Roboboat 2019: Technical Design Report

Vinayak Ruia, Robert Kuramshin, Daniel Foreman, Sean Fish, Eric Fu, Patrick Meyer
Georgia Tech Marine Robotics Group, Georgia Institute of Technology
Atlanta, Georgia, United States

Abstract—This technical design report details the design and
development of the autonomous surface vehicle (ASV) to be
entered in the 2019 Roboboat competition. The primary change in
the system from last year is the switch to Robot Operating System
(ROS). The transition to a ROS based system will result in shorter
learning curves for new team members and an opportunity to re-
fine our software development practices. The overall competition
strategy involves focusing our software development efforts on the
key skills shared between multiple tasks. Additionally, hardware
tweaks were made to ensure reliability of the platform and
longevity of the system for future team members based on obser-
vations made and feedback received during earlier competitions.
The most notable hardware change involves the design decision to
a lower capacity Li-Po battery system that dramatically reduces
the weight of the vehicle,potentially increasing weight points
awarded in the competition. As this is a large rebuilding year
for the team, we are excited to participate with our majorly
revamped software stack and refined hardware platform.

I. INTRODUCTION

The Georgia Tech Marine Robotics Group has been involved
in the maritime Robonation challenges for many years, but
the team membership, the vehicles, and the software stack is
constantly changing and evolving.

Fig. 1. The Roboboat 2019 platform, significantly lighter than the 2017 /
2018 platform

While the Roboboat hardware platform, shown in Figure
1, has stayed relatively stable since the Roboboat 2017
competition, the Roboboat 2019 entry will include major
software changes. Before the RobotX 2018 competition, the
team decided to embark on the journey to replace a previously
developed custom software application for simulation and
control. The team decided that a switch to a Robot Operating
System (ROS) based software architecture will allow for
better collaboration between teams both internal and external
to Georgia Tech. As the team’s composition is shifting
towards more undergraduate participation, the switch to ROS

can be seen as a short term sacrifice in order to strengthen
the long-term team’s understanding of the development of
software for autonomous maritime systems. The readily
available documentation, and open-source nature of the ROS
platform will ease the learning curve for newer members [1].

The remainder of this document is as follows: the software
development strategy and design priorities are further outlined
in Section II: Competition Strategy. Further, in Section III: De-
sign Creativity, certain system and subsystem level decisions
will be detailed. Finally, Section I'V: Experimental Results will
describe the simulation and in-water testing that has been done
so far. It will also describe the further experimentation that will
be needed in order to gain confidence in the new Roboboat
2019 system before the competition this June.

II. COMPETITION STRATEGY
A. Development Strategy

As mentioned before, the Georgia Tech Marine Robotics
Group has opted to deprecate an older Georgia Tech developed
software stack, ARCS [2], for simulation and control of the
Roboboat platform in favor of using ROS based packages. In
January 2018, the Marine Robotics Group performed a field
test with an incoming batch of new team members where the
Robosub team would develop their autonomy on a ROS based
stack and the Roboboat team would develop their autonomy in
ARCS. It was observed that the development learning curve for
ARCS based development was significantly steeper than the
ROS development due to the available documentation and the
pre-existing ROS community. By August 2018, it was decided
that ROS based development would become the new standard
for the teams participation in RobotX, Robosub, and Roboboat
due to the difference in learning curve.

The team did not completely abandon the old ARCS soft-
ware, but instead wanted to develop the ROS based system
with the lessons learned during the development of ARCS in
mind. ARCS did a few things well. It had an easy to use
GUI/mission manager, the ability to switch between vehicles
without disruption, and the ability to switch between modules
with ease.

For example, the software was developed so that it was
very easy to switch an A* based path planner with a Djikstra’s
based path planner for different missions. The ARCs GUI also
made it very easy for a user to input rough estimates of course
layouts, such as in Figure 2, and simulate different course
configurations. The team believes that with intentional devel-
opment to take advantages of the ROS subscriber/publisher

Course Alpha
r D D ~N
- C —
‘;":"‘:'»/ Frdmepatn st
Oe@ °
° 0 Automated Docking
o5 -) //‘.\
1 ﬂ o I Nz
°] Q. ‘\\ \
© 09° o %)\
Raise the Flag h ! ¢ \ \
° Y
Navigasion i@ \\ \\
,\’/.
' E STt Speed Challenge
\

Fig. 2. From a competition perspective, it is important to have a GUI that
will allow for users to input course estimates, such as Course Alpha depicted
above, could be readily inputted by an end user.

—
Oynasvic
Siv Noos
Narsaszn Sareon ‘ [Parvageion Sarsce
! |
s —
GNC ' = Misson Fantng S fﬂ—
Sute Estenasze —) , ¢
} B>) Traratomers/
O T { } Frigeossng
e — Taska = |
3] 1 | e
e —foou S T —
Gicbnl Plasrar [foect _ |
Vap f Sen—] Frwr
L. s oL
\ et —
o LocalPomer lag ——
Classfiers.
= 1
— e
\ p
4| comer | ,,, |
Mazgng € Ay
sf“) ‘
(S IS
rramr— RS e Liyou- aw

[Achaicer —FC mapp!

Fig. 3. The full diagram of how the Marine Robotics Group ROS archi-
tecture is structured, with the arrows representing data flow, and the boxes
representing software modules

node philosophy we can learn and grow from the previous
development done in ARCS.

The full system architecture conceived is shown in Figure 3.
While a detailed explanation for each component described is
outside the scope of this paper, the architecture can be broadly
split into Guidance, Navigation, and Control (GNC); Mission
Planning; and Perception. The development of this system ar-
chitecture built upon the team’s experience developing ARCS.

Although we aim for excellence in all facets of our software
stack, full development and mastery of every module shown
in Figure 3 is not necessarily needed to complete the tasks,
nor is it practical from a project management perspective. As
we rebuild our software capabilities, it is important to note
which aspects of the autonomous system are crucial to overall
performance, and which ones are superfluous to the primary
objectives.

Figure 4 depicts the core functions the vehicle must have
to perform well on all in-water tasks in the competition. It is
arranged so that left to right it also represents the hierarchy
of needs for the competition. It is most important that the left

Hardware / | Basic State Obstacle Path | Automatic
RC Control Estimation Detection Planning Control (paths)
¥
Automatic Obstacle
Control . .
wavpolnts Classification
Completion of
= — Mission Defined
Graphical Mission Goals
User Interface Definitions
k 2
Mission
Manager

Fig. 4. The ’hierarchy of needs’ for the Roboboat 2019 competition, with
the origin of the arrow representing the prerequisite core skill

most box (having all the boat hardware, thrusters, and sensors)
work before the team spends valuable time and resources on
other software capabilities. Similarly, it is important that the
automatic control to waypoints is developed before automatic
control to paths are developed.

Figure 4 also represents our time line during this rebuilding
of the software stack. A design decision was made to develop
the minimum viable product - the simplest version of the
platform that meets the set forth requirements. For example,
the current vehicle ’state estimator’ is simply a low pass filter
on both IMU and GPS data, projected on to a local coordinate
grid. Due to the large quantity of software development needed
to be ready for the competition, the team took a ’breadth
but not depth’ approach to developing the key pieces of
software shared by all the tasks. With functional navigation,
controllability, and obstacle detection/classification, the team
is leaving the development of the specific task descriptions for
the weeks to come. The minimum viable product approach
was an intentional project management made given time and
resource constraints the team faces.

B. In-water Competition Strategy

Last year, during the 2018 competition, The team had
missed first place by a margin of 700 points. Therefore, that
value became the goal for improvement in points made using
simple hardware changes. First off, the team has shed the
50 Ib, 110 Ah Li-Po battery that was used on the 2017 and
2018 Roboboat platforms in favor of two 10 Ah, 2 Ib Li-
Pos, yielding roughly 250 points for the team. The point
contributions due to dry weight and due to ’thrust to weight
ratio’ are estimated below for both last year and this year,
where w represents the weight of the vehicle in pounds, and
t represents the thrust of the vehicle, in pounds.

2018 : w ~ 115 Ibs

t ~ 14 lbs

If w>110:

—250 — 5 * (w — 110) = —275 points
100 * (t/w) = 12.7 points

EHN

"
|2
5
H

Fig. 5. The Torqueedo Power 26-104, the over capacity 50 1b battery used in
the Roboboat 2017 and 2018 competitions, however, yielded around 5 hours
of drive time at max thruster power draw

Fig. 6. The new 10 Ah, 20C LiPo that will gain the team many points due to
difference in weight alone, however, will only yield around 1/2 hour of drive
time at maximum thruster power draw

2019 : w ~ 60 lbs

t ~ 14 Ibs

If w<70:

80 + (70 — w) = 90 points
100 * (t/w) = 23 points

Originally, the 2017 and 2018 overcapacity Li-Po (Figure
5) was chosen to reduce the logistical complexity of charging
the battery during the week of competition. In an eye opening
moment during the 2018 competition, the team did not initially
qualify for semi-finals even after better perceived autonomous
performance than some rival teams. The team later realized
that this was due to the points awarded for vehicle weight.
The team believes that the switch to lighter RC aircraft style

Fig. 7. A version of the UAV that will be brought to the competition, based
on a design that was originally designed to be laser-cut and assembled during
a high school summer camp hosted by Georgia Tech

Li-Pos, depicted in Figure 6, is justified. This change yields
the team 250 points, leaving just 500 points out of the 700
point deficit that the team aimed to make up.

Another hardware decision the team made was inclusion
of the UAV as a minimum on the vehicle. Ever since it’s
introduction, the UAV has been an afterthought for the Marine
Robotics Group as it is only used in one competition task.
This year it was determined that the points gained solely for
an autonomous launch of the AUV, an estimated 250 points
!, justifies the development of the drone system to, at a mini-
mum, launch autonomously through ROS. Of course, the team
would like to legitimately try to conquer the computer vision
and communication challenges introduced by full completion
of the Raise the Flag Challenge, but again, the minimum
viable product first approach applies in this situation as well.
Based on our progress with the UAV development this year,
we are fairly confident that atleast the UAV will be launched
autonomously during some of our competition runs, and an
early version is depicted in Figure 7.

In terms of the remainder of the on-water tasks, the team
strategy remains the same as it has been in years past.
The team is confident that the key skills developed such as
object classification and automatic control are sufficient. The
development challenge that remains before the competition
involves porting over task descriptions for the on-water tasks
into our ROS based architecture. Tasks such as automated
docking using hydrophones are perceived as extremely difficult
in proportion to the points awarded for successful capability,
and will be avoided in lieu of tasks that can performed reliably

I'This estimate does not include the points lost due to the increased weight of
the system due to the UAV, as the UAV weight has not been fully determined
yet

Fig. 8. A Pegboard design electronics casing allows for flexible repositioning
of every component, reducing week-of-competition stress

using the core skills shared by all tasks. Tasks such as the
Mandatory Navigation Gate and Speed Challenge share many
characteristics. Tasks such as Automated Docking, and Raise
the Flag share a lot in common as well (in that the ASV
interfaces with non-buoy objects, and contact with an object
must be detected). The last task, the Find the Path challenge
is seen as the most difficult challenge, and requires mastery
of automatic control, perception, and path planning.

III. DESIGN CREATIVITY
A. Modular Hardware

One of the most creative aspects at the system level of the
Roboboat platform since 2017 remains the modular design of
the vehicle. This became an important design goal for the
platform as the team has realized that a lot of time is wasted
during the week of competition making hardware changes.
For example, the pegboard, allows for a wide range of sensor
positioning within the electronics casing as shown in Figure
8. The electronics casing also contains a central power rail
which offers a simple robust plug-in solution to powering
all onboard electronics. Even the pontoons of the catamaran
platform have 80/20 aluminum extrusions embedded within
the pontoon, both on the top and the bottom so that mounts
and frames can easily be replaced and modified.

The team benefited from this design aspect when the motor
mounts on the bottom of the pontoon broke during the 2018
competition, and the team was able to fashion an alternate
mount, Figure 9, using only parts from the local hardware
store, instead of having to re-epoxy a permanently attached
mount as some designs may require a team to do.

B. Perception: An example of minimum viable product

The design of the perception system is selected as a creative
approach to the perception challenge of both recognizing in-
water objects, and then classifying them. In order to avoid

Fig. 9. The mount that was fashioned in the manner of an afternoon during
the week of competition in 2018. The team greatly appreciated the 80/20
extrusions when replacing the previously broken mount

Fig. 10. The Gazebo/VRX simulation [3] environment for the mandatory
navigation gate challenge. While a WAM-V is simulated instead of the
Roboboat, the simulation environment is sufficient to model sensors and ASV
dynamics

unnecessary complexities of techniques such as camera-based
computer vision, or machine learning based LiDAR object
classification, a heuristic approach was developed to achieve
the set out competition goals. It is important to note that the
heuristic that will likely not scale to applications beyond ASV's
in the Roboboat competition, but this approach can later be
supplemented with machine vision techniques that will use
when the ASV encounters more complex environments.

Take for example, the simulation environment shown in
Figure 10, where a simulated 3D LiDaR, much like the on-
board Velodyne VLP-16, generates a point cloud. Since, in real
life, only in-water obstacles will produce significant and/or
dense 3D LiDAR returns, a DBSCAN based approach is
perfectly sufficient for recognizing course obstacles without
misclassifying unrelated terrain features. This is shown in
Figure 11. The parameters for appropriate size of a cluster,

Fig. 11. The LiDAR point returns for the environment shown in white, where
the DBSCAN output (points that belong to a cluster), shown in red

Fig. 12. A top down view of the occupancy grid generated that will be
used for path planning, with darker colors representing a higher probability
an object occupies that space. This is updated based on the amount of times
an object has been in that grid space, and this probability either grows or
decays with time. The blue dots represent the *can buoy’ objects output after
the points clustering occurs

and the approximate density of a cluster are inputs to the
DBSCAN clustering algorithm [4]. Once these clusters are
perceived, they are used to populate an occupancy grid, shown
in Figure 12. Additionally, the clusters are checked to see if the
height to width ratio matches that of either a dock, can buoy,
or circular buoy. Finally, once the cluster is associated with
an object type, its position will be matched by the vehicle’s a
priori knowledge of the rough course layout and the vehicles
state estimate to determine what competition task the object
belongs to.

As described, the perception stack is a good example of
something that was done in the simplest possible manner
for quick implementation in the competition, however, this
structure leaves a lot of room to include more complicated
techniques (such as webcam input to perceive color) later
on to supplement this base-level technique. The bare-bones
approach taken in the perception stack extends throughout the
redesigned ROS system, as a project management decision to
balance project scope and project resources.

IV. EXPERIMENTAL RESULTS

In-water testing time is a luxury in Atlanta, a land-locked
city. The nearest appropriate testing site, Sweetwater Creek
Lake Park, is almost a 40 minute drive away. Therefore,
the team was only able to make two trips to test in the
water. In-water testing time is enjoyable and gives the team
a chance to showcase our vehicle to the public but in-water
testing also requires a lot of logistical planning and valuable
weekend time. While experimentation opportunities such as
simulation using the VRX pacakge for Gazebo and lab bench
testing were taken advantage of whenever possible, there are
no perfect substitutes for in-water lake testing. To date, the
in-water testing time involved validating the full hardware
stack (vehicle, thrusters, and sensor packages), as well as
tuning the automatic controller to way point control. These
are validations that must be performed in the water, as they
are difficult to simulate (the dynamic model of the vehicle
has not been captured in the ROS architecture, and would
not have been sufficient to tune the controller). Unfortunately,
these two in-water sessions give the 2019 team of only 8
hours of valuable in-water testing hours to date. More real
in-water testing time is planned prior to the 2019 competition,
where the team aims to further the tuning of the controller,
and completion of the mandatory Navigation Gate task before
beginning travel to Daytona Beach.

V. CONCLUSION

When the team first made the decision to revamp the
software stack, it seemed like an extraordinary amount of
work. It was a major undertaking to make this transition in
a manner of a few months, but by using the minimum viable
product approach the team was able to assemble a system
with our limited resources. Now we strongly believe that a
ROS based platform and a fundamentals-first approach will
prove to be appropriate for the 2019 competition and for future
iterations of the team. We are extremely excited to put our hard
work to the ultimate test this June during the competition.

ACKNOWLEDGMENT

The Georgia Tech Marine Robotics Group thanks the
Aerospace Systems and Design Laboratory (ASDL) for sup-
porting the teams work. We also thank The Hive, a student
run maker space at Georgia Tech, for providing guidance
and manufacturing support for some components used on the
vehicle. We are also appreciative of the funding received by
the Georgia Tech Student Government Association. Lastly, we
would like to acknowledge all current and past team members
of the ADePT Lab and Marine Robotics Group. Everyone’s
hard work and dedication is greatly appreciated.

REFERENCES

[1] ROS.org — About ROS”, Ros.org, 2019. [Online].
http://www.ros.org/about-ros/. [Accessed: 27- May- 2019].

[2] S. Seifert, P. Meyer, C. Ramee, E. Evans, W. Roberts, K. Griendling,
and D. Mavris, Arcs: A unified enironment for autonomous robot control
and simulation, in OCEANS 2017 MTS/IEEE Anchorage, IEEE, 2017.

[3] C. Aguero and B. Bingham, VRX https://bitbucket.org/osrf/vrx, 2018.

Available:

[4] "How DBSCAN works and why should we use it?”, Towards Data
Science, 2019. [Online]. Available: https://towardsdatascience.com/how-
dbscan-works-and-why-should-i-use-it-443b4a191c80. [Accessed: 27-
May- 2019].

Appendix A

Component Vendor Model/Type Specs Cost (if new)

ASV Hull form/platform Self Developed N/A 3100 in® in volume per , pontoon, ~4.5 ~$120
feet long

Waterproof connectors Huayi-Fada Varies IP68 Varies

Technologies LTD.

Propulsion Blue Robotics T200 https://www.bluerobotics.com/store/thr | $169
usters/t200-thruster

Power system Multistar 4S 12C LiPo 4S1P, 14.8V, 10Ah $60

Motor controls Maytech Innovation MTDUS30A 30A $99

CPU Intel NUCS5i7 https://ark.intel.com/products/87570/Int | $540
el-NUC-Kit-NUC5i7

Teleoperation Persistent Systems Wave Relay MPU5 https://www.persistentsystems.com/m Unknown
pub-specs/

Compass Novatel FlexPAK 6 https://www.novatel.com/products/gns Unknown
s-receivers/enclosures/

Inertial Measurement Unit Microstrain 3DM-GX4-25 https://www.microstrain.com/inertial/3d | $2,640

(IMU) m-gx4-25

Doppler Velocity Logger (DVL) | N/A N/A N/A N/A

Camera(s) Velodyne LIDAR VLP-16 https://velodynelidar.com/vlp-16.html $8,800

Hydrophones Teledyne Marine Reson TC 4013 https://tinyurl.com/TeledyneReson Unknown

Aerial vehicle platform Internally Developed | N/A N/A <$20

Motor and propellers Mutltistar Multi-Rotor Motor V-Spec 1104-3600KV $13

Power system Rhino 28 20C Lipo Pack w/XT60 | 2S 20C, 7.4V $7

Motor controls HobbyKing Brushless ESC 30A UBEC $11

CPU Raspberry Pi 3, Model B 4 x ARM Cortex-A53, 1GB DDR3 $35

Camera(s) To be determined To be determined To be determined To be determined

Autopilot PixHawk Version 4 https://docs.px4.io/en/flight controller/ | $180
pixhawk4.html

Algorithms Internally Developed

Vision Internally Developed

Acoustics Internally Developed

Localization and mapping

Internally Developed

Autonomy Internally Developed
Team Size (number of people) | 10

Expertise ratio (hardware vs. 1:2

software)

Testing time: simulation 12+ hours

Testing time: in-water 8+ hours
Inter-vehicle communication

Programming Language(s) Python, ROS,

Arduino/C++

https://www.bluerobotics.com/store/thrusters/t200-thruster
https://www.bluerobotics.com/store/thrusters/t200-thruster
https://ark.intel.com/products/87570/Intel-NUC-Kit-NUC5i7
https://ark.intel.com/products/87570/Intel-NUC-Kit-NUC5i7
https://www.persistentsystems.com/mpu5-specs/
https://www.persistentsystems.com/mpu5-specs/
https://www.novatel.com/products/gnss-receivers/enclosures/
https://www.novatel.com/products/gnss-receivers/enclosures/
https://www.microstrain.com/inertial/3dm-gx4-25
https://www.microstrain.com/inertial/3dm-gx4-25
https://velodynelidar.com/vlp-16.html
https://docs.px4.io/en/flight_controller/pixhawk4.html
https://docs.px4.io/en/flight_controller/pixhawk4.html

