
!"
"

UM::Autonomy’s “Eve”,
A Highly Proficient ASV

Michelle Howard, Dominique Kudzia,

Nick Ashcroft, Jakob Hoellerbauer,
Cyrus Anderson, Alex Berman, Steve Ratkowiak

University of Michigan

Ann Arbor, MI

Figure 1: Eve

ABSTRACT

Eve is a fully autonomous surface
vehicle built for the purpose of
competing in the sixth annual AUVSI
RoboBoat Competition, where it will
showcase its ability to complete the buoy
course and challenge stations. The
vehicle uses a pontoon design for
maximum stability, which is essential to
all of the electronic systems on board.
The main focus for the team this year
was to redesign the hulls and deck, as
well as outfit the boat to complete the
challenge stations that are new from last
year. This paper will discuss the
modifications we have made to our boat
since the competition last year.

1. INTRODUCTION

UM::Autonomy presents our
autonomous surface vehicle, Eve, for entry
in the sixth annual AUVSI RoboBoat
Competition. Eve is a fully autonomous
vessel, designed to complete the buoy
course and challenge stations of the 2013
competition. The design of Eve was heavily
influenced by her predecessor, Serenity,
which was the winner of the 2012 RoboBoat
competition. Our main focus for 2013 was to
build off our success from the previous year
and to address the issues Serenity faced.
Since Eve is a new iteration of Serenity, we
will not address every feature of the boat but
rather the improvements that have been
made for 2013,

While Eve may look similar to

Serenity, the boat has been almost entirely
rebuilt. Due to our success from the previous
years, we are confident Eve will complete a
buoy course, so we spent the majority of this
past year focusing on the challenge stations.
We have new sensors, new systems for
attempting the challenges, and a new
propulsion configuration for improved
maneuverability. .

This paper will discuss all of the
developments we have made in the past
year, as well as a brief overview of aspects
of the system that have remained the same.
With all of the changes we have made, we

#"
"

are excited to present Eve to this year’s
RoboBoat Competition.

2. HULLS AND DECK
2.1 Hull Design

The final hull design was selected for
its success in exceeding all of our imposed
design requirements. In 2012, the hulls were
unstable when quick transitions from
forward to reverse motion occurred; this has
been resolved in 2013 as a result of the
redesign. Notable design changes in 2013
include a new hull profile, the use of an
internal aluminum support structure, new
thruster placement, and the interface
between the hulls and the deck.

The hulls were designed to be
streamlined to help with tracking and reduce
water flow separation from the hull.
Inspiration for hull design was drawn from
pontoon boats, which have low waterplane
areas and can easily transition from forward
to reverse motion. Like its predecessor, the
forward sections of the hulls are semi-
planing; unlike its predecessor, the aft
section is semi-planing as well. As a result,
the boat travels well in both directions of
travel. The hulls are very stable in pitch,
roll, and yaw and thus provide a stable
platform for the vehicle’s electronic
systems.
 Four 80W Seabotix thrusters are
used to power the boat and are mounted
underneath the hulls at 45˚ normal to the
boat. This thruster position was chosen due
to an issue in 2012 where the thrusters
breached the water surface, causing
hardware on the thruster to become brittle
and fracture. In addition, the new
configuration improves the overall
maneuverability of the boat and allows the
boat to move laterally in addition to the
traditional forward and reverse motion.

The 2013 hulls also feature an
aluminum support structure that is used to
anchor the hulls to the boat deck. A major

design change is that the hulls do not
protrude through the deck at the interface;
rather, they are held to the deck using bolts.
This resulted in more usable deck space and
easier installation of the hulls. The support
structure also adds mass to the hulls,
resulting in greater stability.

Figure 2: SolidWorks model of the 2013
hulls

2.2 Hull Fabrication

The hulls were fabricated using a
male mold fiberglass process. Computer
models were created using the modeling
programs SolidWorks and Catia, and then
four foam half-hull molds were cut using a
CNC Router. Sections were grooved out
within the hull to accommodate the support
structures, which were fabricated from
aluminum stock and then TIG welded. After
the support structures were embedded in the
hulls, the half-hulls were joined and a layer
of fiberglass was added over the top.

An epoxy layer was added to protect
the fiberglass layer as well as waterproof the
hulls. Silicone was used to waterproof the
interfaces between the supports and the
foam molds. The paint scheme was updated
for 2013 and then an additional coat of
epoxy was added to waterproof and protect
the paint.

$"
"

Figure 3: The foam molds for the hulls
were fabricated using a CNC Router

2.3 Deck Design

The deck of the vessel is nearly
identical to the 2012 design, using the same
lightweight aluminum-honeycomb material.
The deck’s dimensions (28” x 48”) were
changed to allow for easy transfer through
doorways. Access holes were added near the
electrical box so that cables could be routed
beneath the deck for a cleaner appearance.

3. ELECTRICAL SYSTEM
3.1 Design
 This year we are using the same
electrical system as our last year’s entry,
Serenity. One of the most notable changes
to our electrical system was the addition of
two new motor controllers to support our
new propulsion system.

Figure 4: Eve’s Electrical Box

3.2 Sensors and Servos
For dead reckoning purposes we rely

on a GPS, a Compass, and a Fiber-Optic
Gyroscope (FOG):

GPS: Garmin 16-HVS

Used primarily for velocity
measurements to project the state forward.

Compass: Ocean Server OS5000

Used primarily for pitch and roll
measurements and to compute an initial
heading for correlating GPS and Gyro
measurements in our Extended Kalman-
Filter SLAM.

FOG: KVH DSP-3000

Used exclusively for yaw
measurements as its superior drift rate of
less than 1 degree per hour provides us with
nearly perfect yaw estimation.

For perceptual purposes we use the
following sensors (precise usages are
explained in detail in Section 4):

Cameras: Point Grey Flea 3 Firewire

LIDAR: Hokuyo UTM-30LX LIDAR
actuated using a Dynamixel AX12 Servo.

Underwater Camera: VIVIDIA USB
Flexible Inspection Camera Borescope &
Endoscope for underwater detection.

We have also added several servos to make
our ASV much more capable. These
include:

Two Dynamixel AX12 Servos for a pan/tilt
dart gun aiming system.

Two Dynamixel AX12 Servos for deploying
a ramp and tethering an amphibious RC car.

%"
"

4. VISION SYSTEM
Like last year’s entry, Eve uses two

cameras and a LIDAR device to see her
surroundings. Where practical, it tries to
match objects detected in images with those
detected in LIDAR point clouds to gain
additional certainty about their location and
existence. In other instances, Eve uses only
the images from each camera separately to
locate objects in 3D space. Her approach is
camera-driven, but she also heavily relies on
spatial 3D information.

This year we added a third, more
specialized camera, whose data is not
matched with LIDAR. It sits underwater,
and is used to detect an underwater buoy
that will be at one of this year’s challenge
stations.
4.1 Detection from Camera Images

We begin our above-water buoy
detection by performing a HSV-based blob
detection of each camera image. This
process includes several filters and
thresholds to reduce false detection rates.
However, this alone is not enough to ensure
reliable buoy detection. There are numerous
situations that can cause false detections,
such as lighting conditions, vegetation on
the shore, and pedestrians.

For the challenge stations, we have
employed a variety of techniques including
HSV thresholding, blob dilation, shape
fitting, and other constraints. These will be
further explained in the corresponding
sections.

Figure 5: Blob Detection is used to detect

buoys during a practice run

4.2 Point Cloud Generation
 For spatial data we utilize a 3D
Lidar-based system. Our Hokuyo UTM-
30LX is actuated by a Dynamixel AX12.
Using returns from both the servo and laser,
we can construct a set of three dimensional
range points, which we refer to as the point
cloud. For a detailed explanation of point
cloud construction see the corresponding
sections in our competition paper for
Wolvemarine (2011).

For Eve, we made many decisions
similar to last year to maximize utility from
our point cloud data. First, we mounted the
Lidar beneath the deck. This was done to
eliminate returns from debris in the water
and reduce the required rotation angle for
the buoy channel. Second, we implemented
a dynamic servo control system that allows
the route planner to reconfigure the rotation
range during a run. This allows us to use a
very small range for the buoy channel
without sacrificing our ability to generate
point clouds of challenge station tasks. Eve
can produce buoy channel point clouds, and
thus full image-point-cloud pairs, at up to 8
Hz.

4.3 Calibration

Before data correlation can be
performed, we need to obtain an accurate
calibration between the laser and camera. To
do this, we gather a large set of image/laser
pairs that can be used to compute both
camera intrinsics and the rigid-body
transform between the sensors. We use the
extrinsics model given in [5] and the
parameters are computed using the method
described in [3].

&"
"

Figure 6: Calibration of the laser and

cameras

5. FEATURE DETECTION
5.1 Buoy Detection

For buoy detection we perform blob
and point cloud correlation. By correlating
blobs with transformed laser points within a
reasonable radius and of reasonable
quantity, one can develop a workable buoy
detector. However, experimentally, this
simple approach fails whenever the
shoreline is near. When this occurs, there are
a plethora of laser points that will easily be
correlated with blobs. From experiment,
there tend to be many false detection blobs
for the on-shore vegetation.

To reduce this vulnerability, we filter
the point cloud data to discard large clusters
of nearby points. We accomplish this goal
using the Union-Find data-structure. We
begin by reducing all points to an X-Y grid
map. We can then join nearby points to form
several clusters. Next we can apply
constraints on each cluster, such as size, to
discard unlikely candidates. Clusters that are
not discarded in the filter are then correlated
with the image-based blobs as before.
Because our laser range-finder doesn’t
return off the water surface, large clusters
correspond to the shore, medium clusters
correspond to buoys, and small clusters
correspond to either noise or to debris in the
water. By discarding all large and small
clusters, we can be reasonably confident in
the resulting correlation.

5.2 Catch the Ball
The detection system we will use to

find the ramp is the same as last year, which
is illustrated in Figure 7. This consists of
using our cameras to detect the pink duct
tape along the edges of the ramp as well as
our laser to find a planar object. From this
the boat will calculate the best method of
approach and drive up to the ramp and
deploy our autonomous land car.

After Eve has docked with the ramp,
she will deploy her drawbridge and use
Bluetooth to activate the land car. The car is
entirely autonomous and will return to Eve
when it has retrieved the puck.

Figure 7: Ramp Detection

5.3 Sneaky Sprinkler

For this challenge we will use the
same detection methods as last year. We
begin detection by finding all the red blobs
in the image and then we filter the blobs by
size and circularity constraints. Blobs that
are of the same size and approximately the
same height above the water are matched
and classified as buttons. The vessel
investigates the buttons and searches for the
submerged buoy using our underwater
camera. and a simple white blob detection
algorithm. Once the boat identifies the white
buoy, it approaches the appropriate button
and pushes it using the deployment ramp.

'"
"

5.4 Rock, Paper, Scissors, Lizard, Spock
This year, our strategy is to detect

the signs using blob detection and color
matching, similar to the Sneaky Sprinkler
challenge. As each sign is a different color,
we can determine what the sign is based on
the color. One difference from last year’s
boat, Serenity, is that Eve does not contain
an Infrared camera. We attempted the Hot
Suite challenge in 2012 and the camera was
not capable of detecting a difference in the
temperatures of the signs. This was due to
the fact that the signs were made out of a
reflective material that reflected the heat of
the sun. Therefore, this year we will make a
random guess as to which is the hottest sign,
and will then determine the “hand” that
beats it.

5.5 Capture the Flag

For this challenge we will use blob
detection and have it look for purple in the
same way we use blob detection to navigate
through the buoy course. We will treat the
boat the same way as we would treat a buoy,
but in this case we will attempt to hit the
target instead of avoid it.

5.6 Shoot Through the Hoops
The hoops are detected using each of our
two primary cameras separately. For each
camera and each frame, we first detect blobs
of certain HSV values and sizes. Then we fit
a circle to each blob, and use multiple rules
to ignore certain blobs. We also eliminate a
blob if the standard deviation of the
distances of the blob’s points from its circle
is too large. After these eliminations, we
have a set of up to three blobs and fitted
circles that we believe correspond to hoops.
We use the centers and radii of these circles
in the image to estimate where the hoops are
in 3D space, relative to Eve, and send our
estimates to SLAM.

6. SLAM
Eve employs an Extended Kalman-

Filter SLAM feature based mapping system
[4]. Since there are few things to localize on
in the competition pond, we use a feature-
based mapper and fall back on dead-
reckoning when feature detections are not
available for localization purposes. Due to
the inclusion of the highly accurate Fiber
Optic Gyro (FOG), we now use the FOG
returns exclusively for heading information.
On initialization, we collect a set of compass
and fog observations and compute a
“globalization” constant for the FOG
measurements. This allows us to use both
GPS and FOG data in a global frame for the
purpose of dead reckoning.

For building data correspondences
between buoy detections, we use the
recursive Joint-Compatibility Branch and
Bound algorithm [2]. Since challenge station
features are unique, there is a known
correspondence and data association is
trivial.

We have also added some
capabilities for map correction. These
include: detection and elimination of
duplicate features and detection of map
corruption. By maintaining a good map of
the competition environment, we are
afforded many advantages that are not
possible with a simple short-term mapping
technique, namely, adaptive buoy channel
navigation. This will be discussed at length
in the following section.

7. ROUTE PLANNING
7.1 Buoy Channel Planning
 Due to our success with the buoy
channel at last year’s competition, we
decided to use the same buoy channel
navigation method. The system maps each
buoy independently and then classifies
buoys into pairs based on their distance and
orientation. With each new buoy that is
detected the system recalculates the best

("
"

route based on all past buoys. This is done
so that even if the boat makes an incorrect
decision it is able to recover.

7.2 Challenge Task Planning
7.2.1 Catch the Ball

When Eve reaches the Amphibious
Station ramp, the docking sequence begins.
This phase results in lowering the
deployment ramp mounted on the front of
our ASV.. Using the load feedback from the
ramp actuator, we can detect when it has
been lowered. . For ease of deployment, the
amphibious car is mounted on the edge of
the ramp; when the ramp is fully extended
the car moves off the boat and onto the
challenge station.

Our amphibious landing vehicle is
autonomously controlled by an Arduino
microcontroller housed in a small water-
resistant electric box on top of the car. The
car, named WallE, uses two Pololu 1447
motors for rear-wheel drive. It slides across
most surfaces using two skis in front that
pivot to allow the car to move across
inclined planes. The car drives forward a set
distance measured by the encoders on the
motors. It then turns left ninety degrees and
follows a grid pattern to find the puck. We
attached large amounts of hook-side Velcro
between the skis, which causes the puck to
stick to WallE when the car runs into it.
WallE has two TCS230 color sensors on the
front facing the ground, which are used to
detect the pink tape marking the edges of the
platform. When it encounters the tape, the
car turns around and then continues to
travel on a parallel path until it sees pink
again or its time limit is exceeded. All this
time it knows its relative Cartesian position
to the dock from the motor encoder data.
 After a set amount of time, WallE will
travel perpendicular to the ramp by the
amount recorded from the motor encoders,
and then travel back onto the ramp using the
encoder data in that direction. An actuated

tether line has been attached to WallE in
case it fails to properly return to the ramp;
regardless of success or failure, Eve can
easily pull the vehicle back to the
‘mothership’ and continue her voyage.

7.2.2 Sneaky Sprinkler

Since GPS coordinates are provided
for all stations, Eve will proceed from the
center of the challenge station cove to the
given GPS coordinate of the Sneaky
Sprinkler challenge until she is able to detect
the buttons. At that point, she will
investigate each button to find the
underwater buoy and then press the button
using the front of the deployment ramp. As
Eve makes detections of the buttons, she
will add them to her SLAM map so that she
can localize off of them later, similar to the
buoy course.

7.2.3 Rock, Paper, Scissors, Lizard, Spock

For the Rock, Paper, Scissors,
Lizard, Spock challenge we plan to
approach the station using the provided GPS
coordinate. When Eve is approximately 2
meters away from the challenge station we
will activate our detection algorithm,
discussed in section 5.4. Eve will then
navigate towards the signs until she can see
them clearly and decide which gesture to
play. At that point she will send a ping to the
RoboBoat network containing the GPS
coordinate and the gesture she wishes to
play.

7.2.4 Capture the Flag

Using the provided GPS coordinate,
Eve will navigate in circles around the GPS
point until she detects a purple blob using
the blob detection algorithm. Once the small
boat is detected Eve will approach the boat
head on until the flag comes into contact
with the Velcro on the deployment ramp. A
contact switch will be used to determine
when the ramp has hit the flag, at which

)"
"

point Eve will return to the center of the
challenge station cove.

7.2.5 Shoot Through the Hoop
 When Eve is looking for challenges,
she runs our hoop-detecting algorithm. If
SLAM becomes certain enough about the
location of some set of hoops, Eve will
attempt to shoot through them. The gun has
the ability to aim up and down, and side to
side, independently of the boat. When
shooting, Eve continuously sends commands
to the gun with best estimates of how the
gun’s servo motors should be oriented, and
the servos continuously adjust to try to reach
those estimates. For each shot, the boat will
try to minimize her distance from the hoop,
and shoot from a position from which the
hoop looks the most circular. The gun fires
only when Eve believes she and the gun are
in a good enough position and orientation.

7.3 Obstacle Avoidance

By delaying obstacle avoidance to a
later planning stage we are able to
significantly simplify planning. We allow
the individual planning systems to command
any desired waypoint with little concern
about how to reach the location.
Our obstacle avoidance system then
constructs an occupancy grid map. This map
is dilated to allow the boat to be treated as a
single point and then the Wave front
algorithm is used to compute the shortest
path. We then select a fixed point on the
path as a look-ahead waypoint and we order
the low-level navigation systems to this
location.

8. UTILITIES

We use a variety of utilities to
improve software development and make
our entire software stack work together in
harmony. These include a network message
passing system, process manager,
visualization library, and special calibration

application. We discuss some of these tools
below.

8.1 LCM: Lightweight Communications
and Marshaling

LCM is a message passing system
developed by MIT for the DARPA Urban
Challenge in 2007 [1]. This system is
specially designed for low-latency
communications by using a simple UDP
based communication scheme. By defining
specialized message types, bindings for
C/C++, Java, and Python can be
automatically generated and all messages
can be automatically marshaled. This allows
us to write high-performance code in C and
take advantage of Java for high-level code
and for visualizations. LCM also provides
logging and playback capabilities which
have proven to be invaluable for debugging.

8.2 Bot-Procman: Process Management

Figure 10: Screenshot of Bot-procman

One of the large failures in the
execution of Wolvemarine in 2011 was
difficulty in launching due to the high
number of processes that were required for
our entire system to work. We utilized a
process manager that was developed in-
house, but was still a bit light on features
and buggy. In addition, the process manager
was a late addition to the design and had
poor overall integration. This year we’ve

*"
"

moved to the well-tested and proven Bot-
procman that was developed alongside LCM
for the DARPA Urban Challenge. This
process manager has many advantages such
as: the usage of LCM as a backbone to
manage processes across multiple machines,
the ability to group processes for greater
organization, and well-polished interface.

8.3 Vis: Visualization Library

One of the most crucial aspects in
autonomous robotics is having a clear
understanding of how your system is
reacting to the environment and why. With
only a simple “printf-style” debugging
scheme, this goal is difficult if at all
possible. Thus, developing versatile and
intuitive visualizations is perhaps the most
useful tool a roboticist can employ. For this
purpose we use Vis, a 3D visualization
library developed by the University of
Michigan April Labortory
(april.eecs.umich.edu). Vis is a Java library
built around OpenGL that allows the user to
construct very useful visual-8.

Figure 11: A screenshot of our PID tuning
application. The desired path is red while
the actual path is black. Note the sliders
at the bottom which allow PID terms to
be adjusted in real-time.

8.4 PID Tuning

One of the processes that prove
frustrating to most developers is the process
of PID tuning. Some part of these
frustrations stem from the uncertainty about
how the PID system is performing. It can be
incredibly challenging to decide which PID
term to adjust without having appropriate
ground truth to compare against. To help
ease PID tuning, we have developed a
special application to assist us. Our
application allows the user to draw a poly-
line of the desired path for the ASV to
travel, and then it plots the actual path in
real time. The application also allows the
user to adjust PID terms within the
application itself. These features enable
quick PID tuning and allow the user to
compare different settings quickly and
effectively.

9. CONCLUSION

This year, we began with a goal to build on
our success in the previous year. Although
Serenity won the competition in 2012, we
knew that there were many improvements
that could be made to the vessel. Our vision
was to improve the rough areas of Serenity,
and redesign and reinvent where necessary.

!+"
"

We worked to improve the system
developed in 2012 to make it even easier to
deploy and debug in 2013. New materials
and manufacturing processes were
integrated into the mechanical systems this
year to create a lighter and faster vessel. We
emphasized rigorous testing of the new
vessel and its components to ensure
continued success this year. We believe that
Eve is the best RoboBoat entry to date and
eagerly await the opportunity to showcase
her at RoboBoat 2013.

10. REFERENCES
[1] A. Huang, E. Olson, and D. Moore.
LCM: Lightweight communications and
marshalling. In Proceedings of the
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),
October 2010.
[2] J. Neira and J. Tardos. Data association
in stochastic mapping using the joint
compatibility test. Robotics and
Automation, IEEE Transactions on,
17(6):890 –897, December 2001.
[3] G. Pandey, J. McBride, S. Savarese, and
R. Eustice. Extrinsic calibration of a 3d
laser scanner and an omnidirectional
camera. In 7th IFAC Symposium on
Intelligent Autonomous Vehicles, volume 7,
Leece, Italy, 2010.
[4] S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press,
2005.
[5] R. Unnikrishnan and M. Hebert. Fast
extrinsic calibration of a laser rangefinder
to a camera. Technical Report.

