those times when the drone was

inaccessible.

Despite a (presumably) functional library being built to

interact with the UAV, a major requirement for using the

drone is a drone pilot license. Once a license is acquired, the

framework will be tested against the drone in the field.

K. Heartbeat and Reports

Finally, a heartbeat signal needs to be sent by the robot to

the Technical Director (TD) Network along with various

reports. The original plan was to employ a dedicated

Raspberry Pi 3 to the task, but ultimately an Orange Pi was

used due to supply shortages. Given the importance of this

task two teams were assigned to it: one developed code using

C++, while the other went with a Python solution. Both are

still being finalized at the time of writing, but the most

reliable of the two solutions will be installed on the robot

With the lessons learnt from sending packets to the UAV,

it was realised that the Heartbeat and Messaging System

(HMS) should function in a similar fashion, building packets

(as defined by the RobotX documentation) and sending them

over a TCP client. Since the HMS system would need to

forward the UAV and USV statuses (along with other meta-

data such as GPS coordinates), it would have to read packets

from the rest of the system, develop an internal model of the

system’s state, and then forward that state to the technical

director in the form of heartbeat messages.

RoboSeals 10 of 11

The C++ approach was developed after consideration of

its similarities to the UAV’s control system, as it was thought

that the HMS could also leverage C++ and the QT

Frameworks that would give low-level control of reading and

writing packets and use a test-server, written in Java, that acts

as a dummy Technical Directors network to drive rapid

development and testing.

L. Experimental Results

Testing to date has involved three different approaches:

unit testing, where each module is tested individually under

controlled conditions; land testing, where the module is fitted

to an existing FRC robot; and on-water testing, where the

module is tested as part of the full system. On-water testing

to date has been limited due to the complexity of setting up

sea trials, but the changes to the electrical system made after

the first on-water test will hopefully streamline that process.

Unit testing in controlled environments is good for

confirming the behaviour of software, but real-world light

conditions can significantly affect the accuracy of data from

OpenCV. The team has encountered these problems in FRC

competitions, where vision systems work perfectly before

the competition, but fail completely once you get there.

Nevertheless, they provide a good starting point, and all

modules are tested extensively in controlled environments.

One of the strengths that the SRCSA could bring to the

project was the ability to trial modules on FRC robots. As

both the USV and the FRC robots use swerve drive, a CAN

bus and a RoboRio for control, it is possible to get good data

from those tests. The most recent testing using this model has

involved the LiDAR, which was fitted to an FRC robot to get

data as it drove around buoys. This is continuing as the team

gets closer to the competition date.

Fig 14. FRC robot with LiDAR fitted for testing. Buoys were positioned

at different locations around the room, and the LiDAR data was compared

against the actual environment.

The most effective testing, though, has been on-water

testing. It is not possible to test the propulsion system on

land, and the movement of a USV is difficult if not

impossible to replicate in land-based robots. Although both

the FRC robots and the USV use swerve drive, the behaviour

of that drive on the two systems differs considerably. To

address this, the first on-water testing was focused on

propulsion. As a result of this test several changes were made

to the USV:

• The electrical system was redesigned to reduce setup

time for future trials

• Additional indicator lights were fitted to provide the

team with data about the USV status, as it was not

always clear when the USV was enabled

• Cameras were fitted to assist operators when moving

the USV under human control

• The swerve drive was modified so that motors would

not automatically calibrate on startup, and could

instead be calibrated by operator command

• Mechanical changes were made to improve the fit of

the motors on the USV

On the positive side, the USV moved as hoped – there was

sufficient thrust to push both the USV and a second boat

tether to the side; the swerve drive provided precise control

of direction and speed; and power consumption was well

within predicted levels.

The remaining on-water trials are to test position holding,

navigation and the vision system.

Fig 15. USV undergoing on-water testing at the Royal Yacht Squadron of

South Australia. The swerve drive, which consists of the four outboards and

the associated turning systems, met all performance targets.

M. Conclusion

The RoboSeals would like to take this opportunity to

acknowledge the support from both the University of South

Australia and the Student Robotics Club of South Australia,

Inc. We would also especially like to thank Intrusion Inc for

their support, the Royal South Australian Yacht Squadron for

providing a place in which to test the USV, and mentors Jeff

Jenkins, Sam Koulianos and Adrian Johnson for the many,

many hours they put into helping us to reach this point.

Finally, we would like to acknowledge the assistance of Peter

Ryan-Kane from the SRCSA and Richard Bowyer from

Flinders University, whose encouragement led us down this

path.

RoboSeals 11 of 11

V. REFERENCES

[1] RoboNation, "RobotX Challenge: 2022 Team

Handbook," 2 2022. [Online]. Available:

https://robonation.org/app/uploads/sites/2/2022/03/202

2-RobotX_Team-Handbook_v2.pdf. [Accessed 8 10

2022].

[2] Warman Design and Build Challenge, "International

Final," 2022. [Online]. Available:

https://warmandesignandbuild.org.au/national-final/.

[Accessed 6 10 2022].

[3] "Operator accreditation," Civil Aviation Saftey

Authority, [Online]. Available:

https://www.casa.gov.au/drones/get-your-operator-

credentials/operator-accreditation. [Accessed 5 10

2022].

[4] J. E. Barnes, N. D. Bloom, S. P. Cronin, G. C. Delp, J.

L. Halleran, M. R. Helms, J. J. Hendrickson, N. R.

Middlebrooks, N. D. Moline, J. B. Near III, J. S.

Romney, M. A. Schoener, N. C. Schultz, D. J.

Thompson, T. A. Zuercher, C. F. Reinholtz, E. J.

Coyle, P. N. Currier, B. K. Butka and C. J. Hockley,

"Design of the Minion Research Platform for the 2018

Maritime RobotX Challenge," 2018. [Online].

Available:

https://robonation.org/app/uploads/sites/2/2019/09/ER

AU_RX18_Paper.pdf. [Accessed 5 10 2022].

[5] L. Stanislas, K. Moyle, E. Corser, T. Ha, R. Dyson, R.

Lamont and M. Dunbabin, "Bruce: A system-of-

systems solution to the 2018 Maritime RobotX

Challenge," 2018. [Online]. Available:

https://robonation.org/app/uploads/sites/2/2019/09/QU

T_RX18_Paper.pdf. [Accessed 5 10 2022].

[6] D. Frank, A. Gray, K. Allen, T. Bianchi, K. Cohen, D.

Dugger, J. Easterling, M. Frank, A. Gray, K. Allen, T.

Bianchi, K. Cohen, D. Dugger, J. Easterling, M.

Peterson, D. Soto, F. Voight, D. Volya, T. Williams, E.

Schwartz, C. Crane, I. Hill, S. Ridgeway, "University

of Florida: Team NaviGator AMS," 2016. [Online].

Available:

https://robonation.org/app/uploads/sites/2/2019/09/UF

_RX16_Paper.pdf. [Accessed 5 10 2022].

[7] V. D., M. Griessler, A. Kevin, K. Cohen, A. Albritton,

N. Suhlman, D. Zobel, J. Mejia, R. Fabien, M.

Rawson, J. Brown, R. Pendon, D. Olis, M. Jones, E.

Schwartz, C. Crane and S. Ridgeway, "NaviGator

AMS 2018," 2018. [Online]. Available:

https://robonation.org/app/uploads/sites/2/2019/09/UFl

orida_RX18_Paper.pdf. [Accessed 5 10 2022].

[8] G. Su, B. Zhou, J. Feng, C. Zhu, K. Jiang, Z. Yuan, W.

Zhang, S. Zheng, L. Zhang, B. Wang and J. Zhuang,

"Design and Implementation of HEU Heading for the

2018 Maritime RobotX Challenge," 2018. [Online].

Available:

https://robonation.org/app/uploads/sites/2/2019/09/Har

bin_RX18_Paper.pdf. [Accessed 5 10 2022].

[9] "Our Custom Swerve Drive Module," The Drop Bears,

[Online]. Available:

https://www.thedropbears.org.au/swerve-drive/.

[Accessed 5 10 2022].

[1

0]

Swerve Drive Specialties, "MK4 Swerve Module,"

2021. [Online]. Available:

https://www.swervedrivespecialties.com/products/mk4

-swerve-module. [Accessed 5 10 2022].

[1

1]

J. A. Coller, M. J. Sypnewski, S. B. Taylordean, C. J.

Goodrum and D. J. Singer, "The Design of an

Autonomous Surface Vehicle for the 2018 Maritime

RobotX Challenge," 2018. [Online]. Available:

https://robonation.org/app/uploads/sites/2/2019/09/UM

ich_RX18_Paper.pdf. [Accessed 5 10 2022].

[1

2]

J. Hu , W. Huang , L. Yang and F. Pan , "Structure and

performance of the LiFePO4 cathode material: from

the bulk to the surface," Nanoscale, vol. 12, pp. 15036-

15044, 2020.

[1

3]

Ubiquiti Networks, "airMax Sector: Datasheet," 2018.

[Online]. Available:

https://dl.ui.com/datasheets/airmaxsector/airMAX_Sec

tor_Antennas_DS.pdf. [Accessed 4 10 2022].

[1

4]

MapGear, "Emlid Edge Kit with Wi-Fi," [Online].

Available:

https://www.mapgear.com.au/product/emlid-edge-kit-

with-wi-fi/. [Accessed 3 10 2022].

[1

5]

u-blox, "NEO-6," 2011. [Online]. Available:

https://content.u-

blox.com/sites/default/files/products/documents/NEO-

6_DataSheet_%28GPS.G6-HW-09005%29.pdf.

[Accessed 7 10 2022].

