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Abstract 

 

The goal of this project is to design and implement an autonomous mobile boat that can 

navigate a nautical buoy channel. To accomplish this task, the robot needs to be able to 

detect and differentiate the buoy colors, be able to navigate the channel effectively, and 

avoid the obstacles. To accomplish this task a BeagleBoard development board using a 

TI ARM Cortex-A8 processor has been selected as the main processing unit for the 

system.  To make the platform mobile, two main thrust motors and four side thrusters 

have been built into the nautical platform of the robot. This chassis is a catamaran style 

boat with a flat deck to support the BeagleBoard and Remote Acquisition for Interfacing 

navigation Systems (BRAINS) box and the Motor Interfacing Module (MIM) box. The 

thrusters are then controlled via control signals sent from an Atmega series 

microcontroller in the BRAINS box to the MIM box using a serial communication 

protocol. There is a top mounted web cam that is used to acquire the vision input to the 

system. The images from the camera are then processed to determine an optimal path 

through the buoy channel using high level algorithms based in object oriented C++. 

Using this optimized desired path, a proportional digital controller is used to correct the 

current trajectory to match the desired path.  

 

I. Project Summary 

The members of Team NASTI (Nautical 

Autonomous System with Task Integration) 

chose to design an autonomous system based 

around a catamaran platform as the basis for a 

senior project. The platform will be designed so 

it can autonomously navigate a channel of water 

buoys. The robotic platform will compete in the 

AUVSI (Association for Unmanned Vehicle 

Systems International) Foundation and 

ONR's(Office of Naval Research) 5th 

International RoboBoat Competition. Our 

project will center on completion of the main 

navigational task of sailing through the buoy 

channel and avoiding the obstacles using image 

processing. The buoy channel can be seen in Figure 1 

[1].  

 

 

Figure 1. Competition Layout 
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II. Boat Construction 

The basic form factor for 

the boat utilized by team 

NASTI was a catamaran 

style vessel.  A pair of 

pontoons connected via two 

beams with a platform deck 

mounted on top of the 

beams served as the basic 

shell for the boat.  Figure 2 

illustrates the boat 

constructed from both aft 

and starboard views.  The 

overall size of the boat was driven by a few key factors.  The distance between the 

pontoons was set by the propeller diameter and the added safety shrouds of the pair of 

main drive motors.  The final beam was then set by the individual widths of each pontoon 

section and the distance between the pontoons.  The width of each pontoon was 

determined by how much lifting force was needed and the physical size of the smaller 

side thrusters that were purchased for each pontoon.  The small holes just before the taper 

of the bow and aft sections of each pontoon are the intake/outlet ports of the small side 

thrusters.  The side thrusters were added to improve the boat’s maneuverability both 

rotationally and laterally.  A more in depth discussion about the main motors and side 

thrusters will be discussed in later sections.  The finished size of the each pontoon was 44 

inches long by 5 inches wide.  This provided approximately 6.5 pounds of lifting force 

per inch of displacement for each pontoon.  The height of the pontoon sections was 7.75 

inches at the time of final completion.  This gives the boat an ideal lifting force of about 

90 pounds at 7 inches of water displacement.  The framework of each pontoon is 

composed of plywood bulkheads sandwiched between a plywood top and bottom.  

Closed cell foam was added to increase glue surface area without sacrificing weight.  The 

frame was then encased in polystyrene plastic to provide a watertight vessel.  The 

addition of a deck and main drive motor supports rounded out the boat that was to be 

used for remote and autonomous control.   

 

III. System Overview 

Shown on the next page in Figure 4 

is a detailed overview of the 

autonomous boat. This is a high level 

visualization of the information flow 

from the data acquisition to the 

motor control system. There are 

seven major sub-systems each of 

which will be discussed below in a 

bottom up order, starting with the 

motor interfacing module and ending 

with the 32 bit control code written 

 

Main 

Drives 

Side 

Figure 3. Boat Motors 

Figure 2. Boat Construction 



NASTI | 3 of 10 

for the embedded system located in the B.R.A.I.N.S. module. Figure 3 shows the actual 

side thrusters and main drive motors. The small holes in the side of the boat are side 

thrusters that provide lateral and torsion forces for additional control. The two larger 

motors in the aft will be referred to as main drive motors.  

 

 

 

 

 
Figure 4. System Overview 

 

 

IV. Motor Interfacing Module 

The purpose of the motor interfacing module is 

to decode the output of the BRAINS box. 

Figure 5 shows the layout of the module. 

 

As can be seen in Figure 4, there are four side 

thrusters to help pivot the boat and move it 

laterally. The thrusters require twelve volts and 

have an estimated peak current of 3A. To 

accommodate these requirements, a two stage 

NPN PNP transistor circuit was created. This 

can be seen in Figure 6. The microcontroller can 

source a maximum of 40mA and the motor 

requires 3A. Additionally the motor runs on 12 

volts and the microcontroller runs on 5 volts. 

The hFE of Q2 was not large enough to increase 

the current to the needed 3A. For this reason, 
Figure 5. Motor Interfacing Module 
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two transistors were used. A diode was added as a freewheeling diode to prevent the 

voltage generated by the back EMF of the motor from damaging the transistor Q2. 

 

The circuitry for the differential drive motor is shown in Figure 7. As can be seen, the 

general layout is the same with different discrete components. The motors are powered 

off a lead acid 6v battery with an estimated peak current of 8 amps. To satisfy these 

conditions the circuit in Figure 7 was created. The larger base current needed for this 

motor lead to a different transistor for Q2 in Figure 7 than Q2 in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

All of the motors needed to be run in either direction which necessitated implementing 

bi-directionality circuitry. The high current specifications combined with the goal for a 

low cost solution ruled out most of the typical methods to achieve bi-directionality. A 

double pull double throw relay connected to a switching transistor was ultimately 

utilized. This can be seen in Figure 8. When the coil of the relay becomes active, the 

switch moves into the open position. This flips the polarity of the motor resulting in the 

motor turning in a different direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Thruster Circuitry Figure 7. Main Drive Circuitry 
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Figure 8. Bi-directional  Motor Control Relay Circuitry 
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V. Remote Control 

Using the Futaba T6EX R/C transmitter (shown on next page) with the Futaba R617FS 

receiver and a communication protocol described below, a remote control scheme has 

been developed for emergency control of the boat and for use in testing. In this control 

scheme, the platform is allowed 3 degrees of freedom that can be controlled from 3 axes 

of the transmitter joysticks. To enter this emergency control mode, the right shoulder 

switch has to be flipped in the downward position to force the master Atmega128 in the 

BRAINS module to send motor control bytes based on the r/c commands rather than the 

BeagleBoard control signal. 

 

In Figure 9 the yellow arrow is pointing to 

the control switch. The left joystick ratchets 

in the vertical directions. This joystick is 

used for throttle control of the main drive 

motors. The horizontal motion of the left 

joysticks provides a strafing thrust from the 

pontoon mounted side thrusters. The final 

degree of freedom is controlled by the right 

joysticks horizontal motion. This signal will 

rotate the boat in place using the side mount 

thrusters.  

 

 

VI. Communication 

As can be seen in Figure 10 there 

are two microcontrollers, the 

BeagleBoard-XM, the RC 

control receiver, and the 

interfacing circuitry that all must 

communicate. This section will 

describe the communication 

protocols. Figure 10 shows the 

protocols used to facilitate the 

communication between the 

different boards. 

 

The output of the RC receiver is 

a 0-5v 50 Hz servo control 

signal. The length of the pulse corresponds to how far the RC lever is pulled. The 

AtMega128 records the length of the pulses and decodes them into a signal to be sent to 

the Atmega368. This value is temporarily saved. 

 

In the case of autonomous mode, the AtMega128 receives the decoded motor packet over 

the serial port from the BeagleBoard. This value is also temporarily saved. 

 

Figure 9. R/C Transmitter 

Figure 10. Communication Overview 
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A decoded motor packet consists of nine bytes. The first three bytes are *** which 

indicates to the AtMega368 that new motor instructions are incoming. The next six bytes 

correspond to each of the six motors. The first seven bits of each byte represent a pulse 

width modulated (PWM) value from 0-99%. The last bit corresponds to the directionality 

of the motor. This coding scheme allows for a minimal amount of data to be transmitted. 

 

When the AtMega368 receives a new motor packet it first checks to see if any motor has 

changed direction. If a motor has indeed changed direction, the motor is turned off for 

250ms. This is to prevent large current spikes from the inductive motors damaging the 

motor circuitry.  After a directionality check has been performed the PWM for each 

motor is updated. 

 

VII. BeagleBoard & Operating System 

All the image processing and path planning 

code is executed on a BeagleBoard-XM 

shown in Figure 11. This runs an embedded 

Linux distribution stored on a SD card with 

the executions taking place on a TI ARM 

Cortex–A8 processor.  It shipped with a 

distribution called Angstrom and many 

software packages and kernel modules. Many 

of these modules were not needed. To allow 

for a faster boot time and less overhead on 

computations, a new image was generated using the Narcissus online image builder [2].  

Other distributions were benchmarked, 

including Ubuntu 10.10 for ARM. However, a 

comparison of the BogoMIPS reveals the fastest OS to be a streamlined Angstrom. 

BogoMIPS is an estimated measurement of instructions executed per second.  

 

After this new image was installed, the serial port on the BeagleBoard was configured to 

allow for programming without a monitor. Since the operating system image was 

completely minimized, no kernel modules were installed by default.  The only modules 

that were subsequently installed were a 802.11x wireless, USB webcam, and serial-usb 

driver. 

 

As explained in the next section of this paper, our vision system is implemented using the 

open source image processing library OpenCV. This library has already been ported for 

use on an ARM processor. The Angstrom package manager was used to install and 

configure the library. As a benchmark, the library was natively compiled on the 

BeagleBoard but no significant improvement to the frames per second was noticed.  

 

The final task in readying the BeagleBoard was creating a MakeFile for multi-file 

compiling. Since the BeagleBoard is an embedded system it is not practical to install an 

IDE to facilitate managing multi file projects. This is done through the use of MakeFiles.  

Essentially the make utility takes a MakeFile which explains all the interdependencies, 

links them, compiles them into objects, and then creates an executable.  

Figure 11. BeagleBoard-XM 
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VIII. High Level Program Overview 

The high level control code for the autonomous system has been written in object 

oriented C++. Using this method, the project is able to use classes, structures, and vectors 

to define the information in the autonomous system. This allows high level software to be 

written for an embedded system.  

 

Ultimately, the control scheme is based around a vision system. The code reads in an 

image from a web camera that is mounted to the top of the motor mount bar on the stern 

of the boat. The system uses only one camera which reduces complexity and processor 

computation time. Therefore, the system does not rely on stereoscopic vision, but rather 

uses the fact that the boat will be facing the buoy channel entrance and the reasonable 

assumption that the channel is mostly straight. With these assumptions in mind, the code 

can begin to process the images using a set of libraries known as OpenCV. These 

libraries allow the use of high level functions to perform image processing with an 

optimized implementation.  

 

The first step in this process is to determine a horizon level. This would ideally be the 

location where the edge of the pond meets the ground and sky in the image. However, for 

the sake of simplicity and reduced computation, it is assumed that the horizon is fixed 

and roughly one third of the ways down the image. With this information, the algorithm 

determines a region of interest (ROI) to be the bottom two thirds of the image and 

performs all further processing on that part of the image. This both reduces the 

computation time on the image, and reduces the false buoys that can be found by objects 

that are not in the pond or pool. After this step has been performed, the algorithm can 

search for the red, green, and yellow buoys. 

 

IX. Buoy Detection 

After the code has determined the ROI in an image from the camera, it is stored into an 

OpenCV data type called an IplImage. This image is then converted from the RGB (Red, 

Green, and Blue) color space into the HSV (Hue, Saturation, Value) color space. This 

step is performed because the autonomous system is expected to perform under various 

lighting conditions. When the buoys are under different light, the RGB values can range 

wildly while the HSV values change only slightly. The saturation is the most likely to 

change as the buoy is a reflective surface and direct sunlight will almost completely flood 

a portion of the buoy in white color. 

 

With this knowledge, a set of constant threshold values can be set for each of the three 

color channels. This is repeated for each color of buoy that the program needs to detect. 

Using these bounds, the areas that contain the buoy colors can be determined using an 

optimized search algorithm. This process creates a second binary image by threshholding 

the pixels that fall into the defined color regions and setting them to 255, or the color 

white. This leaves the buoys clearly defined in the image, but the locations and sizes still 

needs to be determined relative to the image. 
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To determine this information, another C++ library is used that is optimized to quickly 

search through an image and determine ‘blobs’ of color in that image. The library is 

called cvblobslib. The functions operate by assuming a blob is an area of connected 

colored pixels given certain known second order statistics and threshold values. 

CBlobResult, the function that returns the blob information, requires a binary or 

grayscale input image. To put it simply, the function searches through the image and 

locates areas that contain pixels that are of a value higher than the provided threshold. It 

then looks at the surrounding pixels and change in color level from pixel to pixel to 

determine the bounds of the ‘blob’ of color. After locating all the blobs the function 

returns a vector of blob objects. 

 

The blob object then contains several parameters that provide information about that 

blob. The most important to the code is the min/max x and y locations of the blob. From 

this information the center and radius of the buoy can be estimated in terms of pixels. The 

buoys are then stored into a vector, where they are sorted from the bottom-most buoy of 

that color in the image to the highest. 

The driver for the camera that is used 

returns the xy axis in reference to the 

top left most pixel as the origin, and 

the positive y values count down as in 

Figure 12. 

 

Also in Figure 12, the vectors of red 

and green buoys have been drawn on 

the image using OpenCV drawing 

functions. This function uses the 

location of each buoy as well as the 

determined radius. From this image it 

can be seen that the algorithm 

sometimes considers the reflection on 

the water to be part of the buoy blob and occasionally only sees the bright portion. Both 

of these cases are ok as the relative location is still usable and considering the speed of 

the system it is not important for it to be extremely accurate. The figure also shows the 

gates (white) and path (black) which will be described below. 

 

X. Channel Navigation 

Once the buoy color and location is known, then the red and green buoys can be paired 

into ‘gates’ shown as white lines in Figure 12. Using the gate information a desired path 

can be determined. The algorithm is designed to move from one gate to the next, moving 

through the center of each one. With all of the information that is available, an overall 

desired path can be determined, and is shown by the black line in Figure 12. The most 

important section of the path is the first one at the bottom and is the only one used in the 

PI controller. 

 

This section is determined by imposing a line from the bottom center of the image to the 

middle of the first gate. This method relies on the fact that the camera is centered and that 

Y

0, 0 X

Figure 12. Sample Buoy Detection 
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the bottom of the image can be assumed to be level with the front of the boat. These 

assumptions allow the line to be the path that the boat should follow to make it through 

the immediate goal. Then using calculated slope and length of the line a set of control 

signals can be constructed to correct the current motion of the boat to match the desired 

path. The algorithm uses a proportional controller based on the length of the path to 

determine nominal speed. It then uses the slope as an input to a proportional and 

integrator control after being processed by a moving average filter. This method 

eliminates erroneous images and allows for a fast response with a medium amount of 

overshoot. The current algorithm uses both the side thrusters in a pivotal motion as in and 

the differential drive of the main thrust to turn the boat as it moves through the water as 

in Figure 13 and Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

XI. Obstacle Avoidance 

Scattered through the buoy channel there are a few yellow buoys which are considered 

obstacles by the program. The program first identifies the yellow buoys by the color as 

described above, then determines a threat level based on its vertical positioning in the 

image. If there is a yellow buoy that is closer to the boat then the first gate, it moves into 

the extremely hazardous mode in which the yellow buoy must be avoided at all costs. To 

achieve this, a line from the bottom of the image to the yellow buoy is determined and 

using the slope of this line as the signal to be controlled an avoidance algorithm takes 

over. The control scheme can be considered an avoidance gradient where the peaks of 

avoidance are the center of the image and the lower edges. This gradient can be described 

as two valleys on either side of the center. It then becomes desirable to keep the yellow 

buoy in these valleys. The slope of the yellow buoy line will then determine how hard the 

boat needs to turn. If the slope indicates that the buoy is far enough to the side of the 

boat, but not so far that the boat may be veering off course, then the boat can remain 

traveling in the direction it is heading. If the slope indicates that the boat is going to hit 

the buoy, or that it is moving too far off course, then the control algorithm needs to 

correct for this discrepancy. Once again, a proportional control is used to accomplish this 

task.  

 

The main concern with this method becomes remaining on course. If the boat attempts to 

turn too hard away from the obstacle it may lose sight of the yellow buoy, the next gate, 

or all of the buoys. If it does lose sight of all of the buoys, a search algorithm will take 
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control and the boat will rotate in place to search for a new gate to head to. The program 

will know if it is the correct gate to head through to advance through the channel if it 

follows the three R’s mantra. If the only gate that can be found is in the wrong direction, 

it can at least travel to it and try to start over.  

 

XII. Results 

Through this report, the Nautical Autonomous System with Task Integration has been 

described in great detail. The system overview introduces the system, giving a quick 

description of each sub system and how they interact. The paper then describes the 

BeagleBoard and operating system set up which flows into a description of the motor 

interfacing module. Then the communication protocol between the systems is explained, 

followed by the remote control scheme and finally summed together with the image 

processing work.  

 

There were problems, as there should be in any engineering endeavor. Some of which 

have been solved, others remain for future work. The power electronics circuits were in a 

confined box, and the components are very close to each other, this resulted in shorts and 

component failures. These have been mitigated by regulatory circuitry and isolation 

materials. The motors produced large voltage spikes to due to reverse EMF. This was 

solved by capacitors and transorbs on the supply rails. Also, the boat floated but not 

perfectly. The original bonding material on the pontoons was damaged by the salt water 

in the pool and no longer held the pontoons together. This has also been corrected as 

well. Aside from all of the hardware issues, there have been software problems as well. 

 

The main problem that arises with the image processing is the field of view of the 

camera. When the boat is attempting to track the desired path generated by the image, it 

often overshoots from the inertia of the boat combined with the overshoot introduced by 

the control system. When this happens, one of the gate buoys may be pushed out of the 

field of view and the boat then does not properly generate the desired path and the 

navigational scheme fails. To correct this, a future team could consider adding a second 

camera and stitching the images together to form a wide view of the area in front of the 

boat. Another option would be to mount the camera to a servo, or attach a lens to the 

front of the camera that would widen the single camera’s field of view.   

 

Ultimately, project NASTI was able to overcome most of these barriers. Thus 

culminating in an autonomous system that is able to use the image processing techniques 

described through this paper to provide control signals to a functional electronic 

interfacing system and navigate a channel of red and green buoys as well as identify and 

avoid the yellow obstacle buoys.  
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