
UM::Autonomy Wolvemarine,
A Highly Capable Autonomous Surface Vehicle

Eric Rossetti, Andrew Beck, Devin Witt,
David Devecsery, Ryan Wolcott, Anthony Bonkoski, Alexander Prog

University of Michigan
Ann Arbor, MI 48109

Figure 1: The completed Wolvemarine in the water.

ABSTRACT
Wolvemarine is a fully autonomous surface vehi-
cle with a pontoon hull design. This year the team
has put considerable effort into designing a robust,
powerful three-dimensional hybrid camera-LIDAR
vision system, capable of reliable detection of a
wide array of obstacles impossible to detect with
other systems. The system has been designed, im-
plemented, and tested with the goal of competing
in the Fourth Annual AUVSI Autonomous Surface
Vehicle Competition, where it will demonstrate its
ability by attempting the “Four Elements" chal-
lenge presented in this year’s competition.

1. INTRODUCTION
Wolvemarine is the UM::Autonomy submission to the Fourth

Annual AUVSI Autonomous Surface Vehicle Competition.
It was designed and created with the goal of completing all
of the events in the “Four Elements” themed competition.
As Wolvemarine is a fully-autonomous vehicle and the sys-
tem took over two years, when considering the design time
placed into Mjolnir, Wolvemarine’s predecessor, we cannot

possibly discuss every aspect of the system in this paper.
Thus we will spend the remaining space highlighting the dif-
ferences between this year’s entry and last year’s entry.

Last year we discussed the importance of the design, build,
test methodology in constructing Mjolnir. We have contin-
ued with this approach and built Wolvemarine following the
same, successful strategy. After analyzing Mjolnir’s suc-
cesses and weaknesses at the competition, we developed a
new iteration of our ongoing project, Wolvemarine. While
Wolvemarine may appear similar to Mjolnir on the surface,
it is actually a far more powerful and capable system with
major changes to many core components, such as the vision
system and hull fabrication.

Wolvemarine’s redesign began from the ground up, with
the hulls. We replaced our previous hulls with new, cus-
tom built, hulls providing better control in-water. We also
completely overhauled our robot vision system with a 3D
LIDAR-camera hybrid system. This system is by far the
largest and most complex undertaking we have accomplished
this year. Finally, Wolvemarine now includes a simulata-
neous localization and mapping system (SLAM), further en-
hancing the localization and mapping capabilities provided
by our 3D vision system. Throughout the remainder of this
paper we will discuss these, as well as several other more
subtle modifications and improvements in much more detail,
then discuss the new, powerful debugging and control sys-
tems we have added to make Wolvemarine by far our most
promising submission to this competition yet.

2. HULL

2.1 Design
Wolvemarine’s hull is a redesign of Mjolnir’s. That de-

sign was based off a four hulled small water area twin hull
(SWATH) which we modified to become a twin hull. This
year we made modifications to the hull’s shape and bow to
allow for better performance on the water. We designed the
hulls to be more streamlined to help with tracking and reduce
the water flow separation from the hull. Also, we redesigned
the bow of the hulls to resemble the bow of a pontoon vessel.
This design allows for the hulls to be semi-planing and al-
low the autonomous surface vehicle to travel at much faster

1



Figure 2: One of the two hulls which shows the stream-
line of the hulls and the new semi-planing bow design.

Figure 3: The hulls and deck attached to one another.
The deck is currently missing the main computer box,
battery, and the cameras.

Figure 4: The vacuum bagging process involved vacuum
bagging only half of a hull to get a better finish. The
metal bars lying on the hulls were used the keep the hulls
as flat as possible during the resin curing process.

Figure 5: The 3-axis CNC router cutting out a piece of
the hull. There was a total of 16 pieces to be cut by the
router and glued together to make the final products.

speeds safely. The redesigned hulls are very stable in pitch,
roll, and yaw and thus provide a stable platform for the ve-
hicle’s electronic systems. The deck of the vessel has been
kept similar to the previous design. The deck has been mod-
ified in dimensions (32” x 46”) to allow for easy transfer
through doorways. The deck design incorporates a modular
theory. Every component is designed to be removed from
the deck with ease by utilizing quick release pins for both
the electrical box and the hulls.

2.2 Fabrication
The hull was fabricated using a male mold fiberglassing

process. High-density foam molds were fabricated on our 3-
axis CNC machine by inputting our 3D model into Catia and
creating machining code to accurately cut our molds. The
molds were then sanded and pieces glued together to cre-
ate the desired product. Then two layers of fiberglass were
laid up onto the male molds, and vacuum bagged to harden
smoothly. Once the fiberglass had set, it was sanded and the
hull halves were glued together and finished with a fiberglass
seam. Then an epoxy layer was coated on the hulls to further
waterproof them.

3. ELECTRICAL BOX
While our previous year’s electrical box provided a firm

foundation for Wolvemarine it had several fundamental flaws
which we have addressed in this year’s submission. Many
of the components of last year’s box were modularly con-
structed and well designed, such as the motor power system,
our peripheral power hub, our wire routing scheme, and the
two-PC system. Consequently we either left these systems
alone or only provided minimal modifications. The systems
we did have to change were our external interfacing ports, in
particular to our cameras and laser scanner, and our internal
network.

As we added the new components required to fully power

2



our vision system we discovered that our previous 80W pe-
ripheral power regulation system was inadequate, often re-
sulting in voltage brownouts, even when only some peripher-
als were attached. To compensate for this we have replaced
it with a 250W automotive regulator, providing more then
enough power for all of our non-PC components.

We have additionally removed our communication Wafer
PC. Mjolnir used a very small AMD Geode Wafer for serial
port connections, and device interfacing. The Wafer pre-
sented a fundamental issue to our internal network. It had a
100MBit network connection, while each PC and the router
operated at 1GBit speeds, and consequently the Wafer was a
bottleneck in our inter-PC communication within our electri-
cal box, which became relevant when pushing large amounts
of 3D LIDAR data across the network. To amend this we
have removed the Wafer and introduced a 4 port RS232 to
USB hub which is connected directly to one of our PCs.

The final significant change we made to our box was to
replace our previously hacked together E-stop, water gun,
LED signal beacon, and actuator perf boards with our new
PCBs. These PCBs provide a firm foundation for the re-
mainder of the box and remove a great amount of issues
with shorting and breaking wires. With these modifications
Wolvemarine has improved and stabilized its electrical box,
providing a solid foundation for our peripherals and software
system.

4. VISION PIPELINE
One of the most difficult challenges in this year’s compe-

tition is to identify relevant obstacles in the world around the
vehicle. To accomplish this task we have generated a power-
ful, three-dimensional vision system capable of identifying
a diverse range of generic features around our vehicle and
apply them to task-specific challenges. The system incor-
porates a Hokuyo UTM-30LX LIDAR, Dyanamixel AX12
servo to control the LIDAR angle, and two Point Grey Fire-
Fly MV CMOS cameras for point cloud coloring. To accom-
plish generic vision for our boat we divide the task into four
primary steps: colored point cloud generation, point cloud
segmentation, geometric feature detection, and task-specific
object recognition.

4.1 Calibration
A key step in developing our 3D vision system is co-

registration of camera and LIDAR points. To accomplish
co-registration, we developed a calibration system to accu-
rately determine the intrinsic parameters of the camera and
the rigid body transformation from the LIDAR frame of ref-
erence to the camera frame of reference. The system in-
volves collecting multiple image and point cloud samples of
a checkerboard pattern. The checkerboard in the image is
detected and analyzed using OpenCV functions, which pro-
duce camera intrinsics and position and orientation of the
checkerboard in the camera reference frame. The checker-
board in the point cloud is detected and analyzed using a

capture program that we developed, where the point cloud
is projected onto a 2D space and colored by depth. A user
then selects the checkerboard by clicking on the four corners
of the plane. Once a region has been selected, RANSAC is
applied to determine the inliers of the plane in the selected
region. Once the image and point cloud checkerboards have
been detected and analyzed, the rigid body transformation is
calculated. This involves computing an initial estimate us-
ing the closed form equations described in [9] then refining
this estimate by solving the non-linear optimization problem
described in [5] with an implementation of the Levenberg
Marquardt algorithm.

4.2 Point Cloud Generation
Wolvemarine’s vision system is primarily centered around

our LIDAR point cloud. We use a servo mount to vary the
angle of the Hokuyo LIDAR to collect a three-dimensional
point cloud of distances of objects in front of the boat. The
point cloud code depends on the state of the boat, the LIDAR
data, and the position of the servo.

We define a ”slice” as a single message of LIDAR data
published to LCM by the Hokuyo driver. The point cloud
creates a slice using the data from the LIDAR, which in-
cludes a timestamp, an initial angle, an angular step, the
number of angles, and an array of distances. This essen-
tially creates an array of points characterized by a distance r
and an angle φ from the front of the boat.

The servo driver publishes a timestamp and the servo an-
gle. This publication occurs too infrequently to receive an
accurate angle multiple times within a given slice. However,
a constant angular velocity model of the servo can serve as a
good approximation, allowing an estimate of the servo angle
θ at the time of the slice to be determined using the previous
and following servo angles and timestamps.

Using the distance and angles, we can determine the rect-
angular coordinates of a LIDAR point in space:

x = r ∗ cos(φ)cos(θ)
y = r ∗ sin(φ)

z = r ∗ cos(φ)sin(θ)
The state of the boat is required because the slices are cre-

ated at a given boat state, but the boat changes state between
slices. To compensate for this, we store the state of the boat
at the time of the slice and at the time of creating the point
cloud to create differential state consisting of six degrees of
freedom:

∆α=change in roll
∆β=change in pitch
∆γ=change in yaw

∆x=change in x
∆y=change in y
∆z=change in z

We then update each slice by applying the 3D rigid body
transformation as found in Figure [8].

Finally, we publish arrays of points for x′, y′, and z′.

3



Figure 6: The overlay of our point cloud plane segment into the checkerboard image. Please note the segment is of the
plane containing the image, not the image itself.

Figure 7: A visualization of a fully formed uncolored point cloud

 x′

y′

z′

1

 =

 cos(∆γ)cos(∆β) cos(∆γ)sin(∆β)sin(∆α) − sin(∆γ)cos(∆α) cos(∆γ)sin(∆β)cos(∆α) − sin(∆γ)sin(∆α) ∆x
sin(∆γ)cos(∆β) sin(∆γ)sin(∆β)sin(∆α) + cos(∆γ)sin(∆α) sin(∆γ)sin(∆β)cos(∆α) − cos(∆γ)sin(∆α) ∆y

−sin(∆β) cos(∆β)sin(∆α) cos(∆β)cos(∆α) ∆z
0 0 0 1


 x
y
z
1



Figure 8: Transformation between states

4



Figure 10: The colored point cloud after segmentation.
Please note how the ball, plane behind the ball, and plane
next to it are all segmented separately for fast feature
detection.

4.3 Segmentation
While the motivation for the point cloud and its gener-

ation are fairly straight forward, the process of abstracting
usable features to be fed into SLAM or our route planning
algorithm is a much less intuitive task. The segmentation
step provides a foundation for the remainder of the vision
system by splitting the massive point cloud structure into a
series of smaller “segments”, each of which ideally represent
a distinct object or feature.

Our segmentation algorithm was designed with two pri-
mary goals in mind. First we need to properly segment sim-
ple geometric shapes generated through the point cloud to
identify candidates for our geometric feature detector. Sec-
ond we must be aware of color changes when segmenting to
identify shapes or pictures on objects, such as in the “air”
and “fire” portions of this year’s task. To accomplish this
we have adapted a hybrid LIDAR-camera segmentation al-
gorithm which operates on a colored point cloud. We chose
to implement the algorithm found in [7]. This algorithm is a
variation of the highly cited [2] paper, taking normals of the
point cloud into effect along with image color data.

Our segmentation algorithm is graph-based, with each point
of the point cloud composing a vertex of the graph. Edges
are created between all adjacent points, each edge given two
weights, one of the edge as the RGB color difference (wrgb)
between the two points, sqrt(∆R2 + ∆G2 + ∆B2) and
the other the difference between the surface normals of the
two points (wnorm). After the edge is calculated for each
point within the graph, the edges are sorted by wrgb, approx-
imately ordering the graph by edge weights.

After the edges are computed, the heart of the algorithm
begins. Each vertex of the graph is initially assigned to its

Figure 11: Resulting feature-based EKF-SLAM map.
Star is GPS reference

own segment using a union-find data-structure, then each
edge is tested to see if it meets the threshold for joining.
Two thresholds for each segment are checked to determine
if the segments on an edge may be joined. Those thresh-
olds are knorm and krgb, which are initially specified as pa-
rameters to the algorithm. After an edge is joined the seg-
ment calculates a new threshold as: knorm = wnorm +
knorminit/(N) where N is the number of points in the seg-
ment. This process is done for each edge in the graph. Then
any segment which is deemed too small is combined with
its closest matching segment, completing the segmentation
process.

4.4 Feature Detection
The ASV competition necessitates the ability to accurately

identify objects in the world such as buoys, signs, ramps, and
docks. All of these objects can be described through a com-
bination of general shapes and their context in the world.
Our object detection system focuses on the identification of
planes, spheres, and cylinders. Once the point cloud has
been segmented, the object detection module analyzes each
segment to determine if it matches a plane, sphere, or cylin-
der using the methods described in [6]. The detection must
then meet certain size constraints and have a great enough
consensus in order to be passed on to SLAM. SLAM is able
to map these general objects and localize off of them, pro-
ducing a reliable map of objects as its output. Looking at
these objects in the context of the map allows us to classify
each general shape as a mission-specific object (buoy, sign,
ramp, etc.). Delaying this classification makes for a more
generic system and provides extensibility for future addi-
tions.

5. SLAM
Simultaneous localization and mapping is an excruciat-

5



Figure 9: Colored Point cloud before segmentation and original camera image. Please note the spherical ball hanging
in front of a plane, and the person standing next to the ball are clearly visible in the point cloud.

ingly difficult task for robotic platforms. However, the se-
lection of different SLAM algorithms allows the problem to
become tractable enough to generate maps that are useful for
platform navigation. To handle Wolvemarine’s localization
and mapping, we implemented a feature-based EKF-SLAM
algorithm. Surface vehicles provide an ideal scenario for
using a feature-based SLAM algorithm because of the spar-
sity of obstacles on the water plane. These obstacles on the
water plane can be reliably, repeatably detected, which is
essential for the success of the mapping algorithm. As in-
puts into our SLAM algorithm, Wolvemarine uses GPS data,
compass data, and feature data, which is provided from the
point cloud feature extractor.

For our application, we do not have any available control
inputs, so we will be limited to a constant velocity, constant
angular velocity motion model [1]. Because our platform’s
environment can be reduced to a planar environment, we can
confine our state estimates to 3-DOF that we must augment
with planar velocity and angular velocity about the robot’s
z-axis. The resulting 5-DOF robot’s state vector is:

xr =


x
y
θ
v
ω


At each time-step, the velocity and angular velocity is

modeled having an additive zero-mean Gaussian white noise
to correct for the deficiencies in the constant velocity frame-
work. Compass and GPS observations, both of which are 10
Hz, provide a linear update to the Kalman filter. The combi-
nation of these two sensors alone provides a fairly accurate
localization and allows for suitable vehicle navigation.

The addition of feature observations (buoys, signs, gate
buoys, etc.) turns the problem into a true SLAM problem
and allows for even more accurate localization and a high-

fidelity map for path planning [8]. By constraining our fea-
tures to the 2D world, all feature observations are restricted
to a relative distance and bearing from the vessel. These ob-
servations provide nonlinear updates into the Kalman filter,
therefore, we linearize via the first-order Taylor series ap-
proximation. This method is known as the extended Kalman
filter. Furthermore, on each iteration, data association be-
tween observations and the current map are done using Joint
Compatibility Branch and Bound, which provides a robust
method for associating features in complex environments
[3].

In addition to generating a feature-based map, Wolvema-
rine also uses the raw point cloud data generated from the
2D laser scanner to create an occupancy grid map. This grid
map feeds into the path planner and provides awareness for
obstacle avoidance. While the feature-based map provides
information on where the vessel should navigate next, the
occupancy grid map tells us how to get there safely.

6. ROUTE PLANNING
After generating the point cloud, color tagging it, seg-

menting, detecting geometric features, and SLAMming it
all together we have created a solid foundation for the high
level system. We will now discuss the design of this high
level decision engine, our Route Planner. The route planner
has been modularized and decentralized into many different
components and different stages. At the highest level there
is a manager which determines which portion of the compe-
tition we are in, and allows that handling algorithm to run.
Each handling algorithm is then coded in its own process
and decides if it is capable of running. It communicates this
information to the route planner and then begins controlling
the boat when granted permission. This allows us to easily
recycle code and inherently handles automatic retry of failed
tasks.

6.1 Route Planner Manager

6



Inspired from shortcomings in last year’s route planner we
designed a Route Planner Manager to simplify and modular-
ize the route planner.

There are numerous tasks that must be completed in any
given run (speed gates, buoy channel, etc.) Each of these
tasks are very different in nature, and thus a separate handler
is required for each. These tasks must be organized such that
we work on only one task at a time. The straight-forward ap-
proach would be to write a top-level route planner that is akin
to a Finite-state machine (i.e. Do each task in a hardwired
order). However, an issue will arise if the boat gets ”stuck”
on a task.

To remedy this and other issues, we designed a Route
Planner Manager. Each task works independently from the
others, and the manager will decide which task is allowed to
run. Thus, each task will continuously publish its status to
the manager. The manager will listen to and save this sta-
tus information, using it to decide which should be handled.
The status consists of information such as task priority and
runability.

Overall, this system will make the route planner much
more robust. By correctly setting the priorities of various
tasks, we can let the boat decide the ordering of the tasks
at run-time. We no longer have to be confined to a pre-
determined route-plan. Also, if the boat fails a task we can
simply change the priority. The boat can then work on a
different task and reattempt the failed task later.

6.2 Individual Tasks
With our firm underlying foundation, the challenge of nav-

igating the tasks becomes far less daunting, and many are
reduced to trivial code. At the high level all each task has to
do is monitor our SLAM world, containing cylinder, plane,
and sphere objects, as well as an occupancy grid, see if they
have the information needed to run, ask permission from the
route planner, then publish their goal destinations to our boat
control system. Here is a breakdown of each task:

6.2.1 Speed Gates
The speed gate is trivial for our system, we look for cylin-

drical objects, identify the red and green buoy and publish a
way-point between each.

6.2.2 Buoy Channel
The buoy channel is slightly more involved. We find each

sphere in the water plane, then identify its color, and tag it
as a buoy. We then match red and green buoys based on
distance, direction and angle criteria to determine the next
nearest buoy pair to navigate through, we then set a way-
point between that pair. When there are no more valid pairs
we stop navigating the channel. It is important to note here
that we do not avoid obstacles at this stage. That is handled
later by our obstacle avoidance algorithm.

6.2.3 Shore Following

Given our underlying system, shore following becomes
much simpler. Shore is a long connected area of nearly ver-
tical planes with a large horizontal plane on top. After iden-
tifying the shore we can easily choose to follow it until a task
specific algorithm receives control.

6.2.4 Air Challenge
The air challenge is very manageable with our system.

Because of our segmentation algorithm, each sign, with the
exception of air, will be segmented into two different plane
segments. We may find the vertical planes, then find the
color of the smaller segment, this will tell us which sign
is earth, water, or fire. A vertical white segment without a
color is air. We have also calibrated an FLIR PathFinderIR
IR Camera into our system, in a manner similar to our other
cameras, allowing us to determine the relative temperature
of each sign. After this data is gathered it is trivial to trans-
mit it over the network.

6.2.5 Water Challenge
The water challenge is also easy to accomplish. We search

the shore for a red segment hanging out over the water, iden-
tify it as the button, turn off obstacle avoidance, and navigate
to contact it.

6.2.6 Fire Challenge
The fire challenge is nearly a subset of the air functional-

ity. We find the plane of the boat floating in the water, find
the red hole segment, then aim our boat, and consequently
water gun, towards the hole, where we fire until the red flag
appears.

6.2.7 Earth Challenge
The earth challenge is by far the most difficult for us.

Finding the ball is actually rather easy, it is a pink sphere
near the EZ dock, a plane running into the water, but getting
it is another matter. Because of the size and construction
of our boat it is impossible to ascend the ramp and retrieve
the ball. We have chosen to deploy a small amphibious RC
car to grab the ball for us. This presents several issues, we
first must navigate the car to the ball, and then retrieve the
car from the land. We have attached a safety line that we will
retrieve the car with after it has completed the task. The most
difficult part is getting the car to the ball. Our vision system
requires a static environment, meaning that we cannot track
the car in real-time, so we use the April Tag System [4] to
track the car’s 6DOF state. We then only need to send wire-
less RC signals to the car, and navigate it to the ball using
offshoots of our underlying boat navigation systems.

6.3 Obstacle Avoidance
We have implemented an obstacle-avoiding algorithm to

help us dodge the shore and other objects in our way such
as the yellow buoys in the channel. Our obstacle avoidance
algorithm takes advantage of the SLAM occupancy grid, and
uses an A* algorithm to find the optimal path.

7



Our implementation of the obstacle avoidance is fairly
simple, as we do not have many obstacles to avoid. We be-
gin with our occupancy grid, our destination from the run-
ning task, and our state. We then blur the occupancy grid
to compensate for the size of our boat, and run a typical
A* algorithm, using the Manhattan method for the predicted
distance to our goal. After we have created a route we deter-
mine the fewest number of destination points we can include
without coming near an obstacle, and broadcast these points
to our motor control system.

7. PROCESS MANAGER
Our software system is designed around a networked message-

passing framework (LCM framework). As a result, the com-
plete system is composed of numerous processes spread across
two computers. Therefore, traditional process management
quickly becomes unwieldy. To this end, we developed a spe-
cialized process manager.

Due to the design, our process manager can be used both
for test/debug sessions and competition runs. The process
manager is invoked with a configuration file as an argument.
The configuration file names all the processes that should be
run. Because the configuration is not hard-coded, we can
use a different configuration when testing as opposed to a
trial run. In addition, the process manager sports an interac-
tive command-line for managing the processes. This allows
the developer to start and stop a process or view the process’s
output without searching for the terminal it was started from.
In addition, all process output is stored in a log file for later
reference. These features make the process manager a phe-
nomenal debug tool.

The process manager also attempts to ensure that pro-
cesses are running and working as intended. For this, the
process manager will restart a process if it dies. Also, the
process manager listens to the LCM channels of the man-
aged processes. Using the frequency of publishes the pro-
cess manager can determine if a process has become stuck
even if it has not terminated. These features aim to improve
robustness by preventing a total system failure due to a mi-
nor bug.

8. SIMULATOR
Due to weather restrictions within Michigan, we are un-

able to test our robotic platform for much of the time that
our team members are available. To mitigate this inabil-
ity to test new algorithms, we created a full robotic simu-
lator. Within this simulator, we can build up a mock course
that includes the gate buoys, a buoy channel, shoreline, and
several other features that we could expect in the environ-
ment. This simulator is able to completely spoof all sensor
readings, sampling the ground-truth from a Gaussian distri-
bution, and responds to vehicle control inputs to drive the
simulator. Therefore, the simulator is able to perfectly mir-
ror the actual environment, which allows us to rapidly test
new ideas, algorithms, and strategies. A screen shot of the

Figure 12: A screenshot of the simulator visualization

simulator can be seen in Figure [12]

9. CONCLUSION
We have presented Wolvemarine, our submission to the

fourth AUVSI Autonomous Surface Vehicle Competition.
Wolvemarine took the Design, Build, Test methodology and
redesigned Mjolnir. We have improved our hulls and deck
design, lightening our boat and increasing our control. We
then implemented a new vision, SLAM, and route planning
methodology which should be powerful and robust enough
for years of competitions to come.

10. REFERENCES
[1] A. Davison, I. Reid, N. Molton, and O. Stasse.

Monoslam: Real-time single camera slam. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 29(6):1052 –1067, june 2007.

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. pages 167–181, 2004.

[3] J. Neira and J. Tardos. Data association in stochastic
mapping using the joint compatibility test. Robotics and
Automation, IEEE Transactions on, 17(6):890 –897,
dec 2001.

[4] E. Olson. Apriltag: A robust and flexible multi-purpose
fiducial system. Technical report, University of
Michigan APRIL Laboratory, May 2010.

[5] G. Pandey, J. McBride, S. Savarese, and R. Eustice.
Extrinsic calibration of a 3d laser scanner and an
omnidirectional camera. In 7th IFAC Symposium on
Intelligent Autonomous Vehicles, volume 7, Leece,
Italy, 2010.

[6] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. Computer Graphics
Forum, 26(2):214–226, June 2007.

[7] J. Strom, A. Richardson, and E. Olson. Graph-based
segmentation for colored 3D laser point clouds. In

8



Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), October
2010.

[8] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2005.

[9] R. Unnikrishnan and M. Hebert. Fast extrinsic
calibration of a laser rangefinder to a camera. Technical
report.

9


	Introduction
	Hull
	Design
	Fabrication

	Electrical Box
	Vision Pipeline
	Calibration
	Point Cloud Generation
	Segmentation
	Feature Detection

	SLAM
	Route Planning
	Route Planner Manager
	Individual Tasks
	Speed Gates
	Buoy Channel
	Shore Following
	Air Challenge
	Water Challenge
	Fire Challenge
	Earth Challenge

	Obstacle Avoidance

	Process Manager
	Simulator
	Conclusion
	References

