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Abstract—Victoria, is an autonomous surface vehicle
(ASV) dually used as a research and competition platform.
Currently, the vehicle is being used as Georgia Tech Savan-
nah Robotics’ (GTSR) 3rd entry into AUVSI and ONR’s
RoboBoat competition. The vehicle has been designed to
detect and navigate through objects using an intertwined
LiDAR-camera system, and perform mission specific tasks.

Fig. 1: Victoria

I. INTRODUCTION

V ICTORIA is Georgia Tech Savannah Robotics’
entry into AUVSI Foundation and ONR’s Fifth

International RoboBoat Competition. While the overall
appearance of Victoria has remained the same, her in-
ternal hardware differs tremendously from our previous
entry. In this paper we will outline the mechanical,
electrical and navigation specifics.

II. MECHANICAL SYSTEMS

A. Hulls

Significant improvements have been made to the re-
cycled hulls from last year. Many leaks formed from
the previous year’s use. After extensive research, it was
discovered that the main cause of the leaks was due to
improper finishing of the hulls. To prevent such damages

from reoccurring, the hulls were stripped, coated in
marine paint, and a gel coat to create a water tight seal.
The interior of the hulls were also coated with a spray-on
rubberized utility coating for additional protection.

B. Interior

The major interior change was the switch from a
wooden frame to an aluminum frame. The new design
is shown in Figure 2. The electronics are attached to

Fig. 2: Frame

racks constructed of acrylic and aluminum angle pieces.
Nylon bolts were chosen to bolt down the racks in order
to prevent stripping of the aluminum threads on the
frame. The hulls are held together using pieces of angle
aluminum bolted to the frames. Similarly, the thruster
mount, shown in Figure 3, is constructed from aluminum
and is bolted to the frame. They are located in the
center of the vehicle to allow the rear of the thrusters
to be aligned with the back of the hull. The thrusters are
located in between the hulls to prevent them from being
damaged during handling.



Fig. 3: Thruster Mount

C. LiDAR Mount

Previously, the LiDAR was attached directly to the
hulls causing it to move up and down as Victoria rocked.
As a result of the vehicle’s constantly changing pitch, the
LiDAR was unable to detect the buoys. The solution was
to make a stabilizing mount for the LiDAR as shown
in Figure 4. Acetal sleeves were used as bearings for

Fig. 4: LiDAR Mount

the shafts that connect the servo to the LiDAR and the
potentiometer’s shaft. The potentiometer is driven by a
shaft which is attached to a gear. The gear is driven by
another gear attached to the servo shaft. The entire mount
was constructed out of aluminum for its good strength
to weight ratio and corrosion resistance. It was designed
with slots to allow a forward, backward, upward, and
downward movement of the LiDAR. To compensate for
the change in pitch, as measured by the IMU, a PID
controller is used to correct the angle of the LiDAR.

III. ELECTRICAL SYSTEMS

Victoria is powered using two 25.9V lithium polymer
batteries for control systems, two 12V lead acid batteries
for propulsion, and six D-cell alkaline batteries for the

backup systems. For safety purposes, all power is routed
through fuse blocks and a master cut-off switch. For
emergency telemetry and control, a pair of Xbee 900
Mhz radios and Arduino embedded controllers have
command over power, thrusters, and basic sensors. The
complete electrical schematic of Victoria is shown in
Figure 5.

A. Computers

Victoria’s central computing occurs on a National
Instruments CompactRIO (cRIO) embedded computer.
The cRIO uses a state machine architecture to per-
form each of the competition tasks autonomously. The
cRIO communicates with both the shore laptop and
the on-board computer designated to vision processing,
through both TCP and UDP network protocols. These
communication protocals were chosen to ensure both
high-speed and high-reliability data streams. Victoria’s
internal ethernet network is linked to the shore station
using the Ubiquiti airMAX long-range wireless system.
The shore laptop is a Lenovo ThinkPad T520 with a
Core i5 2.5 GHz processor.

As previously stated, vision processing is performed
on a dedicated PC running LabVIEW in a Windows
7 environment. The hardware platform is the Fit-PC3,
a consumer-grade embedded computer outfitted with a
ribbed aluminum case for fanless heat dissipation.

B. Sensors

Victoria’s navigation system includes a Garmin 16X
GPS receiver, Microstrain 3DM-GX3-45 GPS enabled
Inertial Navigation System (GPS/INS), Sick LMS-291
Light Detection And Ranging (LiDAR)sensor, and two
Microsoft LifeCam Studio 1080p HD webcams. The
GPS, INS, and LiDAR are connected to the cRIO via
serial connections. The GPS is an integrated waterproof
antenna and receiver, providing WAAS-enabled GPS
data at 1 Hz with an accuracy of 3 meters. The INS
contains three accelerometers, three gyros, and three
magnetometers providing data at a rate of up to 100
Hz as well as secondary GPS data. The LiDAR is a
75Hz, 180-degree scanning range finder used for object
detection and avoidance. The data from the LiDAR
is used in conjunction with camera images for littoral
navigation, shoreline detection, and detecting mission
station props. The cameras are connected via USB to the
vision computer, which is connected to the cRIO via a
Linksys router. These cameras were chosen for their high
definition, low distortion, and auto focus feature. For
the Hot Suit mission, an Omega OS136 IR temperature
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Fig. 5: Electrical Schematic
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sensor is mounted to the vehicle to determine the suit
with the highest temperature.

IV. MISSION CONTROL

A. Speed Gates and Channel Navigation

An Extended Kalman Filter (EKF) based Simultane-
ous Localization and Mapping (SLAM) algorithm was
implemented in order to navigate through both the speed
gates and the channel. This complex algorithm involves
several operations. First, we must detect potential ob-
stacles; this step consists of identifying objects using
range data from the LiDAR and color data from the
cameras. Then, we accurately determine the location of
the object by filtering the different sensors data through
the Extended Kalman Filter. Finally, Victoria has to
successfully proceed through the speed gates and the
channel using a custom curve tracking controller. The
only difference between navigating through the speed
gates and the channel is avoiding the yellow buoys in
the middle of the channel.
Object Detection - Camera
Image processing is performed using the National Instru-
ments Vision Assistant software. Once an initial image
is obtained several separate buffered images are saved,
one for each color of buoy. The following process is
repeated from the original saved image for each color.
First, blocks of color are detected by setting acceptance
thresholds in the Hue Saturation Intensity (HSI) color
space. HSI is used instead of a Red Green Blue (RGB)
space because the HSI has a lower dependence on
background lighting. This filter then produces a binary
image consisting of passed or not passed pixels. If there
exists a large amount of noise close in color to the
buoy, the erode function is used. Erode removes textured
surfaces, by shrinking them significantly faster than
smooth surfaces. This function is useful since natural
surfaces tend to be more textured than buoys. Next, a
filter for the area of each blob is applied for all images,
and any blob smaller than a predetermined threshold is
rejected. Each of the remaining blobs are bounded by a
rectangle.

The location of the center of the bottom line for each
rectangle is exported along with the color code from
the filter. This data is then combined with the camera
properties: angle, height, field of view, and resolution,
to approximate the direction of each blob. This direction
is used to match each object in the camera’s field of view
with the objects detected by the LiDAR.

The system is calibrated by using videos recorded
during test runs. Individual frames are analyzed and the
different parameters are adjusted to capture the buoys.

These adjustments are then tested on the entire video
clip to confirm their accuracy.

Object Detection - LiDAR
To identify whether an object is detected, we must
analyze the difference between the previous and current
data points. For objects in the water two parameters
must be considered: (1) the distance threshold, ∆r;
(2) the angle span, ∆φ. The distance threshold is
defined as the difference of the distances between two
consecutive data points, and the angle span is defined
as the difference of angles between the beginning and
end of an object. These parameters will vary depending
on the current environment, and must be experimentally
set. An illustration of LiDAR data can be seen in Figure
6. A large difference in distance represents a gap in

Fig. 6: Diagram of Sample LiDAR Date and Table of
Each Scenario

the data, denoting the beginning or end of a potential
object. Since noise is to be expected in LiDAR data,
we must further inspect the data to confirm that the
potential object fulfills both parameters. A feature label
pattern recognition method is used to detect the objects
from the LiDAR data. Each point of a LiDAR scan is
given a numerical feature value, 1-6. The labeling can
be seen in Figure 6, where each data point is labeled in
red with its corresponding feature number.

To successfully label each data point, we must traverse
through multiple nested if-else statements. Figure 7
shows the hierarchy structure of the if-else statements.

A flow chart of the data labelling process is illustrated
in Figure 8. Once the data points of an entire LiDAR
scan are labeled, a pattern recognition algorithm is used
to identify where actual objects are located in the scan.

The template used to identify an object
consists of a sequence of features represented by
{6, 1, 2, . . . , 2, 3, . . . , 3, 4, 6}. In Figure 6, the data
represented by {6, 1, 2, 2, 3, 3, 3, 4, 6} is an object,
while the data {6, 1, 2, 5, 6} is considered noise.

SLAM
Simultaneous Localization and Mapping is a popular,
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Case 1
|ri−1- ri| ≥ ∆rmin
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True False
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Fig. 7: Tree Diagram of Nested Case Structures
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Fig. 8: Feature Labels Diagram

yet difficult to implement, technique used to map an
unknown environment while tracking a robot’s location
within that environment. Although erroneous data from
sensors are useful in creating a rough estimate of an
environment, passing all data through a Kalman filter is
an advantageous way to reduce noise. Since Victoria’s
dynamics are based on a unicycle model, which is
nonlinear, we use an Extended Kalman Filter (EKF)
rather than a Kalman Filter. Victoria successfully uses
an EKF-SLAM algorithm to aid in all navigation. In
order to use EKF-SLAM, we must create a state space
model for the system. The state space model consists
of a state equation and an observation equation; the
input parameters are the state and input vectors. We use
the position and heading of the robot, as well as the
coordinates of each detected buoy to construct the state
vector. The input vector is composed of the linear and
angular velocity of the robot. The state vector x and the
input vector u are defined in equations (1) and (2).

x = [xr yr θr x1 y1 . . . xN yN ]T (1)

u = [v ω]T (2)

We use the state and output equations, (3) and (4), from
[1] in our implementation. At each time step sensor data
is used to update (1) and (2). The non linear matrices
f and h are added to zero mean Gaussian random noise
vectors, ε and δ .

xk = f(xk−1,uk) + εk (3)
zk = h(xk) + δk (4)

The GPS provides the latitude and longitude location
of the robot, which are then converted into a Cartesian
coordinates. The IMU yaw reading represents a true
north magnetic bearing, which is directly used as the
vehicle heading. To compute the coordinates of the
buoys we use angle and distance data from the LiDAR,
as well as the Cartesian coordinates and heading of
the robot. By sending the GPS, IMU, and LiDAR
data through an EKF, we reducing the amount of error
associated with each sensor. This allows us to accurately
map each detected buoy.

Controller
The channel navigation and the speed gate missions
are based on the curve tracking algorithm from [2].
Curve tracking is a fairly common controller used
on autonomous vehicles, which navigates the robot
along a predefined curve or line. The first step in this
algorithm is to select the objects located in front of
the robot. Then, the objects are sorted by distance and
color, which are determined by comparing the camera
and LiDAR data. This condition is given in equation (5).

(θi − δth) ≥ αi ≤ (θi + δth) (5)

where θi represents the angle between the robot heading
and the buoy, αi is the angle to the buoy from the camera
data, and δth is the angle threshold.
For the curve tracking controller, we must assume the
vehicle and objects satisfy the Frenet-Serret equations
shown in equations (6) and (7).

ṙ1 = v x1

ẋ1 = vuy1

ẏ1 = vux1

(6)

ṙ2 = ṡx2

ẋ2 = ṡκy2

ẏ2 = −ṡκx2

(7)
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where v is the linear speed control, and u is the angular
speed control of the robot; κ is the curvature constant
and s is the arc length parameter of the curve [2]. The
robot and the object position vectors are ṙ1 and ṙ2,
respectively. The curve tracking algorithm generates an
imaginary curve through the two closest pairs of red and
green buoys, and a circle around each yellow buoy. The
red and green curves serve as the outer boundaries for
the channel, while the circle allows Victoria to avoid
the yellow buoys. Using equations (8), (9), and (10), an
angular speed is calculated for each curve.

ur =
−κr

1 + κrρr
cos(φr)− λ(ρr − ρo) cos(φr)− µ sin(φr)

(8)

ug =
κg

1 + κgρg
cos(φg) + λ(ρg − ρo) cos(φg) + µ sin(φg)

(9)

uy =
κy

1 + κyρy
cos(φy) + λy(ρy − ρo) cos(φy) + µy sin(φy)

(10)

where φr, φg , and φy are the angle from the robot to the
respective curves; ρr, ρg , and ρy represent the distance
between the robot and the respective curves; ρo is the
desired separation between the robot and the curves; λ
and λy are the proportional gains; µ and µy are the
differential gains. The controller then calculates the total
angular speed, using equation (11), needed to stay within
the imaginary curves. The linear speed, v, is set to a
constant value.

u = ur + ug + uy (11)

An illustration of the imaginary curves and the desired
path is shown in Figure 9.
Simulation
To begin software testing as early as possible the
EKF-SLAM navigation controller was tested using the
National Instruments Robotics Environment Simulator.
The simulator is a new feature of the LabVIEW 2011
Robotics module, and includes simulation of a few
vehicles and sensors. Since Victoria has a differential
drive system, we have opted to use the NI Starter Kit
2.0, which is a three-wheeled differential drive robot.
The Starter Kit powers two TETRIX wheels with DC
motors and uses an omni wheel for steering. The drive
system similarities made it straightforward to convert
our thruster duty cycle controller outputs to angular
velocity inputs for the DC motors. In addition, the
simulator provides drivers for a few select sensors. The
available simulated GPS is the U-blox 5 series, which is
comparable to the Garmin 16X GPS, but also provides
bearing data. The available LiDAR is the Hokuyo URG

Fig. 9: Channel Navigation Path

series, which only has a field of view of 150◦. Although
the SICK LiDAR has a significantly larger field of view,
we felt the Hokuyo LiDAR would suffice. Additionally,
the environment simulator provides an AXIS M1011
camera, which has a field of view and resolution that are
approximately equivalent to the LifeCam Studio cameras
used on Victoria. The environment simulator GPS and
LiDAR data were ran through the Extended Kalman
Filter to obtain more accurate sensor data to be used
in the state and input vector. The Axis camera was
used to obtain the color of the different obstacles on
the vehicle’s route. The simulator environment used for
channel navigation is shown in Figure 10.

Fig. 10: Channel Navigation Simulation Environment
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Additionally, sample LiDAR data used for object
detection is illustrated in Figure 11. The set of three
consecutive points located at an angle of approximately
−50◦ represents a detected object, whereas the scattered
dots are considered to be noise.

Fig. 11: Sample LiDAR Data collected in Simulation
Environment

Furthermore, a sample of image processing data used
in the object detection algorithm is shown in Figure 12.

Fig. 12: Sample Camera Data From Simulation
Environment

B. Poker Chip

This mission was the most difficult to prepare for as
launching an autonomous vehicle from an autonomous
vehicle is not a trivial task. We have designed an
amphibious vehicle to deploy, shown in Figure 13,
affectionately named the ‘Mother Pucker’ (MP) by its
designers, from a custom deployment ramp. We plan

to have each vehicle act independently, while Victoria
monitors the sensors of the MP.

Fig. 13: Autonomous Amphibious Vehicle

The first step of the mission requires image processing
to look for the specified orange duct tape lining the
ramp to the dock. Once this color is within the specified
pixel locations, slight forward thrust will be used
to ‘dock’ Victoria. A linear actuator will deploy the
telescoping ramp system shown in Figures 14 and 15.

Fig. 14: Amphibious Vehicle Deployment Ramp
Pre-deployment

The stored potential energy will be used to launch
the secondary amphibious vehicle as shown in Figure
16. Once the MP is on the dock, it uses IR range
sensors to determine when it has been deployed. Then,
it begins its navigation algorithm which is a simplified
occupancy grid mapping using IR sensors in much the
same way a submerged vehicle would use side scan
SONAR. Occupancy Grid Mapping (OGM) assigns
a 2-D grid of cells, each with an associated discrete
random variable that can take on two values: occupied
and empty. A probability can then be assigned to each
cell to determine the likelihood that a cell is occupied.

GTSR 7



Fig. 15: Amphibious Vehicle Deployment Ramp model
Post-deployment

Fig. 16: Ramp Deployement Test

Occupancy grid mapping also requires a known path.
Since the dimensions of the dock are given, a simple
‘lawnmower’ path can be generated to cover the entire
area. The vehicle uses front and rear facing IR sensors
to prevent it from falling off the dock, while using side
scanning sensors to make a map of the environment.
When the edge of the dock is detected, the grid cell
probability is updated from 0.5 to 1. For the areas
within sensor range, but free of any obstacles, the grid
cell probabilities are updated to zero. Indexing the
occupancy grid probabilities to filter out the cells that
have adjacent probabilities of 1 yields the exact puck
location. The vehicle can then plan a path to retrieve
the puck. Once the MP has executed the planned path,
it uses a dedicated IR sensor placed in the front of the
vehicle to verify the mapped puck location and places
the vehicle directly over the puck. Once in place, a
linear actuator attached to a plate of Velcro will deploy,
retrieving the puck. A mechanical limit switch is placed
on the vehicle to activate this capture mechanism for
redundancy. When the chip is captured, the vehicle uses
the map generated to navigate back to Victoria.

There are several fail safes to ensure the deployed
vehicle is safely retrieved. The first method utilizes the
map generated during the run to drive the vehicle back

to the ramp. A mechanical limit switch as well as an IR
sensor will trigger the linear actuator to retract the ramp
once the MP is in place. In the event that the vehicle
can not return by its own navigation capabilities, a
winch with a safety line attached to the MP will pull
the vehicle back to Victoria. The final safeguard is a
timed, forced retrieval. After the allotted amount of
time for the amphibious vehicle to find and retrieve the
chip is over, the winch will activate, reeling in released
line, and then the deployment system will be retracted.

Simulation
The mission was modeled in National Instruments
Robotics Environment Simulator. The challenge
environment is shown in Figure 17. The map and
occupancy grid created from sensor data are shown
in Figure 18. The white trajectory is the robot’s path,
and the green represents an object detected by the
IR sensors. The initial occupancy grid is on the left,
with the updated grid on the right. Figure 18 shows
the occupancy grid when the robot detects the chip;
therefore, the cell with the chip holds a value of 1. t

Fig. 17: Poker Chip Challenge Simulation Environment

C. The Jackpot

In addition to Victoria’s primary camera, a Microsoft
LifeCam Studio will be deployed inside an acrylic casing
under the surface of the water. The primary camera
will detect the two red buttons by color matching and
a height/width ratio filter. The underwater camera will
focus on finding an object with high intensity, rather
than looking for the color white, so that the detection of
the buoy will be more robust to color changes caused by
light filtering through the water.

Because the acrylic casing for the underwater camera
will create distortions in the image, a software solution

GTSR 8



Fig. 18: Occupancy Grid Graph

utilizing a non-linear mapping between the pixel location
and the angle of the object with respect to the camera
will be used.

Both the underwater camera and primary camera will
be placed on the same vertical axis, which allows them
to work in conjunction for more precise matching. Once
both a button and the buoy are detected at the same
angle with respect to Victoria, Victoria will drive to that
location to hit the button.

D. Cheaters Hand

This challenge relies mainly on image processing. The
algorithm includes four primary steps. The first step of
the mission requires image processing to identify the
location of the mission station. The current camera feed
is compared to a predefined template which consists of
an image of the mission station. A template matching
score is used to determine when Victoria has reached
the station. Once the matching score has reached the
threshold, Victoria searches for the fake card, i.e. the blue
square. This step requires the use of a color matching
function. The vehicle drives in front of the set of cards
until it detects the color blue. Once the blue color is
detected, a message is sent from the vision computer to
the cRIO via TCP. When the cRIO receives this message,
a signal is sent to the water pump to start the dispersion
of water. The water pump keeps firing until the red flag
is detected. Similarly, a color matching function is used
to determine when the red flag has risen. The region
of interest is specified above the top corner of the blue
square. Once the red flag is detected, a message is sent

from the vision computer to the cRIO to stop the water
dispersion.

E. The Hot Suit

This challenge involves minor image processing and
sensor measurement. As Victoria is navigating along
the mission station, an IR sensor is used to measure
the temperature of each suit, while recording their GPS
locations. After Victoria has reached the last suit, the
maximum temperature is determined. The suit symbol,
its temperature, and its location are then transmitted back
to the shore station using the provided communication
protocol.

V. CONCLUSION

Victoria was subject to considerable redesign not only
in the mechanical and electrical systems but also in soft-
ware. The new mechanical and electrical design provides
a more stable and reliable platform that can certainly
be used for a variety of goals. Additionally, there was
a complete redesign in the software architecture, adding
more complex and sophisticated algorithms. Not only do
the EKF-SLAM and curve tracking algorithms provide
seamless navigation, but the new vision capabilities also
increase our chances of completing each mission in this
year’s competition.
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