
Old Dominion University

AUVSI RoboBoat 2012 Competition

FINAL REPORT

April 26, 2012

MAE 435: Project Management and Design II

Dr. S. Bawab

ME Advisor

Dr. Gene Hou

ECE Advisor

Dr. Chung-Hao Chen

Graduate Student
Advisor

Stanton Coffey

ME Senior Project
Students

Kenley Fong-Sam
Eun-Sil Heo
Rachel Mittelstaedt
Kyle Rogachenko
Stevin Rossman
Steven Schesventer
Jason Toutkoushian

ECE Senior Project
Students

Robert Tolentino
Justin Maynard
Haole Guo

Volunteers

Kevin Mcleod
Daniel Becker
Jeff Roper

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 1

ABSTRACT

The Old Dominion University (ODU) Autonomous Surface Vehicle (ASV) Team (ODU ASV Team)

has designed the 2012 model of Little Blue, an autonomous surface vehicle, to participate in the

5th annual RoboBoat Competition hosted by the Association for Unmanned Vehicle Systems

International (AUVSI) Foundation held June 21-24, 2012. For the past three years students from

the mechanical aerospace engineering and the electrical and computer engineering

departments have participated in preparing the team for the competition.

Unmanned vehicles are required in many applications. The competition allows students to

participate in the drive for autonomous robot technology. Throughout the War on Terror

engineers have been developing robots that can take the place of troops called Unmanned

Ground Vehicles (UGV). Much of the technology developed for UGV can be applied to the ASV

and vice versa. The team at ODU has integrated multiple sensors that will detect a course made

up of green, red, yellow, and blue buoys, a heat source, and an underwater object. The input

from the sensors will be continuously streamed through an onboard computer. The computer

will control the power and auxiliary outputs in order to navigate through the course, complete

various secondary tasks, and return to the starting point.

BACKGROUND

The ODU ASV Team experienced a major transition between the fall 2011 and spring 2012

semesters. A large amount of new students joined the team and many students left. During the

fall 2011 semester a custom computer was built to handle the large processing requirements of

the computer vision (Section 6), and additional sensors (Section 7). A gimbal mount was also

designed during the fall semester, and was constructed in the beginning of the spring semester.

The fall team members decided to purchase a LIDAR sensor and began interpreting the raw

data into usable object locations.

The spring team members completed a working model to be competitive in the 2012

competition. This required a reassessment of goals including: a new hull design (Section 2), a

power source upgrade (Section 3.4), and fully operational navigation logic (Section 8) relying on

sensory input and motor output through serial communication.

HULL DESIGN

The team was able to successfully design and construct a vehicle that was lighter and more

maneuverable than the 2011 model.

After considerable research, sailboat stabilizers were chosen to be used as pontoons (shown in

Figure 1 in Appendix E). This option provided a pre-constructed pontoon made of high-impact

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 2

plastic that was much more durable than was feasible to create with an equivalent size and

weight.

A simple buoyancy calculation estimated that each stabilizer should support approximately 35

pounds; therefore set of three were purchased to ensure enough buoyancy. Each stabilizer was

six inches wide (which easily allowed for the triple hull design) and 42 inches long (also within

size requirements).

The framework used on the 2011 model was a heavy fiberglass unistrut. Various replacement

frame designs and materials were proposed to reduce weight while retaining or even adding

stability. An adjustable modular frame was constructed to experimentally determine an optimal

design. The modular design consisted of a frame mostly made from perforated aluminum angle

(Figures 2 & 3, Appendix F) and included a deck to seat the computer and other requirements.

A 3/32” thick polypropylene perforated plate with ½” center-to-center spaced ¼” holes

arranged in a straight pattern was chosen for the decking (Figure 4 & 5, Appendix E).

Finalized Structure

The pontoons were able to move significantly forward and back along the angle to form a total

possible length of over six feet. The final placement of the pontoons was determined first by

static testing as shown in Figure 6, Appendix E (using weights in the place of the electronics

box.) After the vehicle was statically balanced dynamic tests were performed using a remote

control. The vehicle was subjected to the most extreme possible maneuvers and adjusted until

no water went over top any part of the pontoons. (See Figures 7 & 8 in Appendix E)

The total fully assembled weight is approximatley 57 pounds. Which is a 50% weight reduction

from 2011.

MOTORS AND POWER

A dual motor system was adopted for previous models as opposed to a rudder design, only

using forward and reverse to steer. This system will remain in place for multiple reasons. A

major reason is that the motor commands will have the same type of output allowing

verification with previous software written for the vehicle.

The Motors and Power Team has selected replacements for the motors. The new motors,

Watersnake ASP T18S, are considerably lighter, reducing the overall weight by more than ten

pounds. Three of the new motors were purchased to have a spare and for testing purposes. The

new motors have a propeller that is much more forward-thrust bias than the previous motors.

The propeller may need replacing due to this fact. Also, counter rotating propellers would be

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 3

ideal, but the prop walk can be taken into account in the motor output code. A new shroud is

also being constructed for the new smaller motors.

The motors-and-power sub-team has now moved on to researching battery options. The total

power that will be required must be determined through testing, and could possibly vary with

hardware adjustments.

Currently nickel-metal hydride cells are being considered. A comparison of several options is

shown in Appendix B-1. The most favorable qualities of the nickel-metal hydride cell are its

small volume, life cycle, voltage discharge curve, and Amp Hours per weight (about twice than a

lead acid battery). The nickel-metal cell cost about twice that of the currently used lead acid

option, but the extra cost is well worth it for the intended use.

Motor Selection

The ASV has been equipped with Watersnake A-18 trolling motors. (Compare to the 2011

selection of the Minn Kota Endura 30.) The new motors have a weight of 5.25 pounds and a

thrust of 18 pounds per motor with the original propellers. The previous motors had a weight of

15 pounds and a thrust of 30 pounds per motor. The total weight savings from 2011 is 19.5

pounds and thrust was reduced by 24 pounds. The current motor runs on a 12-volt system so

no modification needed to be made to the power configuration.

Propellers and Thrust

The stock propellers are designed to provide maximum thrust in order to propel a somewhat

larger vessel than the ASV. One of the main design features is a cupped blade which provides

greater thrust in the forward direction. In reverse, the props provide variable results. It is

important that motors have consistent thrust in reverse to maneuver the ASV.

A second issue, commonly referred to as “prop walk,” which is a term used to describe the

tendency veer off course when moving forwards or backwards. A right-handed propeller (which

rotates clockwise) will tend to push the stern of the boat to starboard. When in reverse

(rotating counter-clockwise), the stern of the boat will drift to port. A way that many boats with

two or more props address this issue is by using a counter-rotating propeller. The counter

rotating prop is identical to the standard prop, except for an opposite pitch of each blade. This

means that the motors are spinning in opposite directions. The starboard prop spins clockwise

while the port prop spins counter-clockwise. For example, if the boat is attempting to turn to

port, the operator will apply significantly greater thrust to the starboard motor. Since the

starboard motor is spinning clockwise, the stern of the boat will drift to the right to aid turning.

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 4

The ASV is using two custom designed props. The original props have been replaced by a

symmetrical design to provide similar results when operating in forward and reverse. An

important part of prop selection is matching the size and pitch of the prop blades with the

weight of the boat and power of the motors. The new props were created in four stages:

Research, Prototyping, Design, and Manufacturing. The ASV will most benefit from a high thrust

prop. Some existing applications of props designed to generate high thrust and maintain

consistent speed include bow thrusters, tug boats, and sport ski boats. (See Figure 9 in

Appendix E)

The lateral thruster is a ducted propeller similar to the ASV prop with protective shroud. Tug

boat props are solely designed to generate maximum thrust to push larger vessels. Ski boats

must operate with high thrust at precise speeds to provide the best watersport experience.

The prototyping stage involved modeling and simulation using OpenProp software as well as

stress analysis using SolidWorks. OpenProp is free software for designing optimized marine

propellers or axial-flow turbines. This software is coded as a suite of m-files running in MATLAB.

By integrating the lift and drag forces across each of the prop blades, OpenProp can make a

theoretical calculation for the performance of any prop. The program seemed to struggle when

designing a small prop for our ASV so larger scale models of proposed designs were compared

and tested. (See Figure 10 in Appendix E)

After a design was verified, it was created in SolidWorks. The hub was drawn to the exact

dimensions as the original. This would ensure that it would be a direct fit and could be used

interchangeably with a variety of trolling motors. The complex shapes were able to be analyzed

using the Simulation Xpress Analysis Wizard included with SolidWorks. (See Figure 11 in

Appendix E)

The final step in creation of the ASV props is manufacturing. Creating a high quality custom

prop is usually an extremely difficult task. This propeller was able to be made using the

Dimension Elite 3D Printer. The Dimension Elite is ideal for printing intricate 3D product

mockups as well as functional models. A .STL file was able to be saved directly from SolidWorks

and loaded into Old Dominion University’s 3-D printer.

Propeller Shrouds

The 2012 ODU ASV Team has chosen to use propeller propulsion. The competition rules explain

that moving parts associated with the propulsion must have a shroud. Shrouds also increase the

directional thrust. The shrouds used for the 2011 ODU ASV were made from PVC tubing. They

had a diameter of 12 inches and a depth of 10 inches and were connected by utilizing the motor

shaft and skeg. It was apparent that the original shrouds were oversized which caused several

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 5

problems. The first problem was the additional weight. The oversized dimensions and material

used increased each shrouds weight to 3 lbs. The second problem was the hydrodynamic forces

that were generating from the large size. This caused there to be a dramatic reduction in speed.

The third problem was that the shrouds were not increasing thrust. The diameter was too large

with respect to the propeller to give any noticeable thrust effects. The final problem associated

with the original shrouds was that they are permanently connected to the motor shaft.

The new shrouds design had to be smaller, lightweight, and removable. The current shrouds

were first designed using Autodesk Inventor. The shroud diameter was reduced to 6.125 inches.

The depth of the shroud was reduced to 2 inches. The shroud was then designed to connect to

the motor shaft and skeg non-permanently. This was achieved by using clamping force around

the shaft and skeg. The shroud was then manufactured by using a 3-D printer. The printers use

lightweight but strong plastic material. These improvements reduced the shrouds weight to

much less than one pound each. (See Figure 12 in Appendix E)

Battery Selection

The ASV battery is a custom pack of ten Nickel-Metal Hydride (NiMH) cells. The pack has an

operating range from 10-14 Volts and is rated for up to 9.5 amp hours. There are many

considerations when selecting a battery. A comparison chart of battery types can be found in

Appendix C. Load current, energy density, cost, and reliability were the major factors. Through

testing it was determined the ASV system has a peak current draw of 30 amps. The energy

density of each battery material determines how heavy a battery will need to be for the desired

energy capacity. As the energy density increases, so does the cost. A sealed lead acid battery

has the lowest cost, but greatest mass. A Lithium Polymer has the highest cost and highest

energy density, but can become dangerous when misused affecting safety and reliability.

The voltage discharge curve of different batteries will vary as well. This factor is determined by

the chemical properties of the battery. Certain batteries such as lead acid exhibit a sloped

curve. In this type of battery, the voltage gradually degrades as the battery is used. Batteries

exhibiting flat voltage curves such as NiMH and Lithium Polymer maintain their voltage at a

somewhat constant level until the end of their life, where the voltage suddenly drops off.

Sealed Lead Acid and NiMH were the two cell types compared during testing. Tests were

conducted using both battery types under similar conditions and monitored by a voltage and

current sensor. Test results can be found in Appendix D.

MECHATRONICS

The ASV project requires a combination of mechanical, electrical, computer, software, control,

and systems design engineering. Mechatronics encourages the development of simple,

http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Electronic_engineering
http://en.wikipedia.org/wiki/Computer_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Control_engineering
http://en.wikipedia.org/wiki/Systems_engineering

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 6

economical, and reliable systems. Each of the individual components used are chosen for more

than individual performance. An analysis is done in order to select the component that will

fulfill a requirement a work with the system. Major considerations include: compatibility, cost,

weight, power consumption, ease of use, and durability.

A single system has been developed. The ASV will channel sensory information to the motors

through a central computer.

The ASV relies on a combination of vision processing and LiDAR (Light Detection and Ranging)

mapping to sense the surrounding environment. Two cameras cover a 140 degree field of view.

The LiDAR serves as a method to accurately measuring distance by creating a 3-D view of its

surroundings. The ArduPilot Mega (APM) will bring in additional information such as heading,

GPS location, speed, and acceleration. The APM is a microcontroller board used to link multiple

sensors. It will also control the gimbal used to hold the cameras and LiDAR.

Sensory information is collected on the central computer. The computer operates using a

standard motherboard and components. The Windows 7 operating system is installed in order

to keep the system user friendly and compatible with other components. The central

programming for the ASV is written in C++ coding language and executed using Visual Studio

2010 Express software. An open source coding library, OpenCV is extensively used for the

image processing. The ASV program includes the steps needed to communicate with sensory

input, process data, and output appropriate motor commands.

The Arduino Mega is the base system of the Ardupilot Mega. This microcontroller will serve as

the link between autonomous and manual operation. The Arduino Mega receives information

from the computer and the remote control receiver. A second task handled by the Arduino

Mega is generation of a Pulse Width Modulation (PWM) signal. A PWM signal is required by the

speed controllers which are the last step before reaching the electric motors.

SYSTEM COMPONENTS

Microcontrollers

Microcontrollers are a necessary component to the ASV’s operation. These miniature

computers can easily handle a variety of inputs and outputs while running on a continuous

programming loop. Arduino is an open-source electronics prototyping platform based on

flexible, easy-to-use hardware and software. It's intended for artists, designers, hobbyists, and

anyone interested in creating interactive objects or environments. This project uses three

Arduino Mega boards to handle sensory input, communication between the user and ASV, and

power management. These boards will be referred to as State Arduino, Drive Arduino, and

Power Arduino. The Arduino allows the user to read/write analog, digital, and PWM signals.

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 7

State Arduino:

The State Arduino collects data from a 9 DOF sensor stick. This stick is a small sensor board with

9 degrees of freedom. It includes the ADXL345 accelerometer, the HMC5883L magnetometer,

and the ITG-3200 gyro. This information is used to drive the gimbal used to level our cameras

and LiDAR. The State Arduino also collects GPS information. The data is also passed to the

central computer for use in the navigation code’s PID controller.

Drive Arduino:

The Drive Arduino is the final step before motor commands are sent to the speed controllers. It

is at this controller that the decision between user or computer control is made. The PWM

signal from the RC Receiver is read and scaled for use. The one channel of the six channel

receiver is used as an on/off switch to set control mode. Two other channels are used to control

the left and right motor. All of these values must be carefully scaled to work with variable

declarations in coding and system components. An added feature of the Drive Arduino is the

ability to limit motor output when running low on power. This enables all of the system

components to continue operating until the ASV can be safely returned to shore. (A section of

the Drive Arduino program can be found in Appendix F-1.)

Power Arduino:

The Power Arduino is used to monitor the system voltage and current usage. This controller will

monitor vital information for safe and reliable operation of the system. The Power Arduino first

reads the outputted motor commands and user mode from the Drive Arduino. The next step is

to read the analog input from a voltage and current sensor to verify safe operating conditions.

If necessary, the Power Arduino will send a signal to the Drive Arduino to limit power. The user

is also given various warnings by way of a loud piezo buzzer. (A section of the Power Arduino

program can be found in Appendix F-2.)

Onboard Computer

In order for the ASV to successfully navigate a course without human interaction all of the

inputs from the sensors and cameras must be collected and interpreted into useable data. This

data must then be processed to make the required navigational decision. These calculations

require far more processing than can be provided by the Arduino controllers alone. The vision

and navigation codes require the use of a powerful computer to be able to process the data and

make navigation decisions in real time.

In the past this processing has been handled by a laptop. However, this solution presented

several problems of its own. The primary problem with the laptop was a lack of power. The

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 8

processor was not fast enough for the code to keep up with the movements of the boat and

this caused the boat to stop responding to its surroundings, become stuck in a navigational loop

or become lost on the course. The second most prominent problem the laptop presented was

that when sealed in the waterproof electronics box on the boat, it would overheat after

prolonged testing. This forced it to shut down completely and become useless until it had been

recovered and allowed to cool. An additional problem related to the laptop was that the

screen, keyboard, and other integrated peripherals added to the overall weight of the boat

which is a critical judgment point in the competition.

In order to solve these problems the laptop has been replaced by an entirely new, custom built

computer made of more powerful and reliable desktop and automotive computer components.

The new computer is much faster in single threaded applications and has four available threads

verses the laptop’s two threads. The new computer also has vast improvements to its cooling

systems; with the addition of air snorkels to the electronics cabinet and the option to water

cool the processor for longer testing runs. The new computer also can be able to be remotely

controlled from land, reducing the weight from the monitor, mouse, and keyboard.

Speed Controllers

The ASV motors are powered by two Victor 883 speed controllers specifically engineered for

robotic applications. The high current capacity, low voltage drop, and peak surge capacity make

it ideal for drive systems. This controller safely handles the high continuous current draws and

extreme current surges produced by the ASV trolling motors. The low voltage drop and high

switching speed ensures the motor receives maximum power.

VISION PROCESSING

Object Detection

A function was written into the program that captures images from the camera. The images are

first combined before being searched for objects. Combining the images first allows for fewer

errors when an object appears in both cameras’ view.

Color segmentation occurs after the images are combined where every pixel is given an RGB

(red, green, blue) value. The RGB values are then converted to hue saturation values (HSV)

using the cvCvtColor function in the OpenCV library. Color ranges are matched to buoy colors

either using manual or self-adjusting calibration (to be discussed in section 6.3). The ranges are

multidimensional and are defined using the threshold function in OpenCV. The pixels that fall

into the ranges set for red, green, yellow, and blue are then enhanced using the dilation and

erosion functions in the OpenCV library. The contour function (in the OpenCV library) is then

used for each threshold color image. The contour function will give the size and position of all

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 9

objects found in the color ranges. The heading is calculated from the position and the distance

is calculated from the size. The size of the buoys must be known for this calculation.

Color Calibration

Manual Calibration:

Color thresholds can be manually input upon startup of the program using a series of sliders

generated by the cvCreateTrackbar function in OpenCV. Each slider is linked to one of the

twelve threshold values. The colors detected can be monitored and compared to the image

captured using multiple windows shown in Figure 14 in Appendix E.

Auto-Adjusting Calibration:

Auto-adjusting calibration is needed to compensate for various lighting conditions. Lighting can

change during a single run simply due to the orientation of the ASV in reference to the sun. A

function has been written to allow the threshold values to self-adjust based on the brightness.

After the images are captured and combined the single image is evaluated to determine a

brightness value using the YCbCr function in the OpenCV for nine equal regions. Nine regions

were chosen as an optimal balance between speed and accuracy. The brightness value is then

used to update the threshold values.

SENSOR DATA

Cameras

Cameras are the ASV’s primary sensor. The cameras currently used are two identical 1.3

Megapixel USB webcams (see Figure 15 in Appendix E). Key features of this camera include 30

frames per second refresh rate, automatic white balancing, and automatic exposure control.

These cameras deliver an acceptable image quality in a variety of lighting conditions.

To optimize image processing performance, the ASV needs to capture the greatest amount of

information in the fewest number of pixels. As processing speed increases, higher resolution

images can be processed.

LiDAR

The LIDAR in use is a URG-04LX-UG01, made by HOKUYO (see Figure 16 in Appendix E). This

scanning laser rangefinder is a small, affordable, and accurate laser scanner that is perfect for

robotic applications. It is able to report ranges from 20mm to 5600mm (1mm resolution) in a

240° arc (0.36° angular resolution). Its power consumption, 5V 500ma, allows it to be used on a

battery operated platform. The laser and sensor in the LIDAR are mounted to the top of a

http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 10

single-axis gimbal that keeps the sweep parallel with the surface. When the command to read

in data is received the LIDAR waits for the laser to get to the starting point it then reads in data

until it reaches the end point. The data is then sent to the computer where it is stored and

processed by the main program.

The data is initially read in as an array, with the index being a representation of the angle and

the value stored; the distance returned in millimeters. The first step performed is a convertion

of the index to an equivalent radian value. The data index ranges from 0 to 726 and the sweep

is -120° to 120°, a simple conversion equation is used. The next step is filtering the data to

locate the buoys. To do this the data is read in one point at a time, if the point is within a

certain distance of the previous point, which is dependent on the overall distance from the

LIDAR, it is considered to be part of the same object. This step is capable of picking out as many

buoys as can be seen by the LIDAR, and creates a new vector that contains the distance of the

starting point, the starting point angle, the distance of the ending point, and the ending point

angle. The current process requires several passes of the data set to filter the buoys, but by

implementing more efficient algorithms it is hoped to be accomplished in one pass.

State Information

State information gives the data about where the sensor is and what the sensor is doing. The

position information is returned as latitude and longitude. The orientation information is

returned as the yaw, pitch and roll. The rotational information returned is the yaw rate, pitch

rate and roll rate. This information allows more precise control of the ASV through the course.

Two sensor units were required to obtain all of the state information; a global position sensor

(GPS) and a nine degree of freedoms sensor unit (9DOF).

The “66 Channel LS20031 GPS 5Hz Receiver” was used. This unit costs $59.95 and is very small

and lightweight. Two GPS units were used to build the Arduino Mega State Sensor. This was

done to increase accuracy and precision by averaging the latitudes and longitudes. This unit has

an accuracy of two meters which was not sufficient enough to navigate but can be used for

estimation. (See Figure 17 in Appendix E)

The 9DOF sensor unit has three sensors on board: a three-axis accelerometer, a three-axis

gyroscope, and a three-axis magnetometer. These three sensors used together give yaw, pitch,

roll, yaw rate, roll rate and pitch rate previously stated. The unit costs $99.95 and is also small

and lightweight. (See Figure 18 in Appendix E)

A protoboard was used to attach the sensors to the top of the raw Arduino Mega board giving

an elevated platform to place sensors. The board costs $17.95. (See Appendix E, Figures 19, 20)

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 11

Programming of the sensor unit was more challenging and time consuming than the physical

construction. 707 lines of code run the Arduino Mega State Sensor unit, which includes

initialization, calibration procedures, and various other outputs to show the accuracy of the

sensors information.

Power Monitoring and Management

A voltage and current sensor is needed to measure power usage. The ASV uses a compact DC

voltage and current sense PCB developed and assembled by AttoPilot International. DC current

is determined by measuring voltage drop across shunt resistors then converted to analog

voltage output by the Texas Instruments INA-169. Voltage sense is accomplished by scaling to

3.3V ADC range by a precision resistor divider. The current limit coincides with maximum power

rating of the shunt resistors. This particular board is designed to operate up to 13.6V and 45A.

NAVIGATION LOGIC

After sensory input is collected and processed, the navigation logic decides how the ASV reacts.

For best results, this direct response system must run at a high refresh rate. This is because the

ASV is essentially operating on past information. A major advantage to this system is the ability

to move with great accuracy. For the purpose of this competition the boat is required to drive

between channel buoys and avoid obstacles. Each object detected by the sensory input will be

assigned three characteristics, color, position, and distance. Based on these characteristics, the

navigation logic can determine an appropriate course of action.

Course Strategy

There are an infinite number of strategies or techniques for navigating through the channel.

Each of these strategies requires the development of a logic loop which is the section of code

that continuously analyzes the list of objects in view. The logic loop should be as simple as

possible while achieving the highest level of success. The loop starts by finding any objects in

view which can be used to navigate. If no objects exist, a program runs to search for navigation

objects. When objects are found the loop continues with the navigation logic. Once a single

navigation object has been detected, the ASV sets a target relative to that object and takes the

appropriate action. The same procedure is used when multiple navigation objects are detected.

Setting Target Point

The ASV will set a new target point with each code cycle. This is the step where the navigation

code analyzes the list of known buoys and decides where to go. The first thing the navigation

code looks for is if there are any buoys in the object list. If there are not any objects in view, the

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 12

ASV will run a predefined search command. If any navigational objects are in the object list, the

navigation program will continue. See Appendix D for the Channel Navigation Flow Chart.

Part 1 – List Analysis

The list of objects in view may be short or very long depending on the amount of buoys as well

as “noise” that the vision program thinks are buoys. The job of this part of the program is the

sort through the list and select the nearest appropriate red, green, or other navigational object.

(For code see Appendix F-3)

Part 2 – Buoy Scenarios

After the object list has been analyzed and a red and/or green buoy have been selected, the

ASV will either target a single red, single green, or pair of red and green buoys. A small

adjustment is made for each of the three scenarios so the buoys will pass on the correct side of

the boat. (For code see Appendix F-4)

Part 3 – Special Features

Some additional functions have been added for channel navigation. If there are multiple same

color buoys in view, the program was written to target the nearest buoy. A special variable has

been added so that the ASV can pass from one set of buoys to the next. Once the buoy is within

a set range, the program will ignore that object and head for the next. Another variable is used

to adjust the ASV’s desire to drive at a perpendicular angle to a set of gates. When the ASV has

decided to target the center of a set of buoys, the target point will be adjusted to aim closer to

the buoy at greater distance. This adjustment will make it easier for the ASV to remain on

course.

PID Controller (proportional only)

Each time a target point is set, the “drive” portion of the navigation program will decide how

much thrust to add to each motor. The target point consists of a single target theta (angle from

straight ahead) and target distance. The motor output is set in two steps. In step one, the

differential between left and right thrust is set. As the target moves away from theta = 0, the

difference in thrust between the left and right motors is increased. In step two, the left and

right thrust is simultaneously adjusted according to the target distance. (See Appendix F-5 for

code and graphs.)

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 13

APPENDIX A: Cost Summary

Beginning of Semester $4,000

Remaining $1,820

Purchases:

Pontoons $400

T-Shirts $250

Competition Fee $500

Hardware $30

Motors $250

Computer Parts $500

Testing Equipment $250

TOTAL $2,180

**Approximations

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 14

APPENDIX B: Battery Option Comparison

 NiCd NiMH Lead Acid Li-ion Li-ion

polymer

Reusable
Alkaline

Gravimetric Energy
Density (Wh/kg)

45-80 60-120 30-50 110-160 100-130 80 (initial)

Internal Resistance

(includes peripheral circuits) in
mW

100 to 2001
6V pack

200 to 3001
6V pack

<1001
12V pack

150 to 2501
7.2V pack

200 to 3001
7.2V pack

200 to 20001
6V pack

Cycle Life (to 80% of initial

capacity)

15002 300 to 5002,3 200 to
3002

500 to 10003 300 to
500

503
(to 50%)

Fast Charge Time 1h typical 2-4h 8-16h 2-4h 2-4h 2-3h

Overcharge Tolerance moderate low high very low low moderate

Self-discharge / Month

(room temperature)

20%4 30%4 5% 10%5 ~10%5 0.3%

Cell Voltage (nominal) 1.25V6 1.25V6 2V 3.6V 3.6V 1.5V

Load Current
- peak
- best result

20C
1C

5C
0.5C or lower

5C7

0.2C

>2C
1C or lower

>2C
1C or lower

0.5C
0.2C or lower

Operating Temperature

(discharge only)

-40 to
60°C

-20 to
60°C

-20 to
60°C

-20 to
60°C

0 to
60°C

0 to
65°C

Maintenance
Requirement

30 to 60 days 60 to 90 days 3 to 6 months9 not req. not req. not req.

Typical Battery Cost
(US$, reference only)

$50
(7.2V)

$60
(7.2V)

$25
(6V)

$100
(7.2V)

$100
(7.2V)

$5
(9V)

Cost per Cycle (US$)11 $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50

Commercial use since 1950 1990 1970 1991 1999 1992

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 15

APPENDIX C: Battery Comparison Data

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 16

APPENDIX D: Channel Navigation Flowchart

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 17

Figure 1: Stabilizer float intended use

APPENDIX E: Reference Figures

Figure 2 Figure 3

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 18

Figure 6: Static testing with dummy
weights and temporary decking

Figures 7 and 8: Autonomous testing.

APPENDIX E: Reference Figures

Figure 4: Perforated Decking (1) Figure 5: Decking (2)

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 19

APPENDIX E: Reference Figures

Figure 9

 Figure 12

Figure 10: OpenProp user interface Figure 11: SolidWorks design used by 3-D printer

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 20

APPENDIX E: Reference Figures

Figure 13: System Architecture and Hierarchy of Functions

 Figure 14: Red Threshold being Monitored

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 21

Figure 15: 1.3 Megapixel USB Webcams

APPENDIX E: Reference Figures

Figure 16: URG-04LX-UG01
LIDAR made by HOKUYO

Figure 17: 66
Channel LS20031
GPS 5Hz Receiver

Figure 18: 9 DOF Sensor

Figure 19: Protoboard

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 22

APPENDIX E: Reference Figures

Figure 20: Fully Assembled Arduino State Sensor

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 23

APPENDIX F-1: Drive Arduino Code

void loop() {
 rawUser = pulseIn(userControlPin, HIGH); //Reads PWM signal
 user = map(rawUser,1000,2000,10,-10); //converts User Switch PWM data to single integer
 rawLeft = pulseIn(leftJoyStickPin, HIGH); //Reads PWM signal
 rawRight = pulseIn(rightJoyStickPin, HIGH); //Reads PWM signal

 //select source for motor commands
 if ((user > 0) && (user < 20)){ //manual mode
 leftMotorSpeed = map(rawLeft,1000,2000,140,50); //converts Left Stick PWM data to single integer
 rightMotorSpeed = map(rawRight,1000,2000,140,50); //converts Right Stick PWM data to single integer
 }
 else if ((user > -20) && (user < 0)){ //autonomous mode
 while(Serial.available()>0){
 temp1=Serial.read(); //read left motor command from computer
 temp2=Serial.read(); //read right motor command from computer
 leftMotorSpeed = (temp1 - 35); //returns temp to navigation integer
 rightMotorSpeed = (temp2 - 35); //returns temp to navigation integer
 leftMotorSpeed = (leftMotorSpeed + 95); //convert navigation output to speed controller range
 rightMotorSpeed = (rightMotorSpeed + 95);
 }
 }
 else {
 leftMotorSpeed = 95; //neutral
 rightMotorSpeed = 95; //neutral
 }

 //Power Management - from power arduino
 if (digitalRead(reducePowerPin) == HIGH){
 leftMotorSpeed = (leftMotorSpeed - 95) * 0.5 + 95; //reduce to half power
 rightMotorSpeed = (rightMotorSpeed - 95) * 0.5 + 95; //reduce to half power
 }

 //Pass drive info to "power arduino" for monitoring
 userOut.write(rawUser); //uses servo command to generate pwm output
 leftOut.write(leftMotorSpeed);
 rightOut.write(rightMotorSpeed);

 //Output motor values to speed controller (50 - 140)
 leftMotor.write(leftMotorSpeed); //uses servo command to generate pwm output for speed controllers
 rightMotor.write(rightMotorSpeed);

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 24

APPENDIX F-2: Power Arduino Code

void loop() {

 //Drive Arduino Information
 int rawUser = pulseIn(userPin, HIGH); //Reads PWM signal
 int rawLeft = pulseIn(leftMotorSpeedPin, HIGH); //Reads PWM signal
 int rawRight = pulseIn(rightMotorSpeedPin, HIGH); //Reads PWM signal
 int User = map(rawUser,1000,2000,10,-10); //converts User Switch PWM data to single integer
 int Left = map(rawLeft,1000,2000,-100,100); //converts User Switch PWM data to single integer
 int Right = map(rawRight,1000,2000,-100,100); //converts User Switch PWM data to single integer

 //Power Monitoring
 VRaw = analogRead(voltagePin); //read raw voltage
 IRaw = analogRead(currentPin); //read raw current
 V = VRaw/49.44; //45 Amp board calibration
 I = IRaw/14.9; //45 Amp board calibration
 time = millis(); //duration program has been running
 I_total = I_total + I; //sum all current readings
 AmpAverage = I_total / cycles; //find average current
 AmpHours = AmpAverage * time / 3600000; //divide average current by run time
 cycles = cycles + 1; //number of code cycles

 //Power Management
 if (V >= 11){ //11V for 6 cell lead acid, 10V for 10 cell NiMH
 digitalWrite(AlarmPin, LOW); //alarm off
 digitalWrite(reducePowerPin, LOW); //full power
 }
 else{
 digitalWrite(AlarmPin, HIGH); //alarm on
 digitalWrite(reducePowerPin, HIGH); //reduced power
 }

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 25

APPENDIX F-3: Setting Target Point – List Analysis Code

void Navigation::Navigate(list<Objects> stuff) //Navigation if a list of buoys is passed
{
 ///
 //specialty//
 too_close = 90; //back up if object is within this range (cm)
 next_buoy = 150; //target a farther buoy if previous buoy is within this range (cm)
 square_rating = 0; //drive straight through gate (0-Least Aggressive to 90-Most Aggressive)
 //specialty///
 //

 list<Objects>::iterator bitr; //Creates an iterator for referencing data in the list
 bitr = stuff.begin(); //Points the iterator to the beginning of the list
 int size = stuff.size(); //Stores the total size of the list
 Objects *buoys; //Creates the pointer buoys
 buoys = new Objects[size]; //Creates an array of buoys that is pointed at by buoys
 for(int i = 0; i < stuff.size(); i++) //A loop for assigning data from the list to the array
 {
 buoys[i] = *bitr; //Assigns the data in list position i to buoys position i

 if(size > i) //Determines if the iterator can move forward
 {
 bitr++; //Moves the iterator to the next piece of data
 }
 }

 if(size == 0) //If the list shows no buoys, then search
 {
 target_theta = 0;
 target_distance = 0;
 search();
 }
 else //If the list is not empty run through navigation steps
 {
 if(buoys[0].getDistance() < too_close &&
 buoys[0].getTheta() > -30 && buoys[0].getTheta() < 30) //If the first buoy is too close
 { and within a certain angle,
 target_theta = -180; then go in Reverse
 target_distance = 0;
 reverse();
 }
 else
 {
 red_distance = 0; red_theta = 0; //Sets baseline red values
 green_distance = 0; green_theta = 0; //Sets baseline green values

 for(int i = 0; i < size; i++) //assign red and green distance/theta to
 { the appropriate target
 if(buoys[i].getColor() == 'R' && red_distance < next_buoy)
 {
 red_distance = buoys[i].getDistance();
 red_theta = buoys[i].getTheta();
 }
 else if(buoys[i].getColor() == 'G' && green_distance < next_buoy)
 {
 green_distance = buoys[i].getDistance();
 green_theta = buoys[i].getTheta();
 }

 }
 if(red_distance == 0 && green_distance == 0) //If red or green buoys are not
 { detected then Search
 search();
 }

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 26

 else if(red_distance == 0 && green_distance > 0)//If green is listed and red is
 { not, target visible object
 target_theta = green_theta;
 target_distance = green_distance;
 target_green();
 drive();
 }
 else if(green_distance == 0 && red_distance > 0) //If red is listed and green is
 { not, target visible object
 target_theta = red_theta;
 target_distance = red_distance;
 target_red();
 drive();
 }
 else if(green_distance > 0 && red_distance > 0) //If red and green are listed,
 { target both objects
 target_red_and_green();
 drive();
 }
 }
 }
 delete [] buoys;
}

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 27

APPENDIX F-4: Setting Target Point – Buoy Scenarios Code

void Navigation::target_red() { //offsets target theta to the right by 90cm
 target_theta = target_theta + (180 / 3.14) * atan(90.0 / target_distance);
}

void Navigation::target_green() { //offsets target theta to the left by 90cm
 target_theta = target_theta - (180 / 3.14) * atan(90.0 / target_distance);
}

void Navigation::target_red_and_green() { //aims for center of gate by taking the average

 target_theta = (red_theta + green_theta) / 2;
 target_distance = (red_distance + green_distance) / 2;

 percent_skew = (red_distance - green_distance)/ //adjusts the target theta in order to bring the
 (red_distance + green_distance); boat straight through the gate
 target_theta = target_theta - percent_skew * square_rating;
}

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 28

APPENDIX F-5: Proportional Controller Code and Graphs

void Navigation::drive() { //(-35 full reverse; 35 full forward)

 prop_correction = -1; //to adjust thrust for non-symmetrical prop (-1-no correction

//to -10-large correction)

Step 1: Control turn speed proportionally to theta

 double x = target_theta;
 if (target_theta < -10)
 {
 LeftThrust = (0.0113*x*x + 1.8726*x + 7.2619); //built from excel plot
 RightThrust = LeftThrust * prop_correction;
 }
 else if ((target_theta >= -10) && (target_theta <=10))
 {
 LeftThrust = (x); //built from excel plot
 RightThrust = LeftThrust * prop_correction;
 }
 else if (target_theta > 10)
 {
 LeftThrust = (-0.0113*x*x + 1.8726*x - 7.2619); //built from excel plot
 RightThrust = LeftThrust * prop_correction;
 }

Step 2: Control forward speed proportionally to distance

y = 0.0113x2 + 1.8726x + 7.2619

y = -0.0113x2 + 1.8726x - 7.2619

y = x

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

Tu
rn

 R
at

io

Target Theta

Autonomous Surface Vehicle JOURNAL PAPER May 28, 2012
Old Dominion University

ODU ASV Team 29

 x = target_distance;
 if (target_distance > 1000) //if target is this far limit addition to 30
 {
 LeftThrust = LeftThrust + 30; //full forward
 RightThrust = RightThrust + 30; //full forward
 }
 else
 {
 LeftThrust = LeftThrust + (0.0315*x - 0.7992); //built from excel plot
 RightThrust = RightThrust + (0.0315*x - 0.7992); //built from excel plot
 }

y = 0.0315x - 0.7992

y = 30

-5

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

Th
ru

st

Distance

