
University of Florida’s NaviGator 1

Design and Development of the NaviGator
Autonomous Maritime System

Keith Khadar, Andrew Knee, Adrian Fernandez, Lester Bonilla, Andres Pulido, Adam McAleer, Lorant Domokos,
Cameron Brown, Daniel Parra, Kayleigh Beron, Adam Hamdan, Eric Schwartz

Abstract—NaviGator Autonomous Maritime System (AMS)
includes collaborative autonomous aerial and surface vehicles.
This paper details our strategy and process for upgrading the
NaviGator AMS for the 2024 Maritime RobotX Challenge.
Key enhancements include an improved racquetball launcher,
a redesigned modular electrical architecture, advanced object
detection algorithms, and the integration of an Unmanned Aerial
Vehicle (UAV).

I. COMPETITION STRATEGY

The Maritime RobotX competition presents a unique set
of challenges, requiring teams to balance system complexity
with overall performance. Given the limited time available, our
competition strategy has been carefully crafted to maximize
efficiency and effectiveness. Unlike newly formed teams, we
have leveraged the advantage of existing systems in our
approach. Therefore, the University of Florida’s NaviGator
AMS (Figure 1) team has been focused on enhancing the
reliability of established systems before progressively tackling
tasks of increasing complexity. By placing an emphasis on
modality we have been able to parallelize many of our tasks
effectively, allowing different sub-teams to work simultane-
ously on separate components. This approach has enabled us
to focus on completing core features first while still ensuring
that we give time for more complex ones.

Fig. 1: 3D model of NaviGator assembly

To leverage the existing systems we had in place, we
first needed to thoroughly test and verify their reliability.
This was crucial, as our previous systems contained all the

core functionality needed to complete most tasks. We began
with a comprehensive inspection and testing process to iden-
tify which components required repair or replacement. From
this assessment, we found several electrical components that
needed replacement. The electrical team then performed a
complete overhaul of the previous system, with the intention
of improving modularity.

Focusing on testing the reliability of each subsystem not
only simplified troubleshooting and development, but it also
enabled us to perform maintenance and upgrades on individual
components without affecting the entire system. The modular
redesign allowed different sub-teams to work in parallel,
making more effective use of our limited time. For instance,
the electrical team could work on creating an RF controlled
LED panel while the software team simultaneously refined
and tested navigation and object detection algorithms. This
parallelized workflow ensured that progress was continuous,
minimizing downtime.

We carefully selected which tasks to parallelize and es-
tablished deadlines based on estimated completion times and
task dependencies. From the behavior standpoint, we defined a
chart based on the dependencies of functionalities. The roots of
the chart are navigation and object detection, and therefore we
placed a high priority on completing them first (Figure 2). By
ensuring the reliability of for example the navigation module,
we could be confident that it would work effectively across all
other tasks that depend on it as well as work independently
on high-importance functionalities that did not depend on it
(Figure 3).

In addition to core functionality, more complex tasks like
Dock and Deliver needed to be started early due to their ex-
tensive requirements. Dock and Deliver, in particular, involved
designing and manufacturing various components, such as
the racquetball launcher, and producing new electrical boards,
all of which required significant lead time. Additionally, the
drone tasks had to be parallelized, as they were a high-
scoring group of tasks that needed to be developed from
scratch. By parallelizing these efforts, we ensured that critical
components were ready on schedule, allowing us to meet the
competition’s requirements efficiently. With this approach, our
strategy prioritized foundational tasks while simultaneously
addressing complex, resource-intensive tasks in parallel.

Team NaviGator AMS is composed of three main divisions:
Mechanical, Electrical, and Software. Within these divisions,
there are multiple sub-teams. For example, the Mechanical



University of Florida’s NaviGator 2

Fig. 2: Task Dependency.

Fig. 3: Parallelized Development.

division includes sub-teams responsible for creating testing
equipment, such as the light tower or buoys, and others focused
on building actuators like the ball launcher. Similarly, the
Electrical division has sub-teams working on developing each
of the new modular printed circuit boards (PCBs). To manage
the complexity of these tasks, we use GitHub as our primary
tool for organization. We break down the competition into mul-
tiple actionable tasks/issues, which are then assigned to each
sub-team or team member based on their skills and interests.
Each division has its own GitHub repository where issues can
be posted, and where project and Gantt charts are used to
manage assignments effectively. All teams meet regularly to
track progress and make adjustments to timelines as needed. In
addition we used Discord for real-time communication across
sub-teams, ensuring that all updates were logged and visible
to every team member.

II. DESIGN STRATEGY

A. Mechanical

1) Propulsion: NaviGator is designed to support holonomic
motion. Four thrusters, two at the front, two in the back (Figure
4) are angled at 45 degrees to allow the boat to move omnidi-
rectionally in the water plane while supporting simultaneous
rotation. This configuration makes the boat highly maneuver-
able which is an advantage in in this competition. However,
this comes at the cost of speed, as it sacrifices single-direction
efficiency for greater maneuverability. Mounting four thrusters
in this position does provide the advantage of redundancy as
we observed after getting our boat in the water for the first
time at the competition in 2022. During testing, we noticed a
motor driver died and had to cut it without time to replace it.
In the water, the controller was able to compensate and move
the boat with only three motors, albeit in a sub-optimal way.

Fig. 4: Drawing of NaviGator assembly

Mounting the thrusters presented several challenges, pri-
marily due to the structural constraints of the WAM-V and
its transport trailer. We needed a design that allowed the
thrusters to be repositioned for transport while maintaining
precise alignment and orientation when deployed. The main
issue arose from the fact that, in their operational position, the
thrusters would collide with the trailer structure. To resolve
this, we engineered a system that raises the thrusters while
NaviGator is on the trailer and lowers them once it’s deployed.
For the front thrusters, we incorporated a piston mechanism
that ensures both position and orientation are fixed during
movement. This piston is connected to a mechanism that
adjusts the angle of the thrusters as they are raised and
lowered. The rear thrusters use a similar system, relying on
a 3D-printed collar and block to maintain orientation when
deployed, while also allowing them to be raised for transport.

2) Racquetball Launcher: The racquetball launcher (Figure
5) was redesigned for improved reliability, addressing issues
with previous versions where wet components, caused by
sea spray or rain, disrupted performance. While the new
design retains the flywheel mechanism, it now features encased
components and extended tubes at both the entry and exit
points to reduce water exposure. Additionally, a mechanical
guide system ensures only one ball enters the flywheel at a



University of Florida’s NaviGator 3

time, eliminating reliance on electrical or software components
for timing.

Fig. 5: 3D Model of Racquetball Launcher

3) Structures: In our design, one of the key structural
elements is the front crossbar, which plays a crucial role
in supporting two additional thrusters. The crossbar itself is
designed to be both lightweight and sturdy, ensuring that it
does not compromise the overall balance of the system while
maintaining its structural integrity under load.

This year, we also integrated a new hydrophone system
specifically developed for Task 2 – Entrance and Exit Gates.
The hydrophone system is mounted on the front crossbar,
which provides an ideal, stable platform for acoustic signal
detection and localization. This system is designed to detect
and track underwater pings that guide the vehicle through the
gates. The secure placement of the hydrophones ensures they
are positioned for accurate signal capture, without affecting
the performance of the vehicle or its hydrodynamics.

Additionally, the drone landing pad (Figure 6) is another
important aspect of the mechanical structure. We chose to
construct it from wood, providing the necessary weight to
stabilize the drone during takeoff and landing. Wood’s worka-
bility allowed us to easily customize the landing pad to fit our
specific design needs, ensuring it offers both durability and a
stable platform for safe drone deployment.

Fig. 6: Top Down View of NaviGator

B. Electrical

1) Open Architecture: In previous iterations of the electri-
cal system, a single board was tasked with managing various
critical components such as the relays, Visual Feedback Sys-
tem, and RF module. While this approach centralized control,
it also introduced significant drawbacks. Any malfunction
in one of the board’s components necessitated a complete
redesign and reassembly of the entire board. This not only
increased downtime but also posed challenges in terms of
reliability and repairability.

To address these issues, we opted to implement a modular
approach in the current design. Rather than relying on a
single board, we have divided the electrical system into several
specialized boards (Figure 7), each responsible for a distinct
subsystem. By decoupling these components, we ensure that
a failure in one section. This modularity allows for quicker
repairs and simplifies the upgrade process, ensuring greater
flexibility and robustness in the overall design.

Fig. 7: Electrical Block Diagram

2) Power Merge Board: The key features of the power
system include a dual battery power supply and a custom
power merge board. The NaviGator AMS’s power demands
exceeded those of MIL’s previous projects, both in terms of
total power and the durability of the power sources required.
Addressing these challenges involved exploring new battery
suppliers beyond those traditionally used by MIL. To power
four thrusters, along with the computers, sensors, and commu-
nication hardware, the AMS utilizes two Torqueedo Power 26-
104 batteries. Each battery independently powers two thrusters
while also contributing to the power rail that supports all other
onboard devices.

A student-designed printed circuit board assembly (PCBA)
known as the power merge board plays a critical role in
this system. It employs two Texas Instruments LM5050 High
Side OR-ing FET controllers to act as ideal diode rectifiers,
balancing and paralleling the batteries into a single rail that
provides four output ports. This design enhances fault toler-
ance, allowing for seamless battery swaps without shutting
down the system.

3) Kill System: The hardware kill system consists of two
student-designed PCBAs and four commercial off-the-shelf
(COTS) twist-to-detent kill switches. The kill system also
includes a software component. The system monitors five kill
sources, which include the four mounted COTS kill switches



University of Florida’s NaviGator 4

Fig. 8: UAV Component Diagram

and a remote kill switch. These inputs feed into a relay control
board, which is a digital logic board designed to cut power to
the thruster motor controllers when any kill source is triggered
or becomes unresponsive.

The remote kill switch operates over a wireless link. While
we’ve been experimenting with ZigBee, LoRa, and Nordic
protocols, we are currently leaning toward LoRa for the
communication link. Additionally, the system includes status
monitoring for the vehicle’s hardware kill status. Though the
computer can also act as a kill source, its mechanism is
currently separate from the relay-controlled system.

4) UAV System: Our UAV system is made from several
components (Figure 8) that connect to a central flight con-
troller. We opted to purchase a ready made frame kit as a base
for our UAV, onto which we added the components necessary
for autonomous missions. We opted for a mostly-ready-to-
fly option after assessing the risk of a fully custom build.
The cost of the kit was close enough to the cost of a fully
custom build, without the benefit of flight testing from the
manufacturer. With the recommended 10,000 mAHr battery,
we reached close to the advertised 30 minute flight time. This
flight time was much longer than the expected 10 minute flight
of our expected custom build. Without a large increase in cost,
the kit allowed us to reduce complexity in assembly of the
drone as well a needed increase in flight time that will allow
our missions to operate with a larger room for error.

Power is distributed from our 10,000mAHr 6S battery to
the ESCs, Flight Controller, Raspberry Pi, and Servo from a
power distribution board provided in the kit. We use Universal
Battery Elimination Circuits (UBECs) to convert the 25.2V
supply down to 5V to power the Raspberry Pi, Controller and
a servo motor.

The sensors architecture (Figure 9) on our drone include
GPS, Lidar Rangefinder, Raspberry Pi Camera, IMUs, Com-
pass, barometer, DroneID, and radio communication. Our
flight controller, a Cube Orange+, is accompanied by a Raps-
berry Pi 5. Our system utilizes a servo motor for use in the

Fig. 9: UAV Block Diagram

UAV replenishment task.
For programming the UAV missions, we used popular

hobbyist software that is supported by the flight controller,
ArduPilot, with Python libraries that facilitate communication
in ArduPilot’s communication protocol, MavLink. The Rasp-
berry Pi connects to the flight controller and directs the UAV
to GPS coordinates (Figure 9). Keeping with our design goal
of simplicity first, our missions were developed with straight
forward principles. Once we were flying manually, we created
a simple program that would command the UAV to predeter-
mined positions, proving how we would send messages from
the Pi to dynamically operate the UAV. The next step was to
create an OpenCV program that would detect the launchpad.
Our first priority was to safely launch from, move away from,
and land back onto NaviGator autonomously. This is the most
mission critical aspect of the UAV, as it would determine
success of the missions.

With safe return available to the UAV, we create a simple
loop for the replenishment mission: launch from NaviGator,
ascend high enough to where the replenishment pads can be
seen, without changing altitude, hover above the launchpad.
The UAV then descends incrementally, using CV to adjust
itself to the center of the launchpad. Once we can reliably
see the tins, we repeat descension, but centered on the tin. To
keep our tin collection simple, we use a strong magnet. A servo
controls the position of the magnet and slides the tin off the
UAV when delivering. The UAV ascends, and verify that the
number of tins on the platform has decreased. It will attempt
pick up twice more before aborting mission and returning to
NaviGator. Once the tin is secured, a similar algorithm is used
to find the second launchpad. We take the same launch, detect,
hover, descend approach for the UAV Search and Report task.

C. Software

1) Object Detection : The lowest level perception service
available on NaviGator is the Occupancy Grid Server [1]. Oc-
cupancy grids are a two-dimensional grid-like representation
of the environment generated by the sensor suit on the AMS.
The generated map contains information about both the occu-
pied and unoccupied regions in the environment. NaviGator
utilizes a Velodyne VLP-16 LIDAR (Figure 10. A LIDAR



University of Florida’s NaviGator 5

Fig. 10: LIDAR Sensor Mast

uses lasers to provide relatively dense range information of the
environment. This information is then segmented by regions
containing dense clusters of relatively close points. These
bounding regions are treated as obstacles, and are placed in the
occupancy grid. This information is then provided to higher
level services such as the motion planner and classification
server. From our extensive testing we discovered that the
wake produced by NaviGator could in specific circumstances,
like when moving backwards, be detected by the LIDAR and
treated as obstacle leading to issues in our higher level services
like in our motion planner. We solved this issue by checking
if points detected while moving backwards are inside of our
area of interest. Often times, light reflecting on the surface
of the water would be relatively low intensity and trigger an
object detection. So we additionally implemented a secondary
point cloud filter to filter out low intensity points.

2) Classification: In our classification system, the goal is to
label the clusters identified by the object detection system. We
utilize a YOLOv7 model, one of the latest and most efficient
real-time object detection systems in computer vision [2]. This
YOLO model was trained on thousands of labeled images
of buoys gathered from field tests and previous competition
videos . The model continuously processes image streams from
our cameras, identifying buoys by placing bounding boxes
around them.

The 3D bounding boxes generated by the LIDAR system
are transformed into camera space, providing an estimate of
where each object would appear in the image. By combining
these transformed LIDAR boxes with the YOLO bounding
boxes, we can match each YOLO detection to the closest cor-
responding cluster in camera space, allowing us to accurately
label each buoy or object.

3) Trajectory Generation: For the motion planning we
currently utilize a rapidly-exploring random tree (RRT) algo-
rithm [3]. The algorithm starts with a seed node representing
NaviGator’s initial state. The algorithm then randomly samples
a state in the region of navigational interest. A nearness

function is then applied to each node in the tree and that node
is extended or steered towards the random state based on a
policy function. The resulting endpoint is then added to the
tree as a new node if it is allowable, i.e. the newly created
edge does not cross through an obstacle (Figure 11). If the
extension or or any intermediate state leading up to it is not
allowable, that iteration is abandoned. This algorithm repeats
for a specified time. Once a node reaches the goal, region,
the tree is traced backward from the goal to the seed, and is
classified as one solution to the planning problem. The best of
the found solutions is defined as the one that takes the least
amount of time. The goal region is likely to be reached because
one can bias tree-growth towards it by shaping the probability
density function from which random states are sampled.

Fig. 11: An example of NaviGator’s RRT algorithm in action

4) Motion Control: The controller takes in the trajectory
generator as the reference states for the feedback controller to
follow. We utilize a model-reference adaptive control (MRAC)
architecture [4] for its prevalence in marine and aerial systems.
MRAC brings steady-state error to negligible amounts in all
cases without introducing oscillations. The design choice for
the MRAC was to estimate the drag and inertial effects to
be able to adapt external disturbances. The block diagram of
the MRAC controller used for NaviGator is shown in Figure
12. In this diagram, Yref is the current state in the sequence
generated by the motion planner, u is the control effort choice,
and Y is the actual state. Finally, with the controller outputting
desired wrenches (i.e., forces and moments), the last operation
needed is to map that wrench to a thrust command for each
thruster.

III. TESTING STRATEGY

Our overall testing strategy matches our competition strat-
egy. We test systems according to our specified deadline and
collect data to help complete future tasks on time. This process
is designed to ensure thorough validation of the system’s
functionality and readiness for the competition. Testing is
conducted on a regular schedule, with major testing sessions



University of Florida’s NaviGator 6

Fig. 12: An example of NaviGator’s RRT algorithm in action

Fig. 13: Gazebo Simulation Testing

held every Sunday and smaller sessions on Wednesdays. The
Sunday sessions focus on evaluating key competition tasks
and major system changes, while the Wednesday sessions are
dedicated to validating smaller updates and preparing for the
Sunday testing sessions.

Between these testing sessions we make use of our sim-
ulator, Gazebo, to test changes in our software. We use
the Virtual RobotX simulation from Open Source Robotics
Foundation (Figure 13) as a foundation to design the test
cases. We replicate much of the conditions and challenges
that are present in RobotX 2024 allowing us to test each
task thoroughly. This helps us find potential issues early and
ensuring our physical testing sessions are productive.

Each testing session follows a standardized procedure. Prior
to the testing sessions, we determine what systems and features
we intent to test and verify. We typically go to our primary
testing location, Lake Wauburg, or go to our backup location,
Lake Orange, when needed. Once on site, we deploy NaviGa-
tor into the water as shown in Figure 14. Afterwards, a team
is sent out on a kayak to help monitor and assist the boat. The
kayak crew is also responsible for positioning the buoys and
other task specific items into the water. Clear communication is
established between the ground team and water team through
the use of walkie-talkies.

Our testing sessions are collaborative, with team members
working together to troubleshoot and resolve any issues that
arise. We strive to replicate the competition conditions as

Fig. 14: Testing NaviGator at the Lake

closely as possible, ensuring that our tests provide accurate
insights into the system’s performance under realistic scenar-
ios.

Following each test, we write a detailed summary report.
This report details what was accomplished, any issues encoun-
tered, and what changes or fixes are needed. These reports
allow us to reflect on our work and progress. They are vitally
important as they are key indicators on if we need to adjust
out timeline and priorities to stay on track for the competition.

ACKNOWLEDGMENT

Team NaviGator AMS, a project of the Machine Intelligence
Laboratory (MIL) would like to extend our sincerest gratitude
to everyone who has supported the team. We extend our thanks
to the University of Florida’s departments of Electrical &
Computer Engineering and Mechanical & Aerospace Engi-
neering for their continued support. We would also like to
thank the CIMAR lab for providing the essential resources
and facilities for our work. We are also deeply appreciative
of our major industry sponsors: L3Harris Corporation, Texas
Instruments, and Sylphase. A special thank you to our advis-
ers, Dr. Eric Schwartz, Dr. Carl Crane, and Andres Pulido,
for their invaluable guidance and mentorship throughout this
project.

REFERENCES

[1] A. Elfes, ”Using occupancy grids for mobile robot perception and
navigation,” in Computer, vol. 22, no. 6, pp. 46-57, June 1989, doi:
10.1109/2.30720.

[2] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ”YOLOv7: Trainable
bag-of-freebies sets new state-ofthe-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[3] S. M. LaValle, ”Rapidly-exploring random trees : A new tool for path
planning,” The annual research report, 1998.

[4] A. Shekhar and A. Sharma, ”Review of Model Reference Adaptive Con-
trol,” 2018 International Conference on Information , Communication,
Engineering and Technology (ICICET), Pune, India, 2018, pp. 1-5, doi:
10.1109/ICICET.2018.8533713.



University of Florida’s NaviGator 7

APPENDIX A



University of Florida’s NaviGator 8


