
WHY YES, THAT IS HOT GLUE 1

Why Yes, That is Hot Glue:
A Simulation Based Approach to Roboboat 2016

Samuel Seifert, Patrick Meyer, James Wittig,
Vinayak Ruia, Daniel Findeis

Georgia Institute of Technology

Abstract—This paper describes the development of Burnadette,
a fully autonomous surface vehicle for use in the AUVSI
Roboboat competition developed by the Georgia Tech ADEPT
Lab. The vehicle uses a previously manufactured platform to
allow for added emphasis on software capabilities. A tightly
coupled simulation environment was developed in parallel to the
hardware solutions. This allowed for the development, testing,
and integration of various autonomous behavior algorithms for
use in the competition. The simulation environment developed
also includes hardware in the loop capabilities for use in debug-
ging and testing. The added simulation capability has allowed for
rapid iterations of these behaviors while lessening the need for
time consuming full system tests. We have high hopes that this
process will lead to success at this year’s Roboboat competition.

I. INTRODUCTION

Roboboat is held over seven days. For the first five days,
participating teams vie for several 30 minute time slots for
testing on the competition course. Over the course of these
days, teams can expect to get roughly 10 hours of time to
test. This is simply not enough time to develop, debug, and
tune entire software stack for all of the tasks outlined in
the competition. To adequately prepare for the competition,
teams must to supplement this time either by: using data and
knowledge from past competitions, testing before the compe-
tition at a mock competition site, and testing in simulation.
Due to lack of foresight, recorded sensor data from previous
Roboboat competitions was not available. Additionally, the
nearest suitable testing site to Georgia Tech is a 40 minute
drive away. Collecting real world data at this site requires a
significant time investment, and it would be impossible to test
at this site on a day to day basis. Due to these challenges, the
team has decided to augment our testing capabilities through
the development of a comprehensive simulation environment,
called the ADEPT Autonomous Vehicle Simulator (AAVS).
Using this environment, different autonomy and control al-
gorithms can be designed, implemented, and tested without
needing to be at the lake. This allows lake time to be used more
efficiently, verifying and tuning behaviors instead of creating
and debugging them.

The simulation environment has proved incredibly useful
in non-software aspects of the design process too. Ambigu-
ous hardware questions, like what LIDAR should be used?
and where should the hydrophones be mounted?, can be
answered through virtual experimentation. By running the
entire Roboboat competition in AAVS using different sensor

configurations, the performance of each configuration can
be compared using the scoring guidelines outlined by the
Roboboat rules as an objective function. This technique en-
sures we get the most out of the sensors we have, and can be
used to determine which sensors will actually help improve
performance of competition tasks before purchases are made.

The remainder of this paper will outline the development
of the hardware and software used to compete in this year’s
Roboboat competition. This begins with a discussion of our
overarching design philosophy in II. Design Strategy. Next,
the implementation of this strategy in the development of
AAVS and the vehicle hardware used is outlined in III. Vehicle
Design. Finally, preliminary results available at this time are
presented in IV. Experimental Results.

II. DESIGN STRATEGY

Roboboat is ultimately an autonomous vehicles competition.
Though the vehicle design can improve performance, the most
important factors in having a successful system are the au-
tonomous behaviors. With this in mind, the Georgia Tech team
adopted a software first approach to the design process. This
is similar to a common view in the UAV community, where
the vehicle itself is merely a truck to get the payload where it
needs to be. In this case, the behavioral algorithms themselves
could be considered the payload. The truck necessary could
be any maneuverable floating platform, provided it supports
the correct sensors. To minimize the design work necessary to
get an adequate platform, a previously designed vehicle was
used. This platform was the vehicle used by the 2014 Georgia
Tech team.

To further reduce workload, the software stack used for
simulation was designed to control the actual competition ve-
hicle (as opposed to being two separately developed entities).
The simulation and the actual vehicle software are the same
stack, which has greatly accelerated the development process.
The simulation environment is a great tool because real world
success implies simulation success: i.e. the ideas that fail in
simulation can be abandoned because they won’t work in
real life. However only testing in simulation is inadequate
because simulation success does no imply real world success.
To compensate for this phenomena, the team has worked hard
to constantly validate the simulation with real world tests.

It is important to understand these two points that highlight
different strengths of a simulation based design approach.
Though significant effort has been expended to accurately

WHY YES, THAT IS HOT GLUE 2

model the on-board sensors and dynamics of the vehicle,
the simulator generally overestimates system performance.
As such, ideas that have been implemented in the simulator
without success are unlikely to perform any better in the real
world, where additional noise and non-optimal conditions are
constantly present. Similarly, ideas that work in the real world
will almost certainly work in simulation where conditions are
ideal.

III. VEHICLE DESIGN

As the design philosophy described above is very much
software first, this section will largely discuss the development
and capabilities of AAVS. This includes a broad overview
of AAVS itself and it’s capabilities, the dynamic model and
state estimator used, and a sampling of the implemented
autonomous behavior algorithms. Following this will be a brief
description of the hardware systems used.

A. Simulation Environment

AAVS was built from scratch in C#. Using data extracted
from Google Maps, knowledge retained from previous years
competitions, and the preliminary rules for this year, the 2016
Roboboat course has been laid out in the simulation environ-
ment as shown in Fig. 1 inside AAVS. Using this environment
to develop algorithms and the overarching software stack has
proved invaluable.

Figure 1: The 2016 Roboboat course in simulation.

Initial analysis showed four sensor subsystems were re-
quired to gather adequate information from the environment
to complete the Roboboat tasks:

• GPS & IMU to determine vehicle state.
• LIDAR system to detect physical obstacles.
• Camera system to recognize color & pattern.
• Sonar system to locate the pinger.
Models for sensors in each of these four categories have

been developed for use in AAVS. These models have been
validated against real world experiments to show they can
generate representative data. In the current version of the

simulator, GPS, IMU, and LIDAR data can be realistically
generated (as shown in Figure 2), while camera and sonar
data remain unrealistic. Because of this, most of the autonomy
algorithms developed rely primarily on GPS, IMU and LIDAR
data, and only use the cameras and sonar systems when specif-
ically needed. However, this has proven to be sufficient in real
world tests. A suitable dynamic model has been implemented
to estimate the vehicle’s response to command inputs as well
as an Extended Kalman Filter and will be described in further
detail in the following section.

B. System Dynamics

For the simulation environment to generate representative
training runs, a reasonable model for how the vehicle moves
through the water is needed. While there has been work on
three-dimensional dynamic models for small marine vehicles
[1], a two-dimensional model, considering yaw, surge, and
sway while ignoring pitch, roll, and heave has been imple-
mented. Ignoring pitch, roll, and heave is common practice
for small surface vehicles [2] in low sea states where affects
like broaching can be ignored. For propulsion, the vehicle
is equipped with four SeaBotix BTD150 thrusters in a skid
steering configuration. Two thrusters are along the centerline
of the vehicle, and they can be used to accelerate/decelerate
in the longitudinal direction. The remaining two thrusters are
on either side of the vehicle, and can be used to acceler-
ate/decelerate in the longitudinal direction and apply a torque
to induce rotation. As such, the dynamic model consists of
these states:

• θ - angular position (yaw) in world frame
• ω - angular velocity in world frame
• x - position in world frame
• y - position in world frame
• u - linear velocity (surge) in vehicle frame
• v - linear velocity (sway) in vehicle frame

And the following inputs:
• ml - force applied by left motor
• mc - force applied by center motors
• mr - force applied by right motor
SeaBotix provides a thrust to voltage curve for these mo-

tors at low speeds as shown in Fig. 4. This thrust-voltage
relationship was used to build a transfer function to estimate
the applied forces for given throttle inputs. The state update
equations for the dynamic model are dictated by the following
equations:

(1)θk+1 = θk + ωt · dt

(2)
ωk+1 = ωk + dt ·

(
mr,k −ml,k

c1
− c2 · wk − c3 · wk

· |wk|+c9 ·
(
u2k + v2k

)
· sin (atan2 (vk, uk))

)
(3)xk+1 = xk + dt · (uk · cos (θ) + vk · sin (θ))

(4)yk+1 = yk + dt · (vk · cos (θ) + uk · sin (θ))

WHY YES, THAT IS HOT GLUE 3

Figure 2: Simulated LIDAR, GPS, and IMU Data. The ground
truth location of the vehicle is represented by the transparent
vehicle model. The EKF estimated boat position (based off
simulated GPS and IMU data) is represented by the opaque
vehicle model. The vehicle is equipped with a 2D LIDAR unit,
that is configured rotate up and down. The cyan lines are the
simulated LIDAR data projected onto the world frame using
the estimated boat position. The LIDAR’s used in this project
do not pick up the surface of the water, so the return data is
clean.

uk+1 = uk · cos (ωk · dt)− vk · sin (ωk · dt) + dt

·
(
mr,k +ml,k + 2 ·mc,k

c4
− c5 · uk − c6 · uk · |u|

)
(5)

Figure 3: Sister image to Fig. 2, with the vehicle approaching
first speed gate.

Figure 4: Thrust vs Voltage curve for SeaBotix BTD150 at
low speed.

(6)vk+1 = vk · cos (ωk · dt) + uk · sin (ωk · dt)
+ dt · (−c7 · uk − c8 · vk · |vk|)

In the above equations, the kth state is the current state,
while the (k+1)th state is the updated state for the next time
step. dt is the discrete time step.

For the heading update equation, Eq. 1, only the first order
angular velocity term is considered. Higher order angular
acceleration terms are insignificant with a sufficiently small
time step.

The angular velocity update equation, Eq. 2, consists of
four terms to define the angular acceleration. The first part

WHY YES, THAT IS HOT GLUE 4

term consists of the input torque mr − ml divided by the
vehicle rotational inertia c1. The length of the moment arm
for these torques is captured in the rotational inertia term.
The next two terms approximate the first (c2) and second (c3)
order angular damping of the vehicle. The final term represents
a straightening phenomena, designed to capture the vehicles
natural tendency to glide straight through the water.

The global position update equations, Eq. 3 and 4, only
contain the first order velocity terms without higher order
acceleration terms. This is done with the same assumption
of a sufficiently small time step. The sin(θ) and cos(θ) terms
transform the velocity terms u and v from vehicle frame to
world frame.

The surge update equation, Eq. 5, involves transforming the
velocity in vehicle frame as the vehicle frame rotates. The
next term is the linear force divided by the system inertia (c4).
The last two terms are first (c5) and second (c6) order drag
approximations. The sway update equation, Eq. 6, is identical
to surge with the exception of the removed force/inertia term.

For this model to be useful, values for the nine constants that
appear in the state equations need to be assigned, estimated,
or measured. Some of these constants (like mass) can be
measured directly, while other constants need to be estimated.
Initially, online parameter estimated with a recursive least
squares (RLS) estimator was attempted. However, the online
version proved unstable and an offline parameter estimator was
used to determine these coefficients. For the offline parameter
estimator, an hours worth of GPS and IMU data (of the
vehicle driving on the lake in a predetermined pattern) was
recorded. GPS data consists of the vehicle global position
at a 4 Hz update rate, and the IMU data consists of 3D
Magnetometer, Gyroscope, and Accelerometer data at 100
Hz. 95% of the GPS data was withheld and used to train
& determine dynamic model coefficients. A gradient descent
optimizer was configured to minimize the mean-square-error
(MSE) of the withheld GPS data with the predicted model
location. In other words, we:

1) Split data into 5 second time intervals.
2) Withheld all the GPS data (except the very first data

point in each time intervals) from each interval.
3) Seed dynamic model with an estimate of what the boat

is doing at that very first point for each interval.
4) Evolve the dynamic model 5 seconds into the future,

using only the recorded input (motor voltages) for that
interval.

5) Compare the withheld GPS data with predicted path
from dynamic model.

6) Perform gradient descent on model parameters to mini-
mize the MSE between withheld and prediction data.

This approach was tried on several dynamic models before
settling on the model described above. Due to simplifying
assumptions (ignoring wind, waves, & wakes), the training
and prediction data won’t match perfectly. Figure 5 compares
the training and prediction data for a few samples of the
training set. In this clip, the vehicle is moving from left to
right. The grid lines correspond to meter increments. The
red arrows correspond to estimated vehicle locations at the
start of each interval, and the green path corresponds to the

predicted boat path from the dynamic model. Each black X is
a GPS data point that was withheld. Note that during the first
5 second interval the predicted (green) and withheld (black)
paths are nearly on top of each other. During the second 5
second interval, the two paths diverge after the boat makes an
erratical left turn. However, even with this occasional erratic
behavior, the predicted coefficients perform sufficiently well
for our needs.

Figure 5: Withheld training GPS data vs dynamic model
prediction.

C. State Estimator

The dynamic model state equations were intentionally laid
out to be easily transitioned into an Extended Kalman Filter
(EKF). A Kalman Filter (KF) is an optimal estimator for linear
systems assuming both gaussian process and measurement
noise, and the EKF is a modified version of the KF that
can handle nonlinear systems. There is a significant amount
of literature on EKFs, with much of the work beyond the
scope of this paper. Only the most pertinent details of the
implementation used for this work are described below.

The quality of the EKF output is directly related to how well
the dynamic model, process noise (Q matrix) and measurement
noise (R matrix) represent the actual system. Typically, the
dynamic model, Q, and R are measured with available ground
truth data[3][4]. A novel process has been developed to
estimate the full Q and R matrices without ground truth data
for this project and is the subject of another paper to be
published at a future date.

The EKF uses bayesian inference to combine information
from the dynamic model (priori) and from sensor measure-
ments to predict the vehicle state (posteriori). A good fitting
dynamic model is needed to maximize EKF performance.
Tuning our dynamic model, as described above, requires a
good estimate of what the vehicle is doing at the start of
each time interval. This is a chicken or egg conundrum, as
tuning the EKF requires a good dynamic model, and tuning
the vehicle model requires a good EKF. The problem can be
overcome by alternatively tuning the EKF, then the dynamic
model, then the EKF again in an iterative fashion.

D. Autonomy

The software developed conforms to the following ordered
structure:

1) Raw data from sensors (like LIDAR point clouds) is
transformed into usable data like global positions and
orientations of docks and buoys.

2) Buoys are identified from the list of obstacles and
labeled (i.e. which buoys are most likely to be speed

WHY YES, THAT IS HOT GLUE 5

gates, or obstacle entrance & exit gates, or the buoy
with the active pinger).

3) Gate, dock, and pinger locations are transformed into a
destination based on the planner that takes into account
the current and completed tasks for the overall mission.

4) The arbiter takes the destination, obstacles list, and other
sensor data and determines how to get there without
hitting anything.

5) The controller transforms the arbiter command (direction
and heading) into motor voltages, keeping the vehicle on
course & stable.

Some specialized algorithms combine two more more of
these steps, but for most configurations the above list repre-
sents how data flows through the software. There are many
different moving parts, and many of these steps have been
implemented in more than one way. It would be impossible
to cover the entire software in the space of this paper, so a
representative sample is presented here.

1) Acoustic Pinger Localization: The vehicle is equipped
with three hydrophones. The hydrophone layout is shown
in Fig. 2, with the blue cylinders representing hydrophone
locations. Each hydrophone returns a raw audio signal which,
when filtered and amplified, can be turned into a series of
timestamps that correspond to when the hydrophone detected
a ping. There are several ways to use these timestamps to
estimate pinger location. The best performing algorithm that
has been implemented is a RANSAC locater[5].

If two hydrophones recorded the same event at the same
time, the pinger must be equidistant from both hydrophones.
This is illustrated in Fig. 6, with the red circles representing
hydrophones and the blue line representing the continuous set
of possible pinger locations.

Figure 6: Continuous set of pinger locations (blue) given that
some event was recorded by two hydrophones (red) at the
same time.

This blue line is also called an contour line, signifying that
for any point on the line, the time difference between when
the sound reaches both hydrophones is constant. A nonzero

time difference would correspond to a different contour line,
as shown in Fig. 7. The increment in time difference values
between adjacent contour lines in this graph is constant. The
nonuniform angular resolution illustrated in Fig. 7 highlights
the fact that estimated pinger position accuracy is sensitive to
the orientation of the hydrophone pair relative to the pinger.

Figure 7: Contour lines for a two hydrophone sonar array.

With multiple hydrophone pairs, it is possible to combine
the information from the contour lines to triangulate the
position of the pinger. Alternatively, a single hydrophone pair
could estimate the position of a stationary pinger by collecting
several data from several different locations. For either of these
methods, an accurate estimate of the vehicles state, and the
relative orientation of the hydrophones to the vehicles frame is
necessary. In practice, it helps to both have more than two hy-
drophones, and move the vehicle while data is being recorded.
This is illustrated using the simulation environment in Fig. 8
and Fig. 9. Finding an optimal configuration for hydrophone
placement analytically, especially considering the coupling
with the EKF and autonomous behavior, is impossible. Using
the simulation environment, however, a local optimal solution
can be found.

2) DAMN Arbiter: Distributed architecture for mobile nav-
igation or (DAMN) is a reactive architecture that arbitrates
through voting [6]. The local region around the vehicle is
broken up into smaller sub regions, and each behavior (in
this case both go to waypoint and avoid obstacles) votes on
how willing that behavior is to travel to that region. These
regions are illustrated in Fig. 10; where color corresponds
to vote total. Green indicates a high vote, or a willingness
for the vehicle to head to that region. Red indicates a low
vote or an unwillingness to head to that region. Different
behaviors have a different voting weight. The avoid obstacles
behavior has the strongest vote, which is why the regions near
perceived obstacles (indicated by red circles) are dark red. To
avoid situations where the goal point is directly behind an
obstacle, the avoid obstacle behavior also negatively votes for
any areas that are obstructed by known obstacles. The orange

WHY YES, THAT IS HOT GLUE 6

Figure 8: RANSAC for single ping on a three hydrophone
vehicle. The system misses (green cross) the pinger (red buoy)
because the contour lines are almost all parallel.

cross indicates the current destination, and, as expected, is
surrounded by the greenest regions. The arbiter commands the
vehicle to head toward the region with the highest vote total,
with a speed that’s proportional to how far the region is from
the vehicle.

3) Potential Fields Arbiter: Another arbiter that has been
implemented and tested is arbitration through a potential
field abstraction. Each behavior now acts as either a source,
such as avoiding obstacles, or a sink, such as a waypoint
destination. A weighted average of the resulting fields is taken,
again with avoid obstacles having the dominant weight, and
heading and velocity is returned. This return is produced via a
simple gradient descent through the potential space. Figure 11
illustrates the average vector returned by the arbiter at various
locations, indicated by the white arrows. The orange cross
denotes the waypoint sink and red circles denote perceived
obstacles acting as sources in the potential field.

The simulation environment has been used to compare
performance of these two (and other) arbitration techniques.
Visualizations within the software provide insight to not only
which algorithms perform best, but also why they perform
best.

E. Hardware Description

An existing platform that had been used in past Roboboat
competitions was repurposed for this year’s competition. The
vehicle frame itself is a trimaran design. Propulsion is provided
by four Seabotix electric motors arrayed in a skid steering

Figure 9: RANSAC for three pings on a three hydrophone
vehicle. The system returns (green cross) a much better
estimate for pinger (red buoy) location because the contour
lines are not all parallel.

configuration. Onboard computing is handled by an Intel NUC
with a Core i7 processor running Windows 10. The computer
is interfaced with the DC motor controllers using an Arduino
Mega microprocessor and packetized serial communication. A
Hokuyo UTM-30LX planar LIDAR actuated by a Dynamixel
AX-12A servo is used for 3D obstacle detection and clas-
sification. A Microstrain 3DM-GX3-45 INS is used for an
onboard GPS and IMU system. All electronic components
are housed in a waterproof Pelican Storm iM2400 cases. The
case has been outfitted with a modular component rack and
custom power rail system. The motors and other electronics
are decoupled on separate circuits, with a 5 cell LiPo battery
used for motor power, and a 4 cell LiPo battery used for the
computer and sensor systems.

IV. EXPERIMENTAL RESULTS

Much of this paper has discussed the value of the AAVS
environment. One of the key features of this environment
is the integrated stack used for simulation, hardware-in-the-
loop testing, and control of the competition vehicle. This has

WHY YES, THAT IS HOT GLUE 7

Figure 10: DAMN arbiter.

Figure 11: Potential fields arbiter.

allowed for testing of algorithms, design choices, and hard-
ware implementation on multiple levels. Software simulations
are being run near constantly to further refine and compare
behavioral algorithms. Hardware-in-the-loop simulations are
largely done at the Georgia Tech ADEPT Lab and around
the Georgia Tech campus with the vehicle being drug around
in a wagon. Various tests are done multiple times a week.
Full system tests are conducted at Sweetwater Creek State
Park on a self constructed mock mission course, and have
been done on a roughly monthly basis. Previous sections have

covered the uses of pure software testing, while this section
will focus mainly on the hardware-in-the-loop simulation and
the playback of real world testing data.

A. Hardware in the Loop

As previously discussed, the simulation environment is also
the software used to control the actual competition vehicle.
This means that all sensors and actuators aboard the vehicle
have been interfaced with the simulation software. This allows
for these sensors, and the data returned by them, can be
used to accurately model, predict, and validate real world
performance. This has been an invaluable asset in debugging
the implementation of the software-hardware interfaces.

An example of this is in the motor controller interface.
By allowing the vehicle to actively actuate it’s real systems
in a simulated mission run, their performance and potential
faults can be identified before planning, or in preparation for,
a lake trip. During early testing, an unacceptable amount of
lag was present in the initial implementation of the motor
controller interface. By identifying this lag using hardware-
in-the-loop testing, the problem could be solved in the lab
and a sufficient controller interface was implemented without
wasting any precious lake testing time. Many hours have been
spent using similar simulations of other components to debug
and improve their implementations before even getting to the
lake.

B. Playback & Visualization

This integrated software stack also allows for another ad-
ditional capability: the playback of real world testing data.
By logging data taken during real world tests, whether at the
lake or in a hardware-in-the-loop simulation, the simulation
can then use this recorded data instead of simulated sensor
data. This capability allows for the visualization of what the
vehicle was thinking as it went through a test. Figure 12 shows
both a frame from a video taken during a lake training run,
and the cumulative sensor data up to that point for that run.
During this run the vehicle found and navigated the speed gates
successfully, which is not surprising given the two distinct
LIDAR point clouds that have been picked up on the right.
In this case, the visualization is interesting but not useful.
However, when the system fails to navigate through the speed
gates (or do any other task), the visualization is incredibly
useful. By observing what goes on and what the behavior
algorithms were planning, the problem can be diagnosed (was
it a sensor blind spot error? sensor filtering error? arbiter
error? or controller error?). This information can be used
to solve the underlying problem and ultimately improve the
vehicle instead of just alleviating the symptoms of the problem
with ad-hoc debugging methods.

V. CONCLUSION

At the beginning of this year, the team decided that we were
going to win this competition with software. We opted to spend
as little time and effort on hardware as possible, improving and
iterating on software capabilities instead. We’ve re-purposed

WHY YES, THAT IS HOT GLUE 8

Figure 12: Playback capability of simulation environment.
Left is par of a video from one training run. Right is the
visualization of the cumulative sensor data up to that point for
that training run.

a vehicle from past Roboboat competitions, and performed
minimal amounts of hardware changes. The software stack that
leverages this vehicle has seen incredible growth. Through the
use of the AAVS, hardware-in-the-loop testing, and full tests
at the lake, our ability to consistently perform the necessary
tasks for the Roboboat challenge has grown. We’re excited to
see how it will all play out come competition time!.

REFERENCES

[1] A. W. Browning, “A mathematical model to simulate small boat be-
haviour,” Simulation, vol. 56, no. 5, pp. 329–336, 1991.

[2] H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, “Sliding-
mode tracking control of surface vessels,” Industrial Electronics, IEEE
Transactions on, vol. 55, no. 11, pp. 4004–4012, 2008.

[3] C. Goodall and N. El-Sheimy, “Intelligent tuning of a kalman filter using
low-cost mems inertial sensors,” in Proceedings of 5th International
Symposium on Mobile Mapping Technology (MMT’07), Padua, Italy,
pp. 1–8, 2007.

[4] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Dis-
criminative training of kalman filters.,” in Robotics: Science and systems,
vol. 2, p. 1, 2005.

[5] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[6] J. K. Rosenblatt, “Damn: A distributed architecture for mobile naviga-
tion,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 9,
no. 2-3, pp. 339–360, 1997.

