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ABSTRACT 

Eve is a fully autonomous surface 
vehicle built for the purpose of 
competing in the sixth annual AUVSI 
RoboBoat Competition, where it will 
showcase its ability to complete the buoy 
course and challenge stations. The 
vehicle uses a pontoon design for  
maximum stability, which is essential to 
all of the electronic systems on board. 
The main focus for the team this year 
was to redesign the hulls and deck, as 
well as outfit the boat to complete the 
challenge stations that are new from last 
year. This paper will discuss the 
modifications we have made to our boat 
since the competition last year. 

 
1. INTRODUCTION 

UM::Autonomy presents our 
autonomous surface vehicle, Eve, for entry 
in the sixth annual AUVSI RoboBoat 
Competition. Eve is a fully autonomous 
vessel, designed to complete the buoy 
course and challenge stations of the 2013 
competition. The design of Eve was heavily 
influenced by her predecessor, Serenity, 
which was the winner of the 2012 RoboBoat 
competition. Our main focus for 2013 was to 
build off our success from the previous year 
and to address the issues Serenity faced. 
Since Eve is a new iteration of Serenity, we 
will not address every feature of the boat but 
rather the improvements that have been 
made for 2013, 

 
While Eve may look similar to 

Serenity, the boat has been almost entirely 
rebuilt. Due to our success from the previous 
years, we are confident Eve will complete a 
buoy course, so we spent the majority of this 
past year focusing on the challenge stations. 
We have new sensors, new systems for 
attempting the challenges, and a new 
propulsion configuration for improved 
maneuverability. . 

This paper will discuss all of the 
developments we have made in the past 
year, as well as a brief overview of aspects 
of the system that have remained the same. 
With all of the changes we have made, we 
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are excited to present Eve to this year’s 
RoboBoat Competition. 

 
2. HULLS AND DECK 
2.1 Hull Design 

The final hull design was selected for 
its success in exceeding all of our imposed 
design requirements. In 2012, the hulls were 
unstable when quick transitions from 
forward to reverse motion occurred; this has 
been resolved in 2013 as a result of the 
redesign. Notable design changes in 2013 
include a new hull profile, the use of an 
internal aluminum support structure, new 
thruster placement, and the interface 
between the hulls and the deck.  

The hulls were designed to be 
streamlined to help with tracking and reduce 
water flow separation from the hull. 
Inspiration for hull design was drawn from 
pontoon boats, which have low waterplane 
areas and can easily transition from forward 
to reverse motion. Like its predecessor, the 
forward sections of the hulls are semi-
planing; unlike its predecessor, the aft 
section is semi-planing as well. As a result, 
the boat travels well in both directions of 
travel. The hulls are very stable in pitch, 
roll, and yaw and thus provide a stable 
platform for the vehicle’s electronic 
systems. 
  Four 80W Seabotix thrusters are 
used to power the boat and are mounted 
underneath the hulls at 45˚ normal to the 
boat. This thruster position was chosen due 
to an issue in 2012 where the thrusters 
breached the water surface, causing 
hardware on the thruster to become brittle 
and fracture. In addition, the new 
configuration improves the overall 
maneuverability of the boat and allows the 
boat to move laterally in addition to the 
traditional forward and reverse motion. 

The 2013 hulls also feature an 
aluminum support structure that is used to 
anchor the hulls to the boat deck. A major 

design change is that the hulls do not 
protrude through the deck at the interface; 
rather, they are held to the deck using bolts. 
This resulted in more usable deck space and 
easier installation of the hulls. The support 
structure also adds mass to the hulls, 
resulting in greater stability. 
 

Figure 2: SolidWorks model of the 2013 
hulls 

 
2.2 Hull Fabrication 

The hulls were fabricated using a 
male mold fiberglass process. Computer 
models were created using the modeling 
programs SolidWorks and Catia, and then 
four foam half-hull molds were cut using a 
CNC Router. Sections were grooved out 
within the hull to accommodate the support 
structures, which were fabricated from 
aluminum stock and then TIG welded. After 
the support structures were embedded in the 
hulls, the half-hulls were joined and a layer 
of fiberglass was added over the top. 

An epoxy layer was added to protect 
the fiberglass layer as well as waterproof the 
hulls. Silicone was used to waterproof the 
interfaces between the supports and the 
foam molds. The paint scheme was updated 
for 2013 and then an additional coat of 
epoxy was added to waterproof and protect 
the paint. 
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Figure 3: The foam molds for the hulls 
were fabricated using a CNC Router  

 
2.3 Deck Design 

The deck of the vessel is nearly 
identical to the 2012 design, using the same 
lightweight aluminum-honeycomb material. 
The deck’s dimensions (28” x 48”) were 
changed to allow for easy transfer through 
doorways. Access holes were added near the 
electrical box so that cables could be routed 
beneath the deck for a cleaner appearance. 
 
3. ELECTRICAL SYSTEM 
3.1 Design 
 This year we are using the same 
electrical system as our last year’s entry, 
Serenity.  One of the most notable changes 
to our electrical system was the addition of 
two new motor controllers to support our 
new propulsion system. 
 

Figure 4: Eve’s Electrical Box 

3.2 Sensors and Servos 
For dead reckoning purposes we rely 

on a GPS, a Compass, and a Fiber-Optic 
Gyroscope (FOG): 
 
GPS: Garmin 16-HVS 

Used primarily for velocity 
measurements to project the state forward. 
 
Compass: Ocean Server OS5000 

Used primarily for pitch and roll 
measurements and to compute an initial 
heading for correlating GPS and Gyro 
measurements in our Extended Kalman-
Filter SLAM. 
 
FOG: KVH DSP-3000 

Used exclusively for yaw 
measurements as its superior drift rate of 
less than 1 degree per hour provides us with 
nearly perfect yaw estimation. 
 
For perceptual purposes we use the 
following sensors (precise usages are 
explained in detail in Section 4): 
 
Cameras: Point Grey Flea 3 Firewire 
 
LIDAR: Hokuyo UTM-30LX LIDAR 
actuated using a Dynamixel AX12 Servo. 
 
Underwater Camera: VIVIDIA USB 
Flexible Inspection Camera Borescope & 
Endoscope for underwater detection. 
 
We have also added several servos to make 
our ASV much more capable. These 
include: 
 
Two Dynamixel AX12 Servos for a pan/tilt 
dart gun aiming system. 
 
Two Dynamixel AX12 Servos for deploying 
a ramp and tethering an amphibious RC car. 
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4. VISION SYSTEM 
Like last year’s entry, Eve uses two 

cameras and a LIDAR device to see her 
surroundings. Where practical, it tries to 
match objects detected in images with those 
detected in LIDAR  point clouds to gain 
additional certainty about their location and 
existence. In other instances, Eve uses only 
the images from each camera separately to 
locate objects in 3D space. Her approach is 
camera-driven, but she also heavily relies on 
spatial 3D information. 

This year we added a third, more 
specialized camera, whose data is not 
matched with LIDAR. It sits underwater, 
and is used to detect an underwater buoy 
that will be at one of this year’s challenge 
stations. 
4.1 Detection from Camera Images 

We begin our above-water buoy 
detection by performing a HSV-based blob 
detection of each camera image. This 
process includes several filters and 
thresholds to reduce false detection rates. 
However, this alone is not enough to ensure 
reliable buoy detection. There are numerous 
situations that can cause false detections, 
such as lighting conditions, vegetation on 
the shore, and pedestrians. 

For the challenge stations, we have 
employed a variety of techniques including 
HSV thresholding, blob dilation, shape 
fitting, and other constraints. These will be 
further explained in the corresponding 
sections. 

 

 
Figure 5: Blob Detection is used to detect 

buoys during a practice run 

 
4.2 Point Cloud Generation 
 For spatial data we utilize a 3D 
Lidar-based system. Our Hokuyo UTM-
30LX is actuated by a Dynamixel AX12. 
Using returns from both the servo and laser, 
we can construct a set of three dimensional 
range points, which we refer to as the point 
cloud. For a detailed explanation of point 
cloud construction see the corresponding 
sections in our competition paper for 
Wolvemarine (2011). 

For Eve, we made many decisions 
similar to last year to maximize utility from 
our point cloud data. First, we mounted the 
Lidar beneath the deck. This was done to 
eliminate returns from debris in the water 
and reduce the required rotation angle for 
the buoy channel. Second, we implemented 
a dynamic servo control system that allows 
the route planner to reconfigure the rotation 
range during a run. This allows us to use a 
very small range for the buoy channel 
without sacrificing our ability to generate 
point clouds of challenge station tasks. Eve 
can produce buoy channel point clouds, and 
thus full image-point-cloud pairs, at up to 8 
Hz.  
 
4.3 Calibration 

Before data correlation can be 
performed, we need to obtain an accurate 
calibration between the laser and camera. To 
do this, we gather a large set of image/laser 
pairs that can be used to compute both 
camera intrinsics and the rigid-body 
transform between the sensors. We use the 
extrinsics model given in [5] and the 
parameters are computed using the method 
described in [3]. 
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Figure 6: Calibration of the laser and 

cameras 
 

5. FEATURE DETECTION 
5.1 Buoy Detection 

For buoy detection we perform blob 
and point cloud correlation. By correlating 
blobs with transformed laser points within a 
reasonable radius and of reasonable 
quantity, one can develop a workable buoy 
detector. However, experimentally, this 
simple approach fails whenever the 
shoreline is near. When this occurs, there are 
a plethora of laser points that will easily be 
correlated with blobs. From experiment, 
there tend to be many false detection blobs 
for the on-shore vegetation. 

To reduce this vulnerability, we filter 
the point cloud data to discard large clusters 
of nearby points. We accomplish this goal 
using the Union-Find data-structure. We 
begin by reducing all points to an X-Y grid 
map. We can then join nearby points to form 
several clusters. Next we can apply 
constraints on each cluster, such as size, to 
discard unlikely candidates. Clusters that are 
not discarded in the filter are then correlated 
with the image-based blobs as before. 
Because our laser range-finder doesn’t 
return off the water surface, large clusters 
correspond to the shore, medium clusters 
correspond to buoys, and small clusters 
correspond to either noise or to debris in the 
water. By discarding all large and small 
clusters, we can be reasonably confident in 
the resulting correlation. 
 
 
 
 

5.2 Catch the Ball 
The detection system we will use to 

find the ramp is the same as last year, which 
is illustrated in Figure 7. This consists of 
using our cameras to detect the pink duct 
tape along the edges of the ramp as well as 
our laser to find a planar object. From this 
the boat will calculate the best method of 
approach and drive up to the ramp and 
deploy our autonomous land car.  

After Eve has docked with the ramp, 
she will deploy her drawbridge and use 
Bluetooth to activate the land car. The car is 
entirely autonomous and will return to Eve 
when it has retrieved the puck.  

 

 
Figure 7: Ramp Detection 

 
5.3 Sneaky Sprinkler 

For this challenge we will use the 
same detection methods as last year. We 
begin detection by finding all the red blobs 
in the image and then we filter the blobs by 
size and circularity constraints. Blobs that 
are of the same size and approximately the 
same height above the water are matched 
and classified as buttons. The vessel 
investigates the buttons and searches for the 
submerged buoy using our underwater 
camera. and a simple white blob detection 
algorithm. Once the boat identifies the white 
buoy, it approaches the appropriate button 
and pushes it using the deployment ramp. 
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5.4 Rock, Paper, Scissors, Lizard, Spock 
This year, our strategy is to detect 

the signs using blob detection and color 
matching, similar to the Sneaky Sprinkler 
challenge. As each sign is a different color, 
we can determine what the sign is based on 
the color. One difference from last year’s 
boat, Serenity, is that Eve does not contain 
an Infrared camera. We attempted the Hot 
Suite challenge in 2012  and the camera was 
not capable of detecting a difference in the 
temperatures of the signs. This was due to 
the fact that the signs were made out of a 
reflective material that reflected the heat of 
the sun. Therefore, this year we will make a 
random guess as to which is the hottest sign, 
and will then determine the “hand” that 
beats it. 
 
5.5 Capture the Flag 

For this challenge we will use blob 
detection and have it look for purple in the 
same way we use blob detection to navigate 
through the buoy course. We will treat the 
boat the same way as we would treat a buoy, 
but in this case we will attempt to hit the 
target instead of avoid it. 
 
5.6 Shoot Through the Hoops 
The hoops are detected using each of our 
two primary cameras separately. For each 
camera and each frame, we first detect blobs 
of certain HSV values and sizes. Then we fit 
a circle to each blob, and use multiple rules 
to ignore certain blobs. We also eliminate a 
blob if the standard deviation of the 
distances of the blob’s points from its circle 
is too large. After these eliminations, we 
have a set of up to three blobs and fitted 
circles that we believe correspond to hoops. 
We use the centers and radii of these circles 
in the image to estimate where the hoops are 
in 3D space, relative to Eve, and send our 
estimates to SLAM. 
 
 
 

6. SLAM 
Eve employs an Extended Kalman-

Filter SLAM feature based mapping system 
[4]. Since there are few things to localize on 
in the competition pond, we use a feature-
based mapper and fall back on dead-
reckoning when feature detections are not 
available for localization purposes. Due to 
the inclusion of the highly accurate Fiber 
Optic Gyro (FOG), we now use the FOG 
returns exclusively for heading information. 
On initialization, we collect a set of compass 
and fog observations and compute a 
“globalization” constant for the FOG 
measurements. This allows us to use both 
GPS and FOG data in a global frame for the 
purpose of dead reckoning. 

For building data correspondences 
between buoy detections, we use the 
recursive Joint-Compatibility Branch and 
Bound algorithm [2]. Since challenge station 
features are unique, there is a known 
correspondence and data association is 
trivial. 

We have also added some 
capabilities for map correction. These 
include: detection and elimination of 
duplicate features and detection of map 
corruption. By maintaining a good map of 
the competition environment, we are 
afforded many advantages that are not 
possible with a simple short-term mapping 
technique, namely, adaptive buoy channel 
navigation. This will be discussed at length 
in the following section. 
 
7. ROUTE PLANNING 
7.1 Buoy Channel Planning 
 Due to our success with the buoy 
channel at last year’s competition, we 
decided to use the same buoy channel 
navigation method. The system maps each 
buoy independently and then classifies 
buoys into pairs based on their distance and 
orientation. With each new buoy that is 
detected the system recalculates the best 
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route based on all past buoys. This is done 
so that even if the boat makes an incorrect 
decision it is able to recover.  
 
7.2 Challenge Task Planning 
7.2.1 Catch the Ball 

When Eve reaches the Amphibious 
Station ramp, the docking sequence begins. 
This phase results in lowering the 
deployment ramp mounted on the front of 
our ASV.. Using the  load feedback from the 
ramp actuator, we can detect when it has 
been lowered. .  For ease of deployment, the 
amphibious car is mounted on the edge of 
the ramp; when the ramp is fully extended 
the car moves off the boat and onto the 
challenge station. 

Our amphibious landing vehicle is 
autonomously controlled by an Arduino 
microcontroller housed in a small water-
resistant electric box on top of the car.  The 
car, named WallE, uses two Pololu 1447 
motors for rear-wheel drive.  It slides across 
most surfaces using two skis in front that 
pivot to allow the car to move across 
inclined planes.  The car drives forward a set 
distance measured by the encoders on the 
motors.  It then turns left ninety degrees and 
follows a grid pattern to find the puck. We 
attached large amounts of hook-side Velcro 
between the skis, which causes the puck to 
stick to WallE when the car runs into it. 
WallE has two TCS230 color sensors on the 
front facing the ground, which are used to 
detect the pink tape marking the edges of the 
platform.    When it encounters the tape, the 
car  turns around and then continues to 
travel on a parallel path until it sees pink 
again or its time limit is exceeded.  All this 
time it knows its relative Cartesian position 
to the dock from the motor encoder data. 
 After a set amount of time, WallE will 
travel perpendicular to the ramp by the 
amount recorded from the motor encoders, 
and then travel back onto the ramp using the 
encoder data in that direction. An actuated 

tether line has been attached to WallE in 
case it fails to properly return to the ramp; 
regardless of success or failure, Eve can 
easily pull the vehicle back to the 
‘mothership’ and continue her voyage. 
 
7.2.2 Sneaky Sprinkler 

Since GPS coordinates are provided 
for all stations, Eve will proceed from  the 
center of the challenge station cove to the 
given GPS coordinate of the Sneaky 
Sprinkler challenge until she is able to detect 
the buttons. At that point, she will 
investigate each button to find the 
underwater buoy and then press the button 
using the front of the deployment ramp. As 
Eve makes detections of the buttons, she 
will add them to her SLAM map so that she 
can localize off of them later, similar to the 
buoy course. 
 
7.2.3 Rock, Paper, Scissors, Lizard, Spock 

For the Rock, Paper, Scissors, 
Lizard, Spock challenge we plan to 
approach the station using the provided GPS 
coordinate. When Eve is approximately 2 
meters away from the challenge station we 
will activate our detection algorithm, 
discussed in section 5.4. Eve will then 
navigate towards the signs until she can see 
them clearly and decide which gesture to 
play. At that point she will send a ping to the 
RoboBoat network containing the GPS 
coordinate and the gesture she wishes to 
play. 
 
7.2.4 Capture the Flag 

Using the provided GPS coordinate, 
Eve will navigate in circles around the GPS 
point until she detects a purple blob using 
the blob detection algorithm. Once the small 
boat is detected Eve will approach the boat 
head on until the flag comes into contact 
with the Velcro on the deployment ramp. A 
contact switch will be used to determine 
when the ramp has hit the flag, at which 
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point Eve will return to the center of the 
challenge station cove. 
 
7.2.5 Shoot Through the Hoop 
 When Eve is looking for challenges, 
she runs our hoop-detecting algorithm. If 
SLAM becomes certain enough about the 
location of some set of hoops, Eve will 
attempt to shoot through them. The gun has 
the ability to aim up and down, and side to 
side, independently of the boat. When 
shooting, Eve continuously sends commands 
to the gun with best estimates of how the 
gun’s servo motors should be oriented, and 
the servos continuously adjust to try to reach 
those estimates. For each shot, the boat will 
try to minimize her distance from the hoop, 
and shoot from a position from which the 
hoop looks the most circular. The gun fires 
only when Eve believes she and the gun are 
in a good enough position and orientation. 
 
7.3 Obstacle Avoidance 

By delaying obstacle avoidance to a 
later planning stage we are able to 
significantly simplify planning. We allow 
the individual planning systems to command 
any desired waypoint with little concern 
about how to reach the location. 
Our obstacle avoidance system then 
constructs an occupancy grid map. This map 
is dilated to allow the boat to be treated as a 
single point and then the Wave front 
algorithm is used to compute the shortest 
path. We then select a fixed point on the 
path as a look-ahead waypoint and we order 
the low-level navigation systems to this 
location. 
 
8. UTILITIES 

We use a variety of utilities to 
improve software development and make 
our entire software stack work together in 
harmony. These include a network message 
passing system, process manager, 
visualization library, and special calibration 

application. We discuss some of these tools 
below. 
 
8.1 LCM: Lightweight Communications 
and Marshaling  

LCM is a message passing system 
developed by MIT for the DARPA Urban 
Challenge in 2007 [1]. This system is 
specially designed for low-latency 
communications by using a simple UDP 
based communication scheme. By defining 
specialized message types, bindings for 
C/C++, Java, and Python can be 
automatically generated and all messages 
can be automatically marshaled. This allows 
us to write high-performance code in C and 
take advantage of Java for high-level code 
and for visualizations. LCM also provides 
logging and playback capabilities which 
have proven to be invaluable for debugging. 
 
8.2 Bot-Procman: Process Management 
 

Figure 10: Screenshot of Bot-procman 
 

One of the large failures in the 
execution of Wolvemarine in 2011 was 
difficulty in launching due to the high 
number of processes that were required for 
our entire system to work. We utilized a 
process manager that was developed in-
house, but was still a bit light on features 
and buggy. In addition, the process manager 
was a late addition to the design and had 
poor overall integration. This year we’ve 
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moved to the well-tested and proven Bot-
procman that was developed alongside LCM 
for the DARPA Urban Challenge. This 
process manager has many advantages such 
as: the usage of LCM as a backbone to 
manage processes across multiple machines, 
the ability to group processes for greater 
organization, and well-polished interface. 
 
8.3 Vis: Visualization Library 

One of the most crucial aspects in 
autonomous robotics is having a clear 
understanding of how your system is 
reacting to the environment and why. With 
only a simple “printf-style” debugging 
scheme, this goal is difficult if at all 
possible. Thus, developing versatile and 
intuitive visualizations is perhaps the most 
useful tool a roboticist can employ. For this 
purpose we use Vis, a 3D visualization 
library developed by the University of 
Michigan April Labortory 
(april.eecs.umich.edu). Vis is a Java library 
built around OpenGL that allows the user to 
construct very useful visual-8. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 11: A screenshot of our PID tuning 
application. The desired path is red while 
the actual path is black. Note the sliders 
at the bottom which allow PID terms to 
be adjusted in real-time. 
 
8.4 PID Tuning 

One of the processes that prove 
frustrating to most developers is the process 
of PID tuning. Some part of these 
frustrations stem from the uncertainty about 
how the PID system is performing. It can be 
incredibly challenging to decide which PID 
term to adjust without having appropriate 
ground truth to compare against. To help 
ease PID tuning, we have developed a 
special application to assist us. Our 
application allows the user to draw a poly-
line of the desired path for the ASV to 
travel, and then it plots the actual path in 
real time. The application also allows the 
user to adjust PID terms within the 
application itself. These features enable 
quick PID tuning and allow the user to 
compare different settings quickly and 
effectively. 
 
 
 
 
9. CONCLUSION 
 
This year, we began with a goal to build on 
our success in the previous year. Although 
Serenity won the competition in 2012, we 
knew that there were many improvements 
that could be made to the vessel. Our vision 
was to improve the rough areas of Serenity, 
and redesign and reinvent where necessary. 
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We worked to improve the system 
developed in 2012 to make it even easier to 
deploy and debug in 2013. New materials 
and manufacturing processes were 
integrated into the mechanical systems this 
year to create a lighter and faster vessel. We 
emphasized rigorous testing of the new 
vessel and its components to ensure 
continued success this year.  We believe that 
Eve is the best RoboBoat entry to date and 
eagerly await the opportunity to showcase 
her at RoboBoat 2013. 
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