
Georgia Institute of Technology

Edward Macdonold, Patrick Dillon, Chris Taylor, Sean Culpepper, David Moroniti

May 23, 2011

Abstract

For the second year of competing Georgia Tech Marine Robotics completely overhauled their design
from the previous year. Using a trimaran design for stability and speed, new and improved sensors
including LIDAR, IMU, GPS and CCD �rewire camera the new design is capable of performing each
mission. Algorithms include using Kalman Filtering all data to get good approximations of our states,
localization using known buoy locations and employing multiple behaviors through DAMN (Distributed
Architecture for Mobile Navigation).

1 Mechanical Design

1.1 Hull

The hull was completely redesigned form last year's vehicle. This year a trimaran hull form was selected.
While more di�cult to construct, this design was chosen for its increased stability, speed, and maneuver-
ability. The shape of the hull was designed in Paramarine and analyzed for buoyancy and stability. The hull
consists of polystyrene foam covered in several layers of �berglass for increased strength with out adding
very much weight. The two pontoons are only polystyrene foam, as they do not need the added strength
required of the main hull. The hull and the pontoons were cut on a 4-axis CNC hotwire foam cutter. The
hull was cut in 11 sections then glued together before applying the �berglass. The pontoons were cut as
a single piece then shaped by hand and covered in epoxy. The vehicle is 4 feet in length, 3 feet in width
and three feet in height. Two aluminum rails run the length of the hull and provide easy mounting to the
hull any where along the deck. This design allows for �exibility and modularity and on the �y con�guration
changes if desired.

Figure 1: GZ Curve

1

Figure 2: Wiring Diagram

1.2 Electronics Box

The electronics box consists of a modi�ed storage container. While last year's ASV used a mater proof pelican
case, this year a smaller and lighter box was used. The smaller and lighter box allows for easier assembly and
transportation. The electronics box contains the computer, batteries, and all electronics except sensors. The
motors connect via 4 Sub-Conn wet connects, and all other wires run through a custom-built pass-through
port. This is made of several layers of weather stripping, which allows any wires to easily pass into the box
with out needing separate connections for each wire. This allows the team to easier swap in and out parts
freely while still maintaining the integrity of the box. By having nearly all the electronics in the same box
we reduce the number of wires that need to run outside the box which makes waterproo�ng the ASV easier.
Inside all electronics are mounted to Lexan sheets, which are attached to the box with Velcro. This allows
the electronics to be moved around within the box without compromising the water resistance.

1.3 Electrical Design

This year's electrical system also under went a complete re-design. Major new features include LIDAR, IMU
, and GPS. Almost all connections are made inside the box which helps to reduce possible water exposure.
A custom built slot in the boxes allows for easy access to the box for any number of di�erent wires that are
needed. Due to many problems we had with last year's electronics system this year's was built completely
from scratch. For a complete wiring diagram see �gure 2.

1.4 Power

This year's power system is completely redesigned. This year there are two separate power lines. There is a
14.4 v line and a 22.2 V line. The 22.2V line consist of two 5000 mAh 22.2v Li-Po batteries in parallel, these
are used to power the thrusters because the motors produce max thrust a 19V. All the other electronics are
run o� a single 14.4 V 600 mAh battery, except the Laptop which has its own battery. Voltage regulators

Georgia Tech Marine Robotics 2

drop the 14.4 V to 5 V and 12 V for various components. Additionally the voltages of the batteries are
monitored in real time in addition an audible tone is produce if the voltage drops enough informing the team
that it is time to change the batteries. This helps to extend the life of the batteries.

2 Software

2.1 Internal Communication

Internally the various components of the boat's software each run on their own thread. Instead of mes-
sage passing, shared memory is used to create data that is globally accessible from any component. This
allows rapid development of components which have access to any data as soon as they need it without
the need to wait for a message to be sent and a response to return. Making extensive use of the Boost
Asynchronous Input/Output and Boost Thread libraries the prototype for the components and the shared
memory mechanism were developed to be generic and easily extensible. In order to solve the problem of
data ownership ambiguity the data is all owned by a central data manager which distributes shared access
to the data structures upon request. Once shared access to a data structure is received a shared mutex is
locked and either downgraded or upgraded to provide read or write access respectively. In order to keep the
code as readable as possible the shared objects are a templated class that are requested using a simple static
templated Get function, but because it is not necessary to keep this shared object around all of the time,
it is usually created automatically by either a templated ReadAccess or WriteAccess class. This allows read
or write access to any data on the system to be acquired in one line of code without the need to explicitly
release it.

2.2 Drivers

Custom drivers were written for all of the devices to maximize e�ciency. These drivers were written to
rely on the cross-platform Boost Asynchronous Input/Output and Boost Thread libraries. They are each
running at their maximum rate, determined by the hardware, which is immediately feed into the data �lters
and estimators. Because they also use the shared memory scheme mentioned above, all of the processing
components of the boat are instantly updated with the latest information about the state of the boat. In
order to decrease the room for error, when the drivers start, they are able to identify if they are connected
correctly and automatically correct for any mistakes.

2.3 External Communication

Externally the boat and the ground station communicate via Joint Architecture for Unmanned Systems
(JAUS) messages. This was done to provide a standard interface for communicating with the boat. The
data passed between the boat and the ground station is compliant with the JAUS standard if at all possible,
and as a result, all data stored internally exists in side classes that constrain data to be compliant with the
JAUS message payload format. Once the class is told to write its data to a bu�er the data is converted into
the correct format, bu�ered, and eventually sent across the network.

2.4 Operator Control and Monitoring Interface

In order to control and monitor the boat throughout its development phase, the user interface (referred to
as the ground station) was designed with the goal of expediting the debugging process. The ground station
was written as a web server and a website using the emerging standard for bi-directional full-duplex commu-
nication over TCP for servers and clients called WebSockets. This was accomplished by adapting a Boost
Asio web server to handle WebSockets using a handshake procedure established in late 2010. WebSockets
enables the interface to keep an open connection to the ground station server where messages can then be
relayed to the boat itself. In order to keep the communication protocol simple, all communication between
the ground station server and the client are done using comma separated value (CSV) format. Once the
connection is established, the server sends all known data about the boat to the client every 30 milliseconds.
Once the client receives this data it is parsed and displayed to the user in either a dynamically updated div

Georgia Tech Marine Robotics 3

or canvas element. Because raw data provides the worst data visualization possible, both a 2D and a 3D
real-time display of the state of the boat was created using WebGL. By drawing a 3D model of the boat
at the correct orientation, as well as vectors for velocity, and other data, the web interface accomplishes its
goal of increasing data understandability, which in turn aids the software development process.

3 System Architecture

Navigation of the surface vehicle is one of the greatest challenges of the competition. This large and com-
plex goal is broken down into many smaller tasks. Our overall navigation architecture can be split into 3
fundamental categories: Sensing, Thinking, and Acting. Each category feeds into the next.

The purpose of the Sensing block is to collect information about the outside world. This is accomplished
by an array of sensors: LIDAR, Camera, Infrared Sensor, Inertial Measurement Unit (IMU), and GPS.
The raw sensor data is conditioned, �ltered an analyzed so important features of the environment can be
extracted. Some of the most important features include boat velocity, boat position, and buoy position.
This information is then fed into the �Thinking� stage to in�uence how the boat behaves. The sensing stage
is discussed in more detail in the State Estimation, and Buoy Detection sections.

The sole task of the thinking block is to generate a relative target position at every time step. Choosing
the target position is a di�cult task as we may have many simultaneous goals and constraints. For example,
we may want to drive to an assigned waypoint, but we also want to avoid hitting any obstacles along the way.
The challenge is picking a target position trajectory that accomplishes both of these goals. Autonomous
behaviors are used to evaluate each individual goal, then the behaviors are combined using the Distributed
Architecture for Mobile Navigation (DAMN). More details on this behavior based architecture appear in the
DAMN Architecture section.

The position target generated by the �Thinking� stage is fed into the �Acting� block. The acting block
consists of two components: Position Controller, and Velocity Controller. The position controller determines
desired linear and rotational velocities that will drive us to our position target. These desired velocities are
achieved by PID velocity controllers. The position and velocity controllers are discussed in detail in the
Controllers section. An overall block diagram of the navigation system is shown in �gure 3.

Figure 3: Navigation and Control System Architecture

Georgia Tech Marine Robotics 4

4 System Identi�cation and State Estimation

4.1 Identi�cation of the Boat Dynamics

After the construction of the boat was complete, one of the �rst tasks we set out to accomplish was to obtain a
model of the boat dynamics. Speci�cally we needed the input-output relationship between motor thrust and
boat velocity. Of course the dynamics of boats is a well studied area, and a good approximation for the boat
linear velocity dynamics is given by a quadratic equation where the drag produced by the water depends on
the square of the velocity. Thus the boat dynamics are inherently non-linear. We chose to obtain a linearized
model around V=0, assuming a linear approximation would be su�cient. There are many bene�ts of using
a linearized model including ease of system identi�cation, observer design, and control system design. For
these reasons we chose to use a linear, state-space model to characterize our system in the following form:

[
V̇x

Ẇz

]
=

[
P
M 0

0 Q
M

] [
Vx

Wz

]
+

[
u11 u12 u13 u14

u21 u22 u23 u24

]
T1

T2

T3

T4

 (1)

Here P,Q,M, and u11...u22 are unknown constants. Vx and Wz are the linear and rotational velocities,
respectively. T1...T4 are the four motor thrusts. Notice we are also assuming that rotational and linear
velocities are completely decoupled at low speeds.

4.1.1 Experimental System Identi�cation

To determine the unknown parameters in our linearized model, we set up a series of experiments that would
allow us to observe the input-output relationship of the system. The inputs to the system are simply the
thrusts of our 4 motors. The outputs we would like to measure are the linear and rotational velocities. The
outputs could be directly measured using GPS, and IMU data. The thrusters were tested using a �sh scale,
and calibrated, to remove any non-linearities in their thrust to power relationship.

A series to tests were designed to excite the system in various ways. We used a matrix of di�erent
thrusts to cause the boat to move forward in a straight line, rotate in place, or drive in a circle. With
inputs and outputs logged and compiled from these various tests we were able to enter the information into
matlab and obtain a linear system model. The model was derived as to minimize the error in a least squared
sense between the model predicted system response, and the measured system response. Following this, we
obtained the following complete system model:

[
V̇x

Ẇz

]
=

[
0.4807 0

0 −0.726

] [
Vx

Wz

]
+

[
0.05276 0.05276 0.05276 0.05276
0.03863 0 0 −0.03963

]
T1

T2

T3

T4

 (2)

The plot below shows an example of a single experiment where the boat moved forward in a straight line.
Both the measured response and model predicted response for linear velocity are shown in �gure 4.

We found that by linearizing the thruster behavior, our linearized model was able to predict the actual
behavior of the boat rather well at low speeds.

4.2 Velocity State Estimation

Notice in �gure 4 that the measured velocity from the GPS is not only noisy, but also exhibits about a
1 second lag. If we were to close our velocity loop directly around this sensor data we would surely have
problems. Additionally we have some additional, yet noisy, acceleration data from our IMU. The goal here
was to combine the knowledge of our system model, with the accelerometer measurements and GPS velocity
measurements to obtain a good estimate of our linear velocity. The �rst step was to condition raw sensor
data so that it was in a usable state.

The accelerometer data tended to exhibit high frequency noise from the motor vibrations. This noise was
attenuated �rst by taking the di�erence between the measured acceleration and the acceleration predicted

Georgia Tech Marine Robotics 5

Figure 4: Simulated and measured system response. Actual data shown by red solid line, model predicted
behaviors shown by blue dotted line.

by our system model. This di�erence was then passed through a low pass butterworth �lter with a cuto�
frequency of .5hz. Then, the �ltered di�erence is added to the predicted acceleration. This allowed us to use
a very low cuto� frequency on our �lter, yet not attenuate accelerations that �should be there�.

The GPS velocity data needed su�ered from a di�erent problem. The GPS antenna is not at the center
of rotation of the boat. If the boat rotated in place, the GPS would measure a linear velocity as it traveled
in a circle. To remove this phenomenon we multiplied the velocity by the cosine of the di�erence between the
compass heading on the IMU and the heading given by the GPS velocity measurement. This would remove
any velocity measured by the GPS that is not in the direction of the boat heading.

With the raw sensor data conditioned we then passed everything through a Kalman �lter. The Kalman
�lter used the boat model obtained above as well as some knowledge of the sensor noise characteristics
obtained through additional testing. The plot below shows one test where we moved in a straight line. The
raw velocity measurement and estimated velocity are shown in �gure 5.

Figure 5: Measured and estimated system response. Actual data shown by red solid line, estimated velocity
shown by black dotted line.

Using the Kalman �lter we were able to greatly improve our velocity estimate, and eliminate the lag
inherent in the GPS velocity measurement. We then repeated this approach for rotational velocity estimation
using our system model and gyroscope data.

4.3 Position State Estimation

After extensive testing, we found the positional accuracy of our GPS sensor to be inadequate. We wanted
to somehow get a much more reliable �x on our location. Here we sought to employ concepts from SLAM
and apply them to our particular case. In addition to the rough GPS position we also have the ability to

Georgia Tech Marine Robotics 6

perform dead reckoning by using our velocity and heading estimates obtained above. These two things alone
could provide reasonable localization, however it could drift over time. To further improve upon this we
wanted to use the additional information we obtained through our buoy observations. Since the buoys are
�xed in space, and we need to locate them for the channel navigation task, they are well suited to be used
as landmarks for SLAM.

Each buoy that is observed using LIDAR and computer vision is added as a state into a high-dimensional
state-space system. The boat's position also acts as a state within this system. The buoy dynamics are
trivial: they have none, since they are stationary. The boat dynamics are also simple because we know
the boat velocity. The output of the state space system is our GPS measured position, and observed buoy
locations. Thus the complete system model is given by equations 3 and 4:

˙Boatx−pos

˙Boaty−pos

˙Buoy1x−pos

˙Buoy1y−pos

.

.

.
˙BuoyNx−pos

˙BuoyNy−pos


=



V cos(heading)
V sin(heading)

0
0
.
.
.
0
0


(3)



GPSx−pos

GPSy−pos

Observed−Buoy1x−pos

Observed−Buoy1y−pos

.

.

.
Observed−BuoyNx−pos

Observed−BuoyNy−pos


=



1 0 0 0 0 . . . 0 0 0
0 1 0 0 0 . . . 0 0 0
−1 0 1 0 0 . . . 0 0 0
0 −1 0 1 0 . . . 0 0 0
.
.
.
−1 0 0 0 0 . . . 0 1 0
0 −1 0 0 0 . . . 0 0 1





Boatx−pos

Boaty−pos

Buoy1x−pos

Buoy1y−pos

.

.

.
BuoyNx−pos

BuoyNy−pos


(4)

This is in the form of a standard state-space system. If we know the noise characteristics of our boat and
buoy position measurements, and are able to correctly associate buoys with their states in the model, then
we can use a Kalman �lter to simultaneously update our boat and buoy position estimates. This should
theoretically give us a much better estimate of both the boat position, and buoy locations.

At the time of this writing, the complete system has yet to be integrated and tested so we do not have
any results to report.

5 Position and Velocity Control

5.1 Position Controller

Since this system can be treated as a �unicycle� type drive robot a non-holonomic position controller must be
used. The robot is only able to have linear velocity along the direction it is facing, but it can also rotate about
its center. Thus the position controller must determine the desired linear and rotational velocities based on
the desired target position. This is done using the non-holonomic controller proposed by Olfati-Saber [?].

The method involves partial feedback linearization on the translation dynamics of the vehicle. This
allows us to achieve global asymptotic stability with respect to the target position. Since the output from
the DAMN arbiter is a target position relative to the robot, no direct feedback to the position controller is
required (i.e. the input is already the position error).

Georgia Tech Marine Robotics 7

Figure 6: Position Control block diagram

5.2 Velocity Controller

The Velocity controller follows a basic PID type model. The linear and rotational velocity dynamics are
assumed to be decoupled, and as such they each have their own PID loops. These two loops must be somehow
combined to give the ultimate 4 thruster commands. This is done by making the sum of the 4 thrusters
equal to the output of the linear velocity loop, and making the di�erence between the two outside thrusters
equal to the output of the rotational velocity loop. The complete block diagram, including Kalman �lter
blocks, is shown in �gure 7.

Figure 7: Velocity Control Block Diagram

There are linearization blocks between the output of the PID loops and the thruster commands to remove
the non-linear force-power relationship of the thrusters.

6 Behavior Based Control

6.1 DAMN Architecture

To combine multiple behaviors we employed DAMN (Distributed Architecture for Mobile Navigation).
DAMN operates by discretizing the space around the robot. Each behavior votes for each spacial block
according to how bene�cial it would be for that behavior to set that block as the target position. Votes
range from -1 to 1. A vote of 1 corresponds to a block being a highly bene�cial choice for that behavior, and
a vote of -1 corresponds to a detrimental choice. These votes are then weighted and summed, and the block
with the greatest vote is chosen at the position target. DAMN was a logical choice over motor schema or
subsumption since it allows all behaviors to always be active, but also decreases the chances we get stuck in
a local minimum. The challenge with DAMN was to discretize the space around the robot as to create cells
on which each behavior could vote. This was solved by using a polar co-ordinate system centered about the
robot. Cells were created by 180 evenly spaced radial lines extending from the origin, and several concentric
circles of di�erent sizes, centered about the origin. Since we care more about space closer to the robot, the
diameters of these concentric circles grow exponentially with the distance from the robot. This way we can
have a limited number of cells, yet the area of cells close to the robot are small allowing precise positioning
(see �gure 8).

Georgia Tech Marine Robotics 8

Figure 8: DAMN cell division. 180 radial lines, 6 concentric circles: 1080 total divisions. Angles are given
in degrees, circle radius' are given in meters.

In in our case, we have many behaviors but 3 are fundamental: Avoid Obstacles, Go-to Waypoint, and
Navigate Channel. The Avoid Obstacle behavior places a binary vote for each cell, either -1 or 0. If entering
a cell could potentially cause us to his an obstacle then the vote is -1; it is 0 otherwise. This behavior is
given su�cient weight so that any cell with a vote of -1 will never be the chosen destination. The behaviors
are combined by the arbiter, with the weights of each behavior's votes dictated by the state machine. For
example, when we want to navigate the channel, that behavior's vote is given signi�cant weight. However,
when we don't care about staying in the channel that behavior's weight is set to zero.

6.1.1 Go-to waypoint

The Go-to waypoint simply drives the robot to a given global reference point. This is converted to a vote
according to the equation:

Vi =
1

||Ci − P ||+ 1
(5)

Here Vi is the vote for cell i, P is a vector pointing to the target position, and Ci a vector pointing to the
center of cell i. In other words, the vote for a given cell is inversely proportional to the distance between the
center of that cell and the target position. The end result of the combined behaviors results in the robot
driving towards the closet point to the target position where it will not collide with an obstacle.

6.1.2 Channel Navigation

The channel navigation behavior attempts to keep the boat within the channel. Given the buoy locations, a
polygon is formed using the buoy locations as vertices. Edges are formed by building a Gabriel graph which
tends to create edges only between neighboring vertices. Excessive edges are trimmed until we are left with
a well de�ned, closed polygon. The behavior then simply votes 0 for any points within the polygon and -1
for any points outside the polygon. We are also considering adding slight negative votes for points inside the
polygon, yet close to the borders. This would tend to cause the vehicle to favor the center of the channel as
opposed to the edges.

6.1.3 Obstacle Avoid

The reactive Obstacle Avoid behavior attempts to calculate the distance the robot can travel in every
direction before colliding with an obstacle. Since this is a reactive behavior, it relies only upon the present
laser scanner values. For the purposes of �growing� obstacles, the robot is treated as a rectangle, and it is
assumed it can only drive in the forward direction (ie, it is non-holonomic).

Georgia Tech Marine Robotics 9

For each angle between -135 and +135 degrees, the laser scanner returns the distance to the nearest
detected obstacle. For each of these points a �keep out� area is generated according to the how close the
robot is allowed to get to the obstacle. Each laser scanner ray is treated as a vector, and the �keep out� area
is de�ned by two distance values: In-line and Perpendicular distance (see �gure 9a).

When this is repeated for all laser rays a complete �keep out� area is generated where the robot could
potentially hit an obstacle (see �gure 9b)). Notice the robot cannot drive too close to an obstacle, yet it
can go past an object with the minimum clearance required. If the robot drives to any point within the
green boundary line, it will not collide with an obstacle. If a DAMN cell overlaps with any of this area, the
behavior's vote is -1 for that cell.

(a) Single Laser Ray

]

(b) Full Laser Scan. The robot is the blue dot, obstacles are black
lines, the laser data is the blue line. Each LIDAR vector's �Keep
Out� boundary is shown in red. The inner boundary of the resul-
tant "Keep Out" area is shown by the green line.

Figure 9: Visualization of the Obstacle Avoid Behavior

7 Conclusion

Georgia Tech Marine Robotics boat went through a total overhaul not only in mechanical design but also
algorithm and software design. A complete hull redesign from PVC pontoons to the current design provided a
much more hydrodynamic shape. A much needed upgrade to the computer system provided the capabilities
to process all incoming data on time with the possibility of GPU utilization in the future. A complete
restructure in the code provided JAUS compliant communications and easy component creation while also
providing easy readability to future programmers. Lastly the algorithms developed and used provided means
of state estimation and buoy localization each necessary to complete every task in the 2011 competition.

Georgia Tech Marine Robotics 10

