Thomas Humbert (Team Leader), David Moeller, Greg DeVos, Joshua Kaster

Team Advisor: Dr. Timothy Tuinstra

ABSTRACT

The purpose of the Cedarville RoboBoat team was to build on last year’s team in preparation for the
Annual International AUVSI RoboBoat Competition. We reused the platform, thrusters, control
hardware, and cameras from last year’s boat. This year well evacuated the strengths and weakness of
last year’s boat and decided that we needed to focus on three main areas. The first were the core
computing capabilities of the RoboBoat. We added new hardware to increase software speed and
network reliability. Along with these hardware changes, all of the core software was rewritten to
increase performance and remove dependencies. Our second area of focus was the navigational aspect
of the competition, where we worked toward a consistent compass following, GPS waypoint following
system and, reliable image following. The third and final focus of the team was the completion the
challenges at the competition. We focused on the audio pinger challenge, automated docking challenge,

and the obstacle challenge.

I. HARDWARE

1. Pontoons

This is the third year utilizing the pontoon style boat design. The pontoon style platform consists
of two Echo Fisher pontoons from Venture Outdoors. These pontoons are composed of linear, low-
density polyethylene (LLDP), which is much lighter than PVC. Each pontoon is 48” long by 12” wide
by 10” high and weighs only 11 pounds. By removing a section from the original design in the middle
of the seat and plastic welding the seat back together, the boat was made to fit within the three-
foot limit.
2. Propulsion

The propulsion system consists of the same two Seabotix BTD-150 thrusters used the previous
years. These thrusters were chosen because they are extremely small (6.927”x3.72”x3.673"),
lightweight (1.58 Ibs each), and easy to interface. At the maximum voltage, the thrusters can each
produce 4.07 Ibs of thrust per motor. Each thruster is mounted directly underneath the center of
each pontoon. This design makes zero-radius turns possible using differential steering.
3. Electronics Enclosure

Our team also chose to reuse the electronics enclosure from previous years. The Nanuk 945
protective case was chosen because it is relatively light and the interior dimensions are large enough
for all of our electronics.

4. Electronics Wiring

Motor Control

(+24)
(+5) @
USB
N Rez WEHE Hub use
#3 #1

(+12)

(+12) L
! Reg (#5)
#2
Battery #2
USB
FreeWave
(+12) Modem
(+5)
(+12)
@ e

(12v)
N Reg
#1

Battery #1
(12v)

(+5)

' (+5“
(+12)
Reg (+7.5)
’ ‘ ’@

Figure 1. Electronics System Diagram

(+12) (+12)—>

Cedarville University RoboBoat 2

5. Global Positioning System (GPS)

Our GPS unit is an LS20031 receiver. This receiver was chosen last year. It is a Wide Area
Augmentation System (WAAS) receiver with an accuracy of +3 m (9.84 ft). This unit was chosen for
its simplicity, in addition to providing sufficient precision. This year we decided to add a GPS to the
boat. With two units we hope to be able to use an averaging algorithm to increase our precision.

6. Compass

The Devantech CMPS03 Magnetic Compass Module has 0.1 degree of resolution and 3-4
degrees of accuracy. The headings are accessed via 12C; the device is connected to the laptop by a
USB port through an 12C to USB module. The Devantech compass’ 19200 baud rate allows reception
of data from the compass in real time, making it useful for navigation. The compass is a key part of
our design; all of our navigation is based off the boat’s ability to follow a given compass heading.

7. Webcams

The Microsoft Lifecam Studio Webcam was chosen because it is very easy to interface with
Matlab through USB. This webcam also has many RGB resolution options. We determined a
resolution of 320x240 was sufficient to extract needed data while still being able to processes the
data in a reasonable time. The white balance, exposure, hue, and saturation are all set on the
Raspberry Pi by loading predefined values every time the main program runs. This is set by sending
commands over SSH to the Raspberry Pis. The cameras are mounted with a custom 3D printed
mount which allows for a consistent camera position from run to run but is still adjust the angle and
the height of the camera so that we could find the optimal viewing angle. The camera mount also

holds the polarizing filter for the cameras (Figure 2).

Figure. 2 Electronics System Diagram
8. Laptop
The Dell Inspiron N4030 laptop is the main processor for our system. The laptop runs Matlab
and performs all of the vision and data processing. Programming in Matlab, with its built-in Image

Processing Toolbox, was much simpler than using a less abstract language like C. In Matlab, we are

Cedarville University RoboBoat 3

able to interface with our microcontroller, compass, GPS, webcam, and network antenna
simultaneously while concurrently doing all image processing and navigation computations in a
single program.
9. Raspberry Pi Network

The Raspberry Pi network currently consists of five Raspberry Pis and a central laptop all
connected using UDP (Figure 3). We installed an Ethernet switch in order to link all the
communication lines together. Each Pi sends back pertinent data over a specific UDP port for the
boat laptop to decipher and adjust the thrusters and camera servo. This allows the Pis to work
independently while the boat laptop continues to work through each event. As the events transpire,
they pull the information from the Pis when it is time to read from them again. This also removes

the dependencies that were causing last year’s team to get caught in loops and relying on the GPS

Near Sighted i Buoy Pi #1 UDP Morphology Pi
Camera #2

ubp

for the update rate.

Gate Tracking/

Far Sighted

Pattern UDP me Boat Lapto
Camera pop

Detection Pi #3

RS Camera Servo

uDP >

ubpP
Underwater Audio Pinger Pi |
SB—>|
S U

Figure 3. Data Flow of Raspberry Pi Network.

10. Microcontroller

The laptop provides data to control the thrusters. However, intermediate electronics are
required. The Arduino microcontroller converts numerical values to pulse width modulation (PWM)
signals for the motor controller. An Arduino was chosen because it is very common and has open
source software. The Arduino also hooks directly to a virtual COM port on the laptop via USB.

11. Motor Controller

Cedarville University RoboBoat 4

The Sabertooth 2x25 motor controller has two output channels capable of sourcing up to 25A.
Another key feature of this choice is its ability to drive both thrusters independently, allowing for
differential steering. This motor controller met the voltage and current specifications, contains built-
in overcurrent and thermal protection. A servo throws a switch controlled by a channel on the
remote control so the input to the motor controller can alternate between autonomous and remote
modes.

12. Remote Control

Last year, a Futaba 7C 2.4 GHz remote control was chosen. We continue to use this remote due
to its spread-spectrum technology. This feature makes the remote very reliable. Even in highly
networked areas, like the competition conditions, we are able to connect easily and maintain a solid
connection.

Il. IMAGE PROCESSING

1. Color Detection

After brainstorming and developing several different means of detecting the colored buoys, we
developed a system that first identifies the circles created by the buoys on the lake. The Audio
Pinger and Obstacle Course both utilize buoy/color detection in some way. Using a metric, we only
look at the circles that have the greatest confidence. Once detected, these circles are analyzed using
thresholds from the HSV range and categorized into the different color bins desired to find. We then

run a blob analyzer on it to find the area and the centroid of the desired color. This is sent back over

UDP to the main laptop to drive toward.

Figure 4. (a)The video feed after morphological operations to increase the strength in the shape of the buoy. (b) The

resulting video feed with colored circles overlayed where it sees the buoys.

2. Pattern Detection

Cedarville University RoboBoat 5

Part of the Automated Docking Challenge consists of being able to detect three different shapes,
a circle, a triangle, and a cross. To do this we use the intensity of the current frame from the camera
and run edge detection on this. Then we invert it so that the insides of the shape become enclosed
blobs which blob analysis can pick up. This removes a lot of noise since many of the other edges do
not make enclosed blobs. We then use the bounding box of the blob detected to pull out the
selection from the original image. This provides a higher level of detail plus only run our shape
analysis on the needed pixels saving on computational power.

Our shape analysis consists of corner detection for all the shapes. If it has the required
number of corners and that the blobs are on the same horizontal level, then each individual shape
has its own set of requirements. For the circle, triangle and cross, we use geometrical calculations to
test for the radius, area and perimeter of the blob to see how close they resemble the actual shape.
If the blob passes these tests, the data is then transmitted back to the laptop. The output of this
algorithm can be seen in Figure 4. With our current system we are able to achieve 5.2 frames per

second which is acceptable for this challenge.

Figure 4. (Top Left) Possible Blobs. (Top Right) Raw Camera Feed with symbol-matched marker. (Center) Region of Interest
for Each Symbol. (Bottom) Binary Image of Pattern with Corner Markers.

Ill. NAVIGATION

1. PD Controller

Because our thrusters generate different output thrusts given the same input voltage and
because wind and other disturbances can throw the boat off course, a controller was designed to
compensate for these problems. This controller will allow the boat to follow a given heading

regardless of physical issues by giving a feedback from the compass. A PD controller gives an

Cedarville University RoboBoat 6

approximation of the derivative of the error multiplied by a constant to the thruster value as well as
the proportional value discussed earlier.
2. Speed Gates

To navigate the speed gates at the beginning of the course, heading information from the
compass is used to navigate the speed gates in in minimal time without error. A Matlab function was
developed that causes the boat to go in the direction of a given compass heading using the PD
controller previously discussed. Using this function, the boat is simply pointed in the correct
direction initially and follows that heading for a given amount of time before entering channel
navigation mode.
3. Compass Navigation

Through testing, we know that our electronic compass is very accurate, and likely the most
reliable sensor we have on the boat. Because of that, we wanted to base all of our movement
algorithms on compass heading following. We had a PID algorithm and constants that we also
inherited from last year’s team, and decided to keep it in this year’s design. After the main program
was restructured to run its update code at a consistent rate, all of the problems that last year’s team
had with the algorithm went away, since the inconsistent update rate were making the PID
calculations inaccurate. The boat can now follow a given heading with little to no detectable
oscillation.
4. GPS Navigation

Another essential aspect to the boat’s navigation on the lake is the ability to follow and arrive at
GPS waypoints. Our general algorithm for doing this is to grab the boat’s current coordinates and
calculate the desired heading toward the desired waypoint. To improve the usability of the boat we
added a waypoint editor with click-and-go functionality. This allows the user to quickly change and
save new waypoint routes with a few simple clicks. The biggest problems with the GPS following
that we have encountered have come from the inaccuracy of our GPS unit. We gathered data by
walking around campus with the unit, and had trouble coming to a conclusion about the data’s
reliability. The coordinates can be reliable enough to use over short periods of time, but have a
definite wander over longer periods. We investigated several ways to fix this but none of them were
do able with our time frame or budget. Our final algorithm for GPS following involves updating the
desired heading every two seconds to prevent drifting. In order to arrive at a GPS waypoint, the boat
must calculate the distance between the current coordinates and the desired coordinates to be less

than 6 meters.

Cedarville University RoboBoat 7

5. Image Following Navigation

Image following is another critical part of our navigation. When the desired feature on a video
frame is identified, the centroid of that feature is used to determine a new heading to follow. A
heading differential is determined using the camera’s known field of view and the number of pixels
the centroid is from the center of the image. The heading differential is added to the boat’s current
heading to give the new heading.

IV. CHALLENGES

1. Obstacle avoidance challenge
To solve this challenge we have two separate models running at the same time. A stationary

nearsighted camera that is used to avoid the small buoys in the field (the black and yellow buoys)
and a gate tracking, farsighted camera used to know the location of the exit gate (the red, white,
and green buoys).

The first task of the obstacle challenge is to dodge the buoys scattered about in the field. We
accomplish this by running Color detection on the frame and separating the black, and yellow pixels
into their respective bins. Then the bins pass through morphology and blob analysis, acquiring the
centroids and areas of each blob. These centroids and areas are passed back to the boat. The boat
then makes decisions based on this information.

While trying to solve the challenge the problem arose of knowing where our specific exit gate
was especially when the boat was turned to dodge a buoy. With our GPS not being accurate enough
we turned to image processing. We decided to have a camera attached to a servo that would track

the exit gate giving the boat the ability to update the compass heading of the exit gate.

® O ® O ® O
O

Figure 5. (Left) While Boat (tan) aims for Gate, it approaches obstacle (yellow). (Center) Boat dodges obstacle. Camera

(green) tracks Gate. (Right) Boat realigns to Gate after successfully dodging obstacle. Gray triangle represents Gate
Tracking Camera. Pink triangle represents near-sighted buoy.

We then run the Color Detection on the frame and only extract the white pixels and the other
color. Since we will never need to see red and green at the same time we were able reduce the

computations needed by only looking at either red or green (this color will be referenced as other).

Cedarville University RoboBoat 8

The white and the other bin are run through morphology and blob detection passing to our gate
tracking logic only the required centroids. Then based on the location of the midpoint between the
two buoys and the previous duty cycle we are able to adjust the duty cycle to center the blobs. We
only move the camera a little bit each frame since the image frames are processed faster than the
servo can move. Since the Pi have general purpose input output (GPIO) pins we are able to output
the pulse width modulation (PWM) for the servo using a model developed by Joshua Hurst. We
designed and 3D printed a camera mount which holds the servo and allows the servo head to rotate
the camera. This allows the camera to always be centered on the correct exit gate.

Then the duty cycle is converted into degrees and is sent to the boat so it can update the
compass. This allows the boat to know where our specific exit is at all times even so that when it
dodges a buoy is has a direction to go in. Currently, we have tested the PWM tracking model with
promising results in the lab, but further development is needed and we have not yet been able to
test this on the lake.

2. Autonomous Docking Challenge

After the shapes are detected on the Pi, The three shape centroids are sent back to the laptop,
where they are used to determine boat’s movement. The algorithm used to convert the centroid
values to thruster values uses a variation of the PID compass following that we use for all of our
navigation systems. The x-coordinate of the desired shape’s centroid is scaled into a difference in
heading according to the measured field of view of the camera. That change in heading is added to
the desired heading every second if the current heading differs too much from the desired heading,
or if the pixel location differs too much from the center of the image.

3. Acoustic Beacon Positioning

The underwater pinger challenge has several buoys with one of them emitting a chosen
signal between 25 kHz and 40 kHz. We are required to find which buoy is emitting the frequency and
then report the coordinates of the result.

We are completing this challenge by first using the color detection to find one of the colored
buoys and then systematically going from one buoy to the next until all five colors are checked.
Once at the buoy we will sit and listen for the frequency.

Using an underwater microphone, we run the input through a Raspberry Pi Simulink Model
to filter out all signals except the desired frequency. After running through the filter, the sum of the
result is added and mapped. This magnitude tells us how close and how strong the signal is. The

closer we are to the pinger, the higher the magnitude.

Cedarville University RoboBoat 9

—Nagntste Respores (39

[P—_———

- Unts: g8 -

Figure 6. Customized Filter Design for Acoustic Beacon Positioning Challenge.

In order to compensate for the Raspberry Pis limitation of 44.1 kHz sampling rate, we are
using the roll-down effect of the ultrasonic frequencies to identify the signal. For example we can
listen for a 25 kHz signal and hear its alias under 4.103 kHz. If the HDMI monitor is hooked up to the
Audio Pinger Pi, it will show the frequency it is seeking and the scope displaying the magnitude of
the desired frequency. This model has been successfully tested under the audible frequency range.
In the overall GUI, there is a slider that shows the magnitude of the filtered signal.

V. CONCLUSION

After analyzing the team's state from last year, we decided to remake all the coding and make it
much more modular and less dependent on return values. The overall code is now event driven,
utilizing Raspberry Pis to help delegate the tasks required for navigation and detection. After the
rule changes, our greatest confidence is in the Pattern Detection challenge. We have attempted the
Audio Pinger and Obstacle Course, but that is heavily dependent on our newly developed
color/buoy detection system. We believe we will be able to navigate to the different challenges

using GPS waypoints and compass headings.

Cedarville University RoboBoat 10

