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Abstract—The RoboSeals are a newly formed RobotX team 

combining students and staff from the University of South 

Australia with mentors and alumni from the Student Robotics 

Club of South Australia, Inc, with the assistance of industry 

partners. For their 2022 entry into the competition, the team 

used a highly distributed and modular system design that 

allowed the project to be embedded within undergraduate 

Information Technology degrees at the university. It was found 

that this approach was viable, despite several challenges, and 

the resulting entry incorporates ideas and technologies from 

FIRST Robotics Competition entries with new approaches, 

including swerve drive, vision processing, and communication 

over a CAN bus using custom protocols. 

I. INTRODUCTION 

The Maritime RobotX Challenge is an exciting 

opportunity for any university student. It involves 

constructing and programing an Unmanned Surface Vehicle 

(USV) to perform a series of autonomous tasks using the 

WAM-V 16 platform. [1] This is challenging, but when 

combined with a second robotics task – an Unmanned Aerial 

Vehicle (UVA) – the competition gets even more interesting. 

In 2021 the University of South Australia and the Student 

Robotics Club of South Australia, Inc, (SRCSA) along with 

industry partners, decided to find out if they were up to the 

challenge and the RoboSeals were formed. 

Over the next 18 months a core team consisting of a small 

number of students from the university and the SRCSA, 

along with academic advisors, mentors and industry 

representatives, have been developing “Licorice Sticks”, 

their entry for the 2022 competition. As will be described, 

the team was much larger than that core group – the project 

was embedded into undergraduate IT degrees at the 

university through a capstone project course, and 

accordingly a large number of students from the university 

worked on different aspects of the project. This created 

multiple challenges, most importantly that it required a 

distributed architecture to be employed on the USV.  

This paper explores those challenges, looks at the 

solutions that were developed, and examines how and why 

those approaches were taken, before looking at how the team 

plans to complete the preparation of their entry. 

II. BACKGROUND 

UniSA is the largest university in South Australia and has 

a strong STEM focus, offering degrees in information 

technology, electrical and mechanical engineering, and 

mechatronics. Although students at the university have 

historically competed in small scale robotics competitions, 

such as the Warman Challenge, [2] the university has had 

little direct involvement in large scale robotics contests such 

as that offered by RobotX. 

As part of all undergraduate information technology 

degrees at UniSA, final year students must complete a team-

based project through the ICT Capstone Project (ICT) 

course. These projects are generally sourced from industry 

partners but getting projects that fit well with student and 

university requirements can be challenging. RobotX was 

viewed as providing a means of generating multiple capstone 

projects for students which can be aligned to specific student 

capabilities. 

The SRCSA, also known as the “RoboRoos”, is a 

community robotics club that has a ten-year track record of 

student robotics programs covering five different levels. 

They have competed in the FIRST Robotics competition, 

primarily in the FIRST Lego League (FLL) for primary and 

middle school students, and the FIRST Robotics 

Competition (FRC) for students in middle school through to 

the end of high school. 

Over the years that the SRSCA has been in operation, 

many of their students have completed high school and gone 

on to higher education. In some cases, this has been in areas 

related to robotics, but often they must give up robotics to 

pursue their degrees. For many years the SRCSA have been 

looking for a university-level robotics challenge so that 

alumni can continue to engage with robotics after they no 

longer qualify to compete in the FIRST competitions. 

Combining the two teams brought together the 

programing and network skills of the students at UniSA with 

the robotics and competition experience from the SRCSA 

alumni, along with a large network of mentors and industry 

partners from both sides. Ultimately, approximately 30 

undergraduate UniSA students worked on the RobotX 

project over 18 months, while 12 SCSRA students were also 

involved. But bringing together two different groups 

presented challenges, and while the two organisations 

worked together, it was necessary to formulate a design 

strategy that allowed for the needs of the ICT students while 

still capitalizing on the strengths of the SRCSA members. 

III. DESIGN STRATEGY 

Due to the need to incorporate multiple independent teams 

into the project it was decided to go with a highly distributed 

and modular system design. Rather than focus on a single 

high-powered computer, the USV was designed to use 

multiple low powered embedded systems employing a mix 

of microcontrollers and Single Board Computers (SBC). 

Using this architecture, each team or subteam could 

determine their own hardware and Operating System 



RoboSeals 2 of 11 

 

requirements, independently generate a solution, and then 

have that unit incorporated into the overall system structure.  

Although this approach creates its own set of problems, 

one of the advantages of the design is that it allows the USV 

to employ parts and code from the SRCSA’s FRC 

experience. Accordingly, where possible the intent was to 

use motors, controllers, electronics, and libraries from FRC, 

although this limited the robot to the 12 VDC systems 

employed in that competition. Another advantage to the 

modular approach was that it permitted multiple teams to 

work on one subsystem independently. As can be seen in 

Table 1, GNSS positioning, buoy identification and 

communications to the Technical Director were viewed as 

essential subsystems, and thus multiple teams worked on 

each of these tasks. Each team took their own approach, and 

the final system will incorporate the most effective design 

offered. On the negative side, highly distributed systems 

become heavily dependent on the reliability of the 

communication network, which requires more attention 

being paid to onboard communications and the development 

of internal communication protocols. 

One of the goals of the project was to develop an 

architecture that could be used both in future RobotX 

competitions and in research projects. This fitted well with 

the modular design and led to decisions which may not pay 

off in the first competition, but are hoped to prove valuable 

in later projects. Although the USV is hoped to be 

competitive in 2022, it is primarily aimed at future 

competitions with the 2022 competition employed as an 

opportunity to learn more about how best to manage the 

tasks. 

Two major limitations had to be considered in the design 

strategy. The first was that the team has a limited budget, and 

accordingly price was a significant factor in the decisions. 

The second was that the UniSA students are exclusively from 

information technology degrees, so there is a lack of 

mechanical and electrical engineering students in the team. 

To some extent the SRCSA members were able to counter 

this, but nevertheless the overall emphasis was of necessity 

on software solutions rather than hardware. 

Given this situation, the team set out to tackle the 

competition using three levels of requirements: 

• Level 1: “Minimum Viable Product” – a USV that 

can qualify to enter the competition but will not 

qualify for the semi-finals. 

• Level 2: “Semi-Final Qualifier” – a USV that can 

show proficiency in at least five tasks. 

• Level 3: “Dream Boat” – a UV that has proficiency 

in more than five tasks. 

For level one a set of primary systems were identified: 

• Command and control system 

• Base station 

• Propulsion 

• Emergency stop system 

• Batteries and power distribution 

• Onboard communications 

• Shore communications 

• Light tower 

• Heartbeat (Task 1) 

• Basic vision system (identifying buoys) 

• Basic navigation (moving between two points). 

Assuming that this was successful, this would allow the 

team to compete. To achieve Level 2, four tasks were 

identified as viable goals: 

• Task 5: Scan the Code 

• Task 6: Detect and Dock 

• Task 7: Find and Fling 

• Task 3: Follow the Path 

The first three involve identifying blocks of colour, and 

prior experience with OpenCV in FRC competitions 

suggested that this was viable. In addition, FRC competitions 

regularly involve shooting balls at targets, and while 

invariably challenging, this meant that there was some 

experience to build on among the SRCSA team members. 

“Follow the Path” required an accurate vision system 

which was likely to prove to be more difficult to implement 

that the colour and basic shape recognition in the first three 

options. To try and handle this complexity, three teams were 

assigned to the task: an initial UniSA team in late 2021 using 

OpenCV, a second UniSA team in 2022 employing OpenCV, 

and a SRCSA-based team using machine learning 

techniques. 

Level 3 was considered but involved some significant 

complexities. Task 2, “Entrance and Exit Gates” 

incorporates two independent systems – a method of 

identifying an underwater beacon and a method of 

identifying and traversing the gates. Some team members 

expressed a particular interest in the second part of this, so 

they continued down that line. However, this was not 

considered a high priority. 

There was also considerable interest within the team in the 

UAV-based tasks. A UAV was purchased, and several team 

members were assigned to the UAV. The biggest problem 

faced, though, was regulatory rather than technical – under 

Australian law, members of the team are required to hold a 

Remote Pilot License (RePL) to operate the UAV. [3] This 

is underway, but development has been necessarily limited 

until it can be achieved. Nevertheless, team members have 

been working with the provided Hyper Spectral Camera 

(HSI) and with data transmission to and from the drone. If 

nothing else, this will put the team on to the correct path for 

future competition and research. 

IV. VEHICLE DESIGN 

Based on the design strategy, teams were assigned 

modules as described in Table 1. A separate team worked on 

the mechanical and electrical aspects of the USV, but as the 

focus was largely on information technology, most of the 

teams were working on software. 
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Table I 

MODULES 

Subsystem Controller Team 

Command and Control NI RoboRio SRCSA 1 

TeleOp NI RoboRio SRCSA 2 

Propulsion Control NI RoboRio SRCSA 2 

Remote eStop Arduino Uno SRCSA 3 

Shore Comms Various UniSA 1 

Technical Director Comms Orange Pi UniSA 2 

Technical Director Comms Orange Pi SRCSA 4 

GNSS Positioning Arduino Uno UniSA 3 

GNSS Positioning Odroid M1 SRCSA 5 

Buoys (OpenCV) Raspberry Pi 4 8GB UniSA 4 

Buoys (TensorFlow) Jetson Nano SRCSA 6 

Wind Direction/Strength Arduino Uno UniSA 5 

Shooter Control Raspberry Pi 4GB UniSA 5 

Shooter Vision Raspberry Pi 4GB UniSA 6 

Colour Sequence Raspberry Pi 4GB UniSA 6 

Docking Odroid C4 UniSA 6 

Gate Recognition Raspberry Pi 4 4GB UniSA 2 

UAV Control Odroid M1 SRCSA 4 

HSI Camera Raspberry Pi 4 4GB UniSA 7 

 

The core part of the USV is the RoboRio, which serves as 

the basis for communications back to the shore and as a 

command-and-control system for the rest of the modules. 

The navigation subsystem pulls data from a LiDAR, GPS, 

and vision. Separate vision systems are employed for colour 

recognition when docking and identifying the light sequence, 

and the shooter has its own vision subsystem to identify the 

target and to instruct the RoboRio on how best to position the 

USV. The weather module feeds data into navigation, 

docking and shooting. The heartbeat and the gates were 

treated as independent systems due to the importance of the 

heartbeat and the perceived complexity of navigating 

through the gates. A high-level view of these systems is 

included in Figure 1. 

 
Fig 1. High level system diagram. 

 

A. Propulsion 

In examining entries from previous years three basic 

propulsion models stood out: differential drive, where two 

fixed aft-mounted motors use power control to adjust the 

direction and speed of the USV; differential drive with bow 

thrusters, where the bow thrusters are employed for fine 

control of direction; and omnidirectional drives, where three 

or four motors can push the robot in any direction. As noted 

by the Embry-Riddle Aeronautical University and the 

Queensland University of Technology teams in their 2018 

technical reports, position holding and maneuverability with 

only a differential drive had proven to be insufficient. [4] [5] 

This matched well with the team’s prior experience in FRC 

where omnidirectional drives are common, and the SRCSA 

members had recently been involved in designing and 

programming an omnidirectional drive for that competition. 

Although the transition from land-based to a water-based 

solution was unlikely to be trivial, it provided for a solid base 

from which to start. 

There are a number of different omnidirectional designs 

used in FRC, but many of these cannot make the transition 

to water. The two best candidates were an “X” drive, where 

four wheels (or in this case, outboards) are in fixed positions 

at each corner of the robot, positioned at 45 degrees to make 

a “X” pattern. This has been employed in RobotX by teams 

such as the University of Florida. [6] [7] X drives are 

mechanically straight forward, but they sacrifice power for 

maneuverability, as by necessity the motors always push 

against each other when the robot is in motion. An 

alternative, albeit more complicated solution, is to 

independently rotate all four motors to change the direction 

of thrust. This is commonly referred to as “swerve” or “crab” 

drive. Swerve drives allow the robot to account for current 

and wind by automatically adjusting power and direction of 

each motor to maintain a target vector. Given the team’s prior 

experience with swerve drive, it was felt that the added 

mechanical and software complexity would be countered by 

the increased maneuverability and no significant loss of 

power.  

 

 
Fig 2. Propulsion systems. On the left is a differential drive. Adjusting 

power to the two motors allows the robot to turn. The centre and right 

illustrations are of a swerve drive. By directing the thrust of the four motors 

the boat can be made to turn or move sideways. 

 

An examination of the motor configurations by prior 

competitors led to the conclusion that 200lbs thrust would be 

a good target for the USV. In particular, it was noted that the 

Harbin Engineering University team, who competed in 2018, 

had found 120lbs of thrust to be insufficient and had changed 

to 240lbs. [8] In combination with the decision to use swerve 

drive and the 12 VDC power limitation, this led to three main 

options: four Minn Kota RT 55 motors; three Torqeedo 
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Shooter RoboRio Weather 

Heartbeat Comms Gates 
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Travel 1103 motors in a triangular configuration; or three 

Watersnake Advance Brushless Motors with a similar layout. 

Given budgetary considerations, the three Watersnake 

motors appeared to provide the best power to price ratio. 

Unfortunately, ongoing supply shortages meant that these 

proved to be unavailable, so a fourth option – four 

Watersnake Venom SXW 54 motors – was selected instead. 

This met the targeted maximum power of 200lbs but required 

some modifications to the USV’s design. 

In FRC swerve drives generally rotate 360 degrees, but 

that requires the use of a slip ring (as used by the FRC team 

“Dropbears” [9]) or a bevel gear with the drive motor 

mounted on top of a vertical shaft (as employed by Swerve 

Drive Specialties [10]). Neither solution was practical with 

the Watersnake motors, so an alternative approach has been 

employed. Rather than spinning the full 360 degrees, each 

motor is limited to 180 degrees of rotation and the prop 

rotation is reversed to cover the remaining 180 degrees. This 

produces less thrust in some directions but was deemed to be 

an acceptable compromise.  

Control of the motors is handled through the RoboRio 

using a similar approach to what had been employed on the 

FRC robots. On the hardware level, the manual speed 

controller was replaced with a Talon SX, which can be 

controlled through both CAN and PWM. (Figure 3 below). 

This was like the approach employed by the University of 

Newcastle in 2018, who used Arduino microcontrollers to 

control the power output on an otherwise manual system. 

[11] Rotation was through a Neo 500 brushless motor 

managed by a Spark Max motor controller. The Neo 500, 

Spark Max and Talon SRX are all regularly employed in 

FRC competitions, and the SRCSA team members have 

considerable experience using all three. (Programming of the 

RoboRio to manage the swerve drive was completed by one 

of the current SRCSA students). 

Fig 3. Talon SRX mounted into a Watersnake Venom SWX 54 motor 

enclosure. By connecting the 12v output from the Talon to the 12v input on 

the Watersnake the motor was quickly converted from manual to remote 

control. With the cover replaced, the voltage window allows the operator to 

see the LED indicator lights on the Talon. Also visible is the 3D-printed 

pulleys for direction control. 

 

In competition two limit switches at 0 and 180 degrees 

allow the motor to be automatically calibrated on startup, and 

when triggered during robot operation they reset the 

calibration settings to counter any encoder drift or potential 

slippage – both being significant issues with drives in FRC. 

Comments by other teams on the RobotX forums led to 

the decision to further manage propulsion by ramping the 

power to the motors, rather than simply changing speed and 

direction immediately.  

B. Control and Power Unit 

Power is distributed through two main channels – a 

custom system to provide 12 VDC to each of the four main 

motors at a maximum draw of 50A, and a Rev Power 

Distribution Panel (PDP) to cover everything else. Power to 

both systems is through two automatic over-current circuit 

breakers rated to 120A at 12 VDC. Power to the motors is 

routed through a relay, which can be shut down by any of 

four emergency stop switches located on the boat or by a 

remote switch located on shore. Power to each individual 

motor is then run through individual 50A circuit breakers. 

The speed controllers for each of the motors was software-

limited to 30A, but 50A was the maximum rating. 

All other power passes through the PDP. The PDP is the 

same model used in FRC competitions and includes a CAN 

connector to report on power usage. The PDP provides 

multiple 12 VDC channels at 20A and 30A. When 5 VDC is 

required, it is provided through a Voltage Regulator Module 

(VRM) connected to the PDP. 

An initial electrical configuration was tested on the first of 

the sea trials, but several concerns emerged. Most notably, 

the design provided insufficient space for some the planned 

modules, and the wiring required extensive setup on-site, 

reducing the time the USV was able to be in the water. 

Accordingly, much of the electrical system has been 

redesigned. 

 
Fig 4.  Initial electrical configuration (on the left) with the redesigned 

electrical system on the right. The new design allows for more components 

and easier access. The RoboRio and other devices which need to be 

regularly inspected are mounted on the top of the fold-down shelf and are 

immediately apparent when the unit is opened. 

 

Power is provided through eight 280Ah 3.2 VDC lithium 

ferro-phosphate (LiFePO) batteries in two groups of four, 

providing an overall 12 VDC at 2240Ah. These were coupled 

with battery controllers capable of providing 150A per set. 

LiFePO batteries were selected due to the improved safety 

they offered over LiPo batteries. [12] Due to concerns about 
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possible supply shortages, the batteries were selected prior to 

the team gaining a full understanding of the power 

requirements for the USV. However, it was calculated that 

the propulsion would need a maximum of 60A per motor, so 

the batteries were selected to provide sufficient power for the 

propulsion and should cover any additional electrical 

systems. In practice, the software limiting of the speed 

controllers reduced the draw to 40A per motor. 

C. Shore Communications 

Communications between the robot and the base station 

are a core requirement. A team of UniSA final year 

Networking and Cybersecurity students were assigned to the 

task under the supervision of an industry partner.  

It was determined that the networking solution must 

incorporate 2.4ghz connection and a 5ghz connection. The 

5ghz antenna must remain within the Effective Isotropic 

Radiated Power (EIRP) of 23dBm (200mW) with the 2.4ghz 

limited to an EIRP of below 36dBm (4W). Accordingly, 

three antennas were shortlisted for the USV: the Ubiquiti 

AM-2G16-90, the AM-5G17-90 and the UMA-D. Based on 

these options, three configurations were examined, outlined 

in Figures 5, 6 and 7. 

Fig 5.  UniFi AC Mesh access point (UAP-AC-M), UniFi dual-band antenna 

(UMA-D), UniFi Rocket M access point (M5) and airMAX Sector antenna 

(AM-5G17-90). 

 

Fig 6. UniFi AC Mesh access point (UAP-AC-M) coupled with UniFi dual-

band antenna (UMA-D). 

 

Fig 7. Two UniFi Rocket M access points (M5) with two airMAX sector 

antennas (AM-2G16-90 and AM-5G17-90). 

 

The chosen solution was the approach in Figure 8: two 

AirMAX Sector antennas (AM-5G17-90 and AM-2G16-90). 

this allowed for sufficient coverage of the competition fields 

and provide 17dBi and 16dbi signal strength. [13] 

Fig 8. Final networking diagram. 

 

One of the requirements for the competition is that a 

remote emergency stop (eStop) system be installed. The 

specific requirements included: 

• The eStop must be a physical switch located onshore 

• It must transmit to the boat without interference 

• It must shut down all power to the motors when 

triggered 

• It needs to function without line-of-sight for 500m 

• It must comply with Australian RF transmission 

regulations 

The Semtech SX1276 IC 915MHz LoRa long Range RF 

Wireless Transceiver module was determined to meet the 

requirements. Two LoRa shields and two Arduino 

microcontrollers were sourced. Testing proved that they had 

the required 500m range without line of sight. In the final 

system, the shore-based transmitter sends a ping to the 

receiver at a preset interval. If no pings are received the eStop 

activates and power to the motors is cut. Alternatively, if a 

“kill” message is sent by the transmitter (triggered by an 

emergency stop button) the receiver cuts all power to the 

motors. To return power a “reset” message needs to be sent 

from the transmitter before normal operation is resumed. 

To reduce possible conflicts, a communication protocol 

was developed for the LoRa system, with each packet 

containing a two-byte destination code and a two-byte sender 

code. If the packet does not include a recognized sender and 

is not addressed to the receiver it is ignored. 

After the first round of sea trials, it was realized that the 

operators needed to have information about the state of the 

eStop without needing to inspect it on board. The transmitter 

was modified as per Figure 9 to have two sets of indicator 

LEDs. One set indicates the state of the transmitter (sending, 

in reset mode, or stopped) and the other indicates the state of 

the receiver (stopped, resetting, running). To facilitate this 

the receiver on board the USV responds to pings with a status 

update. 
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Fig 9. Remote eStop. The top image displays the transmitter (on the left) and 

the receiver (on the right). Each consists of an Arduino Uno, a LoRa shield, 

and an assortment of indicator lights, buttons, and a relay. The final product 

can be seen below, with the receiver (left) to be installed on the USV, while 

the transmitter (right) is kept on shore. 

D. Positioning 

Two teams have been working on positioning. One has 

been trialing GPS modules working with Arduinos and 

SMBs, while the other has been working to integrate an Emid 

Edge kit into the USV. [14]  

The custom modules have had a degree of success. The 

initial testing for this task was done using a u-Blox Neo-

6MV2 module and an external UFL ceramic antenna. A 

popular choice amongst hobbyists, it requires relatively low 

power (100ma) while boasting a horizontal position accuracy 

of 2.5m. [15] The first prototype was built using a Raspberry 

Pi 3, a bi-directional logic level converter, an LCD module, 

and the GPS module. It was powered remotely with a 

10000mAh power bank on the underside of the prototype. 

Suitable testing locations with wide open areas and a good 

viewing angle of the sky were selected. The testing device 

was then placed on the ground for a period of 20-30 minutes, 

and the data recorded to check for drift. For the first test 

location an open field was used, and the device placed in the 

centre of the field. Drift proved to be a significant problem, 

with the recorded position moving over 40m during the 30-

minute test period.  

Due to concerns about possible interference from nearby 

buildings, a second series of tests were conducted over water. 

These proved to be significantly more reliable, with the drift 

ranging approximately 5m from the initial position during 

the test periods. (Example results are shown in Figure 10). 

The second tests showed promise, but the drift remained 

greater than was considered viable for the competition. Three 

more GPS modules have been sourced and are currently 

undergoing further testing. 

 
Fig 10.  Drift from the custom GOS solution. The image on the left shows 

the extensive drift that occurred within built-up areas. The colours represent 

different times during the test and show that the drift did not decrease over 

time. The second image is the same test device used on water and 

demonstrates the much more accurate readings that were gained. 

 

The Emid Edge product has provided a different set of 

problems. While it appears to have greater accuracy than the 

custom solutions, getting data off the Emid Edge has been a 

challenge. Currently a SMB is reading data using a CAN bus 

via the MAVLINK protocol, but more work remains to be 

done. 

E. Onboard Communications 

Communications onboard the USV is primarily over the 

CAN bus. The CAN bus is a common protocol in both 

maritime and automotive applications and has been part of 

the FRC competition in recent years. It provides for a robust, 

easy to implement system consisting of two wires which are 

connected to each device in sequence. A CAN bus was 

required to communicate with some of the FRC components 

on the USV, as well as to address the Emid Edge that was 

proposed for navigation. Given that a CAN bus was going to 

be necessary anyway, the decision was made to use it for 

most onboard communications. 

Initially the intention was to use the MAVLINK protocol 

over the bus, as that was required to integrate with the Emid 

Edge. However, the FRC components use their own 

protocol, and running two different protocols over the same 

bus risked problems. Accordingly, two CAN busses were 

installed – one for navigation and one for the remaining 

onboard communications, with a custom CAN router to 

negotiate the movements between the two. As can be seen in 

Figure 1, the navigation modules (GPS, LiDAR and one of 

the vision systems) access the rest of the USV via a 

navigation module. The navigation module manages data 

transfer between the two CAN buses. 

The use of the FRC protocol means that the priority setting 

can be retained. Nevertheless, it is only a partial solution, as 

it has previously been found that it is possible to flood the 

CAN bus such that collisions can occur with a high 

frequency. To get around this, all modules listen to the CAN 

bus, but they only transmit after the Command and Control 

unit has sent a “start” message, and stop once their role is 

over. Thus, the shooter module does not transmit unless that 

task is underway, and it ceases to transmit when shooting is 

complete. A simple state machine in the Command and 

Control module manages these activities. 
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F. Vision: Colour recognition 

Three of the tasks in the competition involve colour 

recognition: Task 3 “Scan the Code”, Task 4 “Detect and 

Dock” and Task 5 “Find and Fling”. This was tackled by 

employing OpenCV in Python 3 and was implemented on a 

Raspberry Pi 4. 

The colour recognition code uses HSV thresholding to 

make it easier to differentiate between colours (red, green, 

and blue). Converting the pixel colours from RGB to HSV 

allows the intensity to be separated from the colour 

components which is much more suitable for computer 

vision (easier handling of shadows and changes in lighting). 

To identify the correct colours, HSV ranges for each target 

colour must be set. Any HSV values outside of these ranges 

are to be ignored. The result of thresholding is a black and 

white image where the coloured object is shown as white, 

and the surrounding space black. The program is then able to 

identify the colour based on the white pixels and form 

contours around each cluster of white pixels.  

Like colour recognition, rectangle recognition was 

developed using OpenCV in Python. The process of 

rectangle recognition relies on the colour recognition system 

to identify contours within the video or image. A polygon 

approximation algorithm is then applied to each of these 

contours to identify which contours are rectangles. The 

rectangle with the largest area is selected as it has the highest 

probability to be the Shape of Interest (SOI).  

Given that the SOI will have known width and height it is 

possible to calculate the distance between the SOI and 

camera. This is accomplished by calculating the distances 

relative to the closest (perceived as longest) vertical side and 

the furthest (perceived as shortest) vertical side of the SOI, 

and an average is taken. This will be the distance relative to 

the centre of the SOI. Calculating the angle at which the SOI 

is being viewed allows the robot to identify its position 

relative to the SOI. When attempting to centre the camera 

directly in front of the SOI, if the angle is negative, the robot 

must shift to the right, and if positive, the robot must shift to 

the left. The SOI is only visible within +/- 90 degrees from 

zero (Directly in front of the SOI where its perceived width 

is maximum); therefore, to calculate the angle, the formula 

is:  

𝜃 = 90 −
𝑝𝑒𝑟𝑐𝑖𝑣𝑒𝑑 𝑤𝑖𝑑𝑡ℎ

(
𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝐻
𝑊

)

90

 

Where H and W are the known height and width of the 

SOI respectively. Perceived height and width use pixels as 

the unit of measurement. The result of this formula is a 

positive value, so the negative is applied to the value if the 

length of the left vertical side is longer than the right.  

In testing of this system, it soon became evident that the 

calculated angle was only accurate when the SOI was in the 

very centre of the camera frame along the x-axis (y-axis does 

not have a significant effect on viewing angle). To mitigate 

this issue, the SOI position from the centre of the frame is 

calculated, this value indicates to the robot which direction, 

and how far, it must rotate to keep the SOI centre of frame.  

 

 
Fig 11. Rectangle recognition. 

 

The colour sequence is captured by identifying the colour 

displayed on the SOI in each video frame at 10 frames per 

second to ensure that the colour is captured within the one 

second that it is showing. This will result in consecutive 

occurrences of the same colour. These are omitted from the 

data and the indexes of all blanks (no colour displayed) are 

retrieved. The sequence will be the data that was captured 

between the first and second blanks. If the system has 

captured a sequence that does not have a length of 3, the 

system will retry capturing. In the “Scan the Code” task, the 

LED panel will not be a solid colour as it is made up of a 

matrix of LED lights. To ensure the colour and shape can be 

recognised, the Gaussian Blur mask may need to be adjusted 

to ensure the individual LED lights are blended to appear as 

a solid colour.  

G. Vision: Gate recognition 

The gates in Task 2: “Entrance and Exit Gates” were 

treated as a separate task to navigating the buoys, and thus a 

separate team was assigned to the problem. Like the design 

for tasks 3, 4 and 5, a colour detection algorithm was selected 

to determine the relative position of the gates. The gate vision 

system (which used OpenCV in Python) went through a 

range of design choices and changes. It started with having a 

stream class, a vision class and a main class to run the actual 

program.  

The stream class is tasked with handling different type of 

streams, such as for using a camera, playing a video or 

loading an image. 

Initially, the vision class was to be tasked with handling 

all the vision system functionality as an entire system on its 

own, including a colour detector, edge (and contour) detector 

for shape classification and an object tracker. Though it was 

later discovered that these subsystems needed to be 

preloaded as a set of configurations in a specific order, 

instead of immediately loading them individually, as they 

each affect the output of the current stream. For example, the 

colour detector must be loaded first before the edge detector 

to allow the program to classify the objects appropriately.  
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While a monolithic system was first considered, it was 

determined that the design should be adjusted to be more 

flexible and customizable for the user in the consideration of 

this program being applied to future endeavours. Therefore, 

the monolith vision system class was scrapped, and instead a 

composite based design was implemented, where each vision 

subsystem (such as the colour detector, edge detector, object 

tracker etc.) would be separate functional objects. This 

allows the user to load individual vision subsystems in any 

order that they desire, allowing for different combinations of 

configurations.  

However, this created considerable complexity, and thus 

it was decided to further simplify the design and scrapped the 

conventional composite design in replace of a single class 

that would be tasked with handling everything related to the 

stream’s configuration, while also preserving customization 

and flexibility with an unconventional composite design.  

This class (called stream settings) includes all the vision 

subsystems as separate functions (and preloads them into a 

set order) but it also allows the user to configure everything 

that would assist both users of the system and future 

developers that may improve on it. Stream settings with the 

assistance of a threshold class allows the user to set specific 

colour thresholds, edge thresholds, blur, dilation and erosion 

and area thresholds, camera and resolution settings, as well 

as also provides the option to enable or disable trackbars for 

testing purposes (which provides developers the ability to 

manually adjust thresholds until the object that they desire to 

identify is aligned). 

The colour detector went through a range of adjustments. 

It was first tested with household objects with the goal to 

make it a universal detector that could identify each colour, 

and this was done with pixel based colour detection. 

However, this was inefficient and highly inaccurate since if 

the object that required detection was not completely in the 

center of the camera, the colour could not be detected 

correctly. 

Therefore, a more refined solution was designed to 

combine the lower and upper thresholds that defined each 

colour into a single mask - this would allow the entire stream 

to ignore all other colours that do not meet these thresholds 

and proved to be a viable solution in comparison to the 

original pixel based colour detection. However, when 

applying this to detect images of the gates it did not perform 

as expected and so the colour thresholds had to go through 

further adjustments. It is believed that similarities in the 

colour hues of the buoys, glare and shadows may be the 

cause of these inaccuracies. 

False positives were further reduced by passing the output 

of the new colour detector through the edge detector and then 

the contour detector. The contour detector was tasked with 

identifying contours of the objects detected by the colour 

detector and drawing boxes over the objects that were 

identified, and then also calculating the area, perimeter, and 

number of points that the object contained by using the x, y, 

width and height values of the object. This created the ability 

to single out objects that did not meet the area (and number 

of corner points detected) criteria of the buoys. 

Further problems occurred with the object tracker due to 

how it is implemented in OpenCV. In OpenCV, the tracker 

requires the manual use of a user to draw a box over the 

object that they want to track, and this not only interrupts the 

rest of the program but also does not fulfill the use case in 

that the system is supposed to be completely autonomous. 

Furthermore, when the object that was being tracked went 

off screen, the tracker could not relocate it when put back on 

screen. Thus, a second approach was implemented to use the 

detected boxes from the contour detector as the objects to 

track. Unfortunately, this strained the performance of the 

program and there was still a problem of losing track of the 

object when sent off screen. At the current moment in time, 

the object tracker is inactive and will remain so until a 

distance estimator has been implemented to assist with the 

autonomous tracking process. 

To account for the drift of the boat when it is immobile at 

the start of a gate, a boundary-based position holding 

implementation is currently being tested. This approach 

focuses on the idea that further boxes can be drawn over the 

detected objects to act as a boundary (to provide object 

avoidance, collision protection and position holding), and the 

center of the gate, (which the boat must align with), can be 

identified through the center pixel of the camera. If this focal 

point moves into the boundaries of the objects, then we can 

assume that the boat is not centered and therefore we can 

move it back to the correct position. 

 
Fig 12. Two buoys identified in OpenCV. By keeping the buoys centered 

in the image it is hoped that the boat can achieve a high degree of accuracy 

when autonomously holding position. 

 

If deemed appropriate, it is also planned to use this 

implementation to measure the distance between the objects 

and the focal point, to provide a viable distance estimator and 

therefore also re-implement the object tracker into this 

subsystem, if required. 

H. Buoy Recognition 

Although still at an experimental stage, two alternative 

approaches are being trialed for buoy recognition. One is to 

use machine learning via TensorFlow on Jetson Nanos. The 

software has been installed, but this is currently untested.  

The second, last minute, option was to include a LiDAR. 

Given the complexity of using LiDARs a relatively simple 

model was selected, the RPLIDAR S1-360 Degree TOF 

Laser Scanner. LiDARs such as the S1-360 use a rotating 

laser-based time-of-flight sensor to identify objects around 
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the USV. High quality LiDARs with multiple channels can 

provide very accurate data, but managing that data adds 

considerable complexity. Simple LiDARs, on the other hand, 

can use a single channel and may have difficulty identifying 

round objects and objects with a low reflectivity, such as 

black-colour buoys as used in the competition. However, 

there is considerable promise when combined with a 

functioning vision system (a LiDAR on its own would be 

unable to detect the colour of the buoys). For initial testing 

the LiDAR was fitted to an existing FRC robot at the same 

height it was intended to be used on the USV, and current 

testing involves both indoor and outdoor applications.  

I. Shooter 

Task 7, “Find and Fling”, requires the robot to aim and 

shoot a ball at a goal identified by a coloured square. 

Shooting has been a common task in FRC competitions, 

where two primary approaches have emerged: 

• Single wheel hooded shooters 

• Double wheel shooters 

Prior experience with double wheel shooters suggested 

that they were complex and required extra maintenance yet 

provided for faster exit speeds. This made aiming easier, but 

at the same time they tended to have poorer accuracy. 

Alternatively, hooded single-wheel shooters were simpler to 

build and sacrificed exit speed and ease of aiming for 

increased accuracy and topspin. In addition, the SRCSA 

members have had more experience with hooded shooters, 

and thus the shooter could be developed more efficiently by 

building on prior experience. A hooded shooter design was 

selected. 

 

 
Fig 13. Hooded shooter design as incorporated onto the robot. It uses a 

pneumatic cylinder to push the balls into the shooter mechanism, which 

consists of a single wheel driven by a Falcon brushless motor. The design is 

self-contained and incorporates a Raspberry Pi for shooter control and image 

recognition, and a small LCD screen to assist with debugging. 

 

J. Drone 

The Splash Drone 4, a novel water-friendly drone, was 

chosen for the Unmanned Aerial Vehicle (UAV) to address 

concerns that, should control of the UAV be lost, it would 

not survive contact with water. The Splash Drone 4 provides 

an API for accepting TCP communication packets over WIFI 

to the onboard computer. While a consumer-based 

application does exist for controlling the Splash Drone 4, it 

was necessary to construct a custom system to issue TCP 

commands to the drone as required. Unfortunately, the 

Splash Drone 4 documentation was not polished, having 

been recently released, obscuring areas of the internal 

implementation with missing/out-of-date information. An 

initial investigation into the drone’s API involved writing a 

basic client application to listen for broadcast byte-stream 

output from the Drone’s TCP server and print it to the 

console, giving a visual representation of drone interaction. 

Strings of bytes extracted from the console were then cross-

referenced with the Splash Drone 4 documentation, verifying 

that the drone was indeed working. The initial investigation 

was conducted in both Java and Python but it was quickly 

decided that building packets to interact with the drone 

system was much simpler through a low-level language, for 

which C++ was chosen. Despite an established connection to 

the drone, it was determined that the received status-packets 

were incompatible with the updated API documentation and 

that the drone’s firmware needed updating. 

What started out as a simple testing program — sending 

packets to the drone — rapidly morphed into a code library 

for building and receiving packets from the drone, including 

unit tests verifying that each packet was built as expected. 

QT, a library that intends to supplement the C++ standard 

library, provided memory safety and made the handling of 

TCP easier. Development, however, was slowed by a lack of 

access to the drone which was only available on the premises. 

Consequently, a simple dummy server was written in Java to 

provide a testing method for those times when the drone was 

inaccessible.  

Despite a (presumably) functional library being built to 

interact with the UAV, a major requirement for using the 

drone is a drone pilot license. Once a license is acquired, the 

framework will be tested against the drone in the field. 

K. Heartbeat and Reports 

Finally, a heartbeat signal needs to be sent by the robot to 

the Technical Director (TD) Network along with various 

reports. The original plan was to employ a dedicated 

Raspberry Pi 3 to the task, but ultimately an Orange Pi was 

used due to supply shortages. Given the importance of this 

task two teams were assigned to it: one developed code using 

C++, while the other went with a Python solution. Both are 

still being finalized at the time of writing, but the most 

reliable of the two solutions will be installed on the robot 

With the lessons learnt from sending packets to the UAV, 

it was realised that the Heartbeat and Messaging System 

(HMS) should function in a similar fashion, building packets 

(as defined by the RobotX documentation) and sending them 

over a TCP client. Since the HMS system would need to 

forward the UAV and USV statuses (along with other meta-

data such as GPS coordinates), it would have to read packets 

from the rest of the system, develop an internal model of the 

system’s state, and then forward that state to the technical 

director in the form of heartbeat messages. 
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The C++ approach was developed after consideration of 

its similarities to the UAV’s control system, as it was thought 

that the HMS could also leverage C++ and the QT 

Frameworks that would give low-level control of reading and 

writing packets and use a test-server, written in Java, that acts 

as a dummy Technical Directors network to drive rapid 

development and testing.  

L. Experimental Results 

Testing to date has involved three different approaches: 

unit testing, where each module is tested individually under 

controlled conditions; land testing, where the module is fitted 

to an existing FRC robot; and on-water testing, where the 

module is tested as part of the full system. On-water testing 

to date has been limited due to the complexity of setting up 

sea trials, but the changes to the electrical system made after 

the first on-water test will hopefully streamline that process. 

Unit testing in controlled environments is good for 

confirming the behaviour of software, but real-world light 

conditions can significantly affect the accuracy of data from 

OpenCV. The team has encountered these problems in FRC 

competitions, where vision systems work perfectly before 

the competition, but fail completely once you get there. 

Nevertheless, they provide a good starting point, and all 

modules are tested extensively in controlled environments. 

One of the strengths that the SRCSA could bring to the 

project was the ability to trial modules on FRC robots. As 

both the USV and the FRC robots use swerve drive, a CAN 

bus and a RoboRio for control, it is possible to get good data 

from those tests. The most recent testing using this model has 

involved the LiDAR, which was fitted to an FRC robot to get 

data as it drove around buoys. This is continuing as the team 

gets closer to the competition date.  

Fig 14. FRC robot with LiDAR fitted for testing. Buoys were positioned 

at different locations around the room, and the LiDAR data was compared 

against the actual environment. 

 

The most effective testing, though, has been on-water 

testing. It is not possible to test the propulsion system on 

land, and the movement of a USV is difficult if not 

impossible to replicate in land-based robots. Although both 

the FRC robots and the USV use swerve drive, the behaviour 

of that drive on the two systems differs considerably. To 

address this, the first on-water testing was focused on 

propulsion. As a result of this test several changes were made 

to the USV: 

• The electrical system was redesigned to reduce setup 

time for future trials 

• Additional indicator lights were fitted to provide the 

team with data about the USV status, as it was not 

always clear when the USV was enabled 

• Cameras were fitted to assist operators when moving 

the USV under human control 

• The swerve drive was modified so that motors would 

not automatically calibrate on startup, and could 

instead be calibrated by operator command 

• Mechanical changes were made to improve the fit of 

the motors on the USV 

On the positive side, the USV moved as hoped – there was 

sufficient thrust to push both the USV and a second boat 

tether to the side; the swerve drive provided precise control 

of direction and speed; and power consumption was well 

within predicted levels. 

The remaining on-water trials are to test position holding, 

navigation and the vision system. 

 

 
Fig 15. USV undergoing on-water testing at the Royal Yacht Squadron of 

South Australia. The swerve drive, which consists of the four outboards and 

the associated turning systems, met all performance targets.  
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