
UM::Autonomy 1

UM::Autonomy’s C-3PO and R2-D2
UM::Autonomy 2021 RoboNation RoboBoat Competition Technical Design Report

Ryan Draves, Ryan Do, Jimmy Chen, Gregory Su, Albert Wei, Emma Shedden, Tom Gao, Michael Biek, Andreya Ware,
Minh-Quan Nguyen, Rimaz Khan, Yi Lin Sim, Dora Guo, Eric Ma, Will Snedegar, Lance Bassett, Luke Lesh, Arjun

Anand, Allen Ho, Abdeali Poonawala
UM::Autonomy, University of Michigan College of Engineering, Ann Arbor, MI, USA

Submitted May 23rd, 2021

Abstract
This paper serves to document the

development and strategy behind
UM::Autonomy’s boat, C-3PO, and its drone,
R2-D2 for the 2021 Roboboat competition. To
accomplish this complex task, the team worked in
5 separate subteams: AI, Hulls and Systems,
Electrical, Drone, and Business. Each subteam
operated remotely, only working in person when
absolutely necessary. This meant keeping and
making small improvements to areas of strength
such as the sensor suite, electrical box system,
carbon fiber fiber infusion process, and much of
our software while also experimenting with more
innovative approaches such as the new hull form,
hydrophone system, and the addition of a CV
Deep learning approach. As the year progressed
we strived to keep our team and provide as many
resources as possible to our members across the
school year. These changes allowed the team to
better tackle the RoboBoat competitions
challenges and ultimately push the organization to
greater heights.

Team photo from our outdoor testing in April.

Introduction
UM::Autonomy is the University of

Michigan’s premier autonomous boat and drone
team at the University of Michigan. The 2021
Competition marks the 15th year the organization
has participated in RoboNation’s Roboboat
competition. With the continuation of the current
roboboat format and the uncertainty of the global
pandemic, the team wanted to revise the previous
iteration of the boat/drone which was
unfortunately never completed due to Covid-19.
Because of the virtual format, we decided to keep

and improve upon many aspects of the project
while also subtly experimenting across the
subteams. This approach to the design of the
C-3PO and R2-D2 allowed the team to adjust to
the new virtual format while also providing
enough time and resources for our members to
balance the workload from their remote places of
work. This paper elaborates on the changes our
team made, how we approached each problem,
and the results of our hard work in these
unprecedented times.

Competition Strategy
Navigation Channel

The navigation channel might not require
any fancy algorithms, but it still requires all parts
of the boat to work together to perceive, localize,
and move. Our approach would be to perceive the
initial buoy gate and chart a course perpendicular
to the gate. We could use LiDAR and our CV
Deep Learning pipeline to perceive and keep a
constant view of each gate until we pass through.

Speed Gate
The speed gate challenge takes integral

movement and perception functionalities and
assesses the boat’s ability to perform them
smoothly and quickly.

We can use a similar strategy to the
navigation channel for perceiving the initial gates
and localizing the boat relative to them. Using the
normal vector of the gate, we can set a waypoint
straight outward toward the Mark buoy and pick
it up with our perception stack along the way. We
can then engage the Task Planner’s circle mode
with the Mark buoy as our center, with a
reasonable radius and fraction set to pi, navigate
in a semicircle around the buoy and travel back to
the saved gate location we set out from.

Obstacle Channel
The obstacle channel certainly tests every

aspect of the boat on some level, but focuses
heavily on testing our ability to avoid obstacles,
accurately identify colors, and change directions
precisely and smoothly.



UM::Autonomy 2

In general, our plan would be to perceive the
initial (closest) gate as in navigation channel, then
chart a spline using our theta* path planner to
each subsequent gate.

Our LiDAR perception stack can
accurately detect buoys and place them in the
boat’s costmap, but lacks color information. We
would use the color information obtained from
the CV deep learning model to differentiate
between yellow obstacle buoys and the red/green
gates, avoiding the situation where an obstacle
buoy might be treated as one side of a gate. With
separate gate and obstacle detections, the path
planner would easily be able to chart a spline
from one gate to the next.

Strafing could also come in handy for this
challenge. We think that beginning with the boat’s
yaw perpendicular to the first gate, then strafing
through the channel would be much more
controlled than changing the boat’s yaw multiple
times throughout the curved channel.

Obstacle Field
As one of the more intimidating and

open-ended challenges on the course, the obstacle
field would heavily test our boat’s ability to find
the path-of-least-resistance in and out of the
relatively dense buoy field, and our ability to
navigate in a circle under relatively close
quarters.

We would plan to sit at the starting point
on the edge of the field, which would keep much
of the field within our boat’s costmap. We would
certainly be close enough for our new CV deep
learning pipeline to perceive the OB buoy, so we
could then pick a point just in front of the buoy
and chart a spline through the front of the field
and into the inner ring using the costmap
generated by the boat’s LiDARs. Once inside, we
would use the task planner's newly implemented
circle mode to navigate around the central buoy,
then chart a spline back out to our starting point.

Acoustic Docking
Our main strategy for finding the pinger

for acoustic docking is to use an array of 4
hydrophones in a rectangular fashion. We aimed
to give an accurate measurement at 60 hertz,
which will then be communicated with the main
computer.

The first part to filter the hydrophone data
is to find the specific wavelength of the pinger. In
order to do this, we simply take the largest
magnitude from computing the Fourier

transformation against a series of possible
wavelengths. Using the Fourier transformation
also gives the phase shift of the data from the
hydrophone, which can then be compared to the
other hydrophones in order to find the difference
in time when one hydrophone listens to the other
hydrophones given that sound in water is
constant.

Lastly, the differences in phase shift from
the hydrophone data can create a hyperbola
between every 2 pingers, which then creates 6
hyperbola. We then use binary search to find the
intersection of the hyperbola and determine the
location of the pinger.

In order to achieve higher accuracy, we
have decided to run the program to determine the
location of the hydrophones 60 times a second,
which allows for 3200 data points per
hydrophone every cycle.

Object Delivery
With our previous success flying a drone

at the competition, we felt that the most reliable
method for object delivery was to use an aerial
delivery system. Unlike a marine system, this can
transport all objects at once and can deliver them
to the center of the target, making it less likely for
objects to fall off the dock.

We determined the key component of the
design of this system to be the interoperability
between the boat and drone. Thus, our main goal
this year was to improve our system for returning
to the boat after delivery, while a subgoal was to
create a system to reliably communicate the
boat’s location to the drone. We accomplished
this by creating a custom MAVLINK dialect,
which includes specialized messages allowing the
boat to communicate accurately and concisely
with the drone. To improve the reliability of our
landing system, the boat was designed with a
larger deck size than previously used, enabling a
larger landing pad for the drone and making it
easier for the drone to find and land on the boat.

By choosing to use an aerial drone for
object delivery, we committed to the long-term
success of our team. We have found in the past
that an autonomous aerial drone is eye-catching
for potential team members, which helps draw in
and retain new recruits. We also formalized a
dedicated drone subteam for our organization.
This will help us accumulate knowledge and
experience over time, which is particularly vital
since some of our most experienced drone
builders are graduating this year.



UM::Autonomy 3

Design Creativity
Trimaran Design

For our hull design this year we decided to
construct a trimaran hull form instead of the
monohull design we had last year. The main
reason for this change in hull form was due to
concerns about the stability of the boat.
Specifically, even though our previous monohull
design was not significantly unstable, it did suffer
from a very noticeable pitch downward when
going forward, due to the additional weight that
is typical at the front of our boat. This comes
from the various sensors and mounts which must
be placed at the front of the boat for visibility and
operational reasons. This year with our trimaran
design we were able to greatly reduce this issue.
Utilizing a trimaran design also motivated our
decision in naming the boat C-3PO, as we felt the
3 in the name was representative of our three
identical hulls.

In our design one of the first things you
will notice is that the front of the boat has two
hulls below the deck and in the back there is only
one hull. This was not an intuitive decision but
doing this allowed for maximum buoyancy at the
front of our boat which was our goal. As
mentioned before, in last year’s design having all
our sensors at the front of the boat, caused the
monohull design to pitch downward when going
forward. With this decision to have two hulls in
the front, we were able to have the maximum
buoyancy of our ship just under where the sensors
were mounted, so this eliminated any pitching
moment we previously had. Eliminating this
pitching problem greatly improved our ships
overall stability.

The third remaining hull in the back of the
boat was kept to give the boat more length. We
came to the conclusion of keeping the third hull
also based on our previous monohull design,
which besides the pitching problems, was one of
our most stable boats. We attributed this to the
large area that the monohull was able to cover, so
having a third hull, allowed for similar effects. It
added length which ultimately added to the
surface area of the boat in contact with the water,
allowing it to be more stable and buoyant. Having
that surface area also helped with the spacing on
deck equipment, because we were able to mount
sensors at the very front of the deck and the
electrical box more towards the middle of our
boat where the two forward hulls and single rear
hull met.

This additional length also served dual
purpose actually, because in addition to adding
stability, it was needed to allow the boat to have a
deck space at the back. The additional deck space
was used to give the drone a landing space.

The second most noticeable decision in
our design is the three comprising hulls all being
completely identical. This is quite different from
the normal trimaran designs, which typically have
a larger center hull and smaller outlying hulls.
This decision allowed for very quick and easy
construction of the boat. Using only two identical
molds to create all of our hulls, we were able to
create the two front lying hulls at the same time
and then the last hull very quickly just after.

Vacuum Infusion
This year, the hull for UM::Autonomy’s

boat, C-3PO, was constructed using a carbon
fiber vacuum resin infusion process. In previous
years, the team utilized pre-resin- impregnated,
high-temperature curing carbon fiber cured in an
autoclave to construct the hulls of
UM::Autonomy’s boats, and while the team had
experimented with vacuum infusion parts in the
past, this was the first year that the team’s
competition hull was made using this process.
Due to the COVID-19 pandemic, the team’s
normal access to our sponsor, Offshore Spars,
which allows UM::Autonomy to utilize their
industrial autoclave, was disrupted. The team was
required to resort to entirely in-house methods of
fabrication to build C-3PO.

C-3PO’s trimaran hullform was designed
to utilize modular construction methods. Each of
the three demi-hulls was only 36 inches long, and
were manufactured one by one in
UM::Autonomy’s team workspace within the
University of Michigan’s Wilson Student Team
Project Center. Constructing three individual
demi-hulls was significantly more manageable
than fabricating a single hull structure the entire
70 inch length of C-3PO.

Each demi-hull was fabricated using a
machine-milled high-density foam mold.
Dual-weave carbon fiber fabric was cut to shape
and three layers of the fabric were placed within
the mold along with a layer of flow media on top.
The entirety of the mold was enclosed within a
vacuum bag and sealed. The bag was connected
to a vacuum system via an excess-resin-collection
pot, and a feed hose was added connected to a
system of spiral-cut tubing placed beneath the
vacuum bag and running around the top edge of



UM::Autonomy 4

the part. Slow-curing two-part resin epoxy was
mixed in a pail and the open end of the feed hose
was placed into the pail and secured in place. The
vacuum system was activated, and the air was
sucked out of the system. As the air within the
vacuum bag depleted, the vacuum system began
drawing the mixed resin from the pail, through
the feed hose, and into the part within the mold.
The resin flowed slowly through the part from the
top of the mold where it flowed freely through the
spiral-cut tubing, and then downward through the
flow media, while flowing into the weave of the
carbon fiber fabric throughout the part. Upon
flowing to the lowest point of the part, excess
resin was sucked up the vacuum outflow hose and
collected in the resin-collection pot. Once resin
was distributed throughout the part, the feed hose
was sealed off and the system left under vacuum.
Through this process, resin becomes trapped
within the weave of the carbon fiber fabric, where
it cures over several days and gives the hull
rigidity in its desired shape. Once the resin had
cured, the hull was removed from the mold.

In comparison to using high-temperature
curing, pre-impregnated carbon fiber fabric and
an autoclave, vacuum infusion produces parts
which are slightly heavier due to slightly more
resin than optimal being included in the part.
However, it is easier to produce parts with more
complex curvature with the vacuum infusion
method, as the woven carbon fiber fabric used is
more flexible than the stiff, pre-impregnated
carbon fiber sheets used with the autoclave.

Electrical Box Organization and Reliability
Due to the pandemic, our sub team was

not able to prototype new components as much as
we wanted. Although we eventually got around to
test a few concepts, our general mantra was to be
efficient by completing tasks with the greatest
effect on the end-product while being
time-centric, as time is not a given in these
uncertain times.

With this goal in mind, our main focus
this year was to make the box more organized,
neat, and reliable. In past years, such tasks were
not desirable due to the many other tasks at hand.
We were very happy with the computing power
on-hand and decided that these aforementioned
goals would make the biggest difference.

In addition, we wanted to smoothen out
our competition experience. If our box was neater
and more organized, diagnosing issues at
competition, if they were to appear, would be

extremely less stressful and far easier to debug.
To achieve these goals, we introduced numerous
new parts and custom PCB’s. For example, in
order to supply 5V, 12V, and 24V sources to
outputs, internal parts, and miscellaneous
components, we would simply cut an ATX cable
from a power supply and splice the wires onto
them directly. However, this year we adopted a
better strategy - purchase a breakout board, which
splits an ATX cable into its derivative voltage
supplies.

In addition, for an “arduino shield” which
controls the relays and stacklight, we used a very
complex, contrived, and messy custom circuit
board, probably created several years ago. In
order to neaten this, we created a custom PCB in
order to control these components. This PCB is
currently in the process of being designed into its
“v2” version which should come with numerous
upgrades propelling it ahead of its v1 version and
the monolithic circuit board of the past in terms
of neatness, effectiveness, and reliability.

Lastly, we overhauled nearly every single
electrical splice connection. In years prior, we
soldered everything. Although the reliability was
“probably ok”, this was uncertain, not to mention
the tens of hours needed to solder everything.
Thus, we adopted a more crimp-oriented
approach for this year. We utilized anderson
connectors for most of our high-voltage
connections, regular spades for some of our
medium and low voltage connections, and small
wago connectors for outputs and inputs from the
box. While we still had some soldering joints, the
time required to wire the entire box reduced from
about 2 months, to a couple weeks. Not to
mention, soldering cannot be done safely inside a
house without proper precautions! Utilizing
different types of heat-less connectors allowed us
to work smarter as well as safer.

New Electrical Box
Over the past couple of years, we have

been utilizing custom-cut polycarbonate to
construct the main “shell” of the electrical box.
However, this year, we wanted to be sure that we
would have time to improve components that
could have a more tangible effect on the end
product.

Such improvements included greater
neatness, reliability, and power efficiency, which
was made possible due to the purchase of a
pelican box, a rigid, waterproof, and air-tight
crate. In last year’s box, as it was custom, we



UM::Autonomy 5

were very unsure as to whether it was waterproof,
banking on the fact that the box would never
come into contact with water. However, if such a
case happens in the future, we are certain that all
of our expensive electronics will stay safe. In
order to drill holes in the box for some inputs and
outputs, we needed to expose members to
different tools needed to penetrate the thick
material. Although this process was time
consuming, all of the sub-team members were
able to contribute, learn a new skill, and the
electrical box was completed almost two months
ahead of where it was last year.

In order to choose the box itself, CAD
programs needed to be utilized to map out the
components and how they would fit within the
box. In past years, we placed components
wherever there was space without regard for
specific placement. We wanted to change that this
year. Components that need other components
would be placed in closer proximity. For example,
all the components needed to supply power to the
thruster electronic speed controllers were all
placed in a line: Circuit breaker - relay - buck
converters - ESC. Although this slightly increased
box dimensions, we felt it was a worthwhile goal.
Simulating the components in the CAD program
greatly allowed us to speed up building the box.
In past years, we would figure it out as it goes,
without strict adherence to the originally designed
CAD, due to it not being “complete.” We wanted
to avoid that this year. CAD was completed in the
summer, with ample time to look this over,
consult with the Hulls and AI team, and to draw
the layout on paper to see it first hand, much like
how an architect sketches a building. Doing this
allowed the box to be built seamlessly and
quickly (within a couple days vs. a couple of
weeks).

Hydrophone Array and Processing
Our design for the hydrophones is to use a

Raspberry Pi as our processing power and then
communicate via USB to the main computer.

We based our decision on using a
Raspberry Pi on the processing power. Despite
the fact that an FPGA could allow more parallel
processing power, we opted to use a 192kHz
sound card and then connect it to a Raspberry Pi.
This decision was based on the amount of time it
takes to program on an FPGA. The Raspberry Pi
is fully capable of computing the hydrophone
array while also being a cheaper option than the
previous year’s work.

In order to reduce interference, the
hydrophones are placed at the very bottom of the
boat. They are placed in a rectangular fashion to
determine both the direction and the angle of the
pinger, as compared to a straight line in which the
pinger would have 2 possible locations.

CV deep learning
The objective of the CV deep learning

team was to detect and classify objects of interest
from the zed cameras using a convolutional
neural network (CNN). The objects of interest
were the spherical buoys, the cylindrical buoys,
and the docks. The main advantage of using deep
learning instead of the LIDAR alone to detect
objects was that the data was richer - i.e., LIDAR
cannot discern colors. Last year, we attempted to
use classical CV methods (e.g., contours, color
masking, segmentation, etc) to process the camera
data, but it was too sensitive to noise - the
accuracy of these methods was no better than
random. This year, we decided that manual image
processing was unnecessary, and that deep
learning methods would be much more
promising.

The deep learning models we explored
were YOLOv3 and Faster RCNN. The motivation
for choosing these models was that the model had
to run in real time - speed was an important
factor. Due to the novelty of these methods and
the research required, we were unable to fully
implement Faster RCNN. However, the results of
YOLOv3 were a significant improvement from
the classical methods. For the 9 object classes, we
achieved an accuracy of 56% when tested on a
dataset from a different source than the training
data. While this is a significant improvement,
there is still work to be done.

LIDAR quantification
In previous years, our methods to evaluate

the quality of our LIDAR object detector were not
mathematical. Instead, we used rviz to visualize
our raw, time-series point cloud data overlaid
with detection markers, in order to roughly
evaluate if the detections were reasonably
accurate. In order to realize a baseline for our
algorithm to use as a basis to improve in the
future, we decided to explore more formal
mathematical metrics to evaluate the quality of
the LIDAR algorithm.

We primarily sought to evaluate our
algorithm using a confusion matrix. In order to
create the ground truth data necessary to generate



UM::Autonomy 6

it, we annotated 645 data points, each consisting
of a raw point cloud at a certain timestamp
containing one or more objects of interest. From
the matrix, we saw that the algorithm achieved
45% total accuracy, a maximum precision of 65%
with the “sphere buoy” class, and a maximum
recall of 79% with the “cylinder buoy” class.
Though our results were generally poor, we plan
to utilize them as a baseline from which to
continue developing our LIDAR-based
classification in the future.

Gazebo Task Simulation
Gazebo task simulations allow for

system-level tests of the boat’s functionality,
putting the boat through a virtual competition
course.

In order to quantify the success of a run,
our simulated tasks include collisionless "green"
and "red" zones that add and subtract from the
current score on intersection with the boat,
respectively. Course obstacles, such as buoys,
double as "red" zones. Examplefied in the
"autonomous navigation" task simulated below,
red zones are added to either side of the
challenge, while green zones are added to the
middle. Thus, the boat will gain points by not
veering off course.

[Add caption here].

The user has the option to dictate an order
the boat must reach the green zones. In addition,
the user can specify a time limit, after which the
points for reaching a green zone start decreasing,
and if left long enough will result in timing out
the run.

This scoring functionality culminated with
integrating the above "autonomous navigation"
course into the Gitlab CI pipeline. Now, whenever
a club member tries to push a change to the

codebase, the above simulation will be executed,
and if the run doesn't achieve a baseline score
within the time limit, then the push will be
rejected because something must be broken.

We wanted the ability to isolate one
subsection of the boat’s code for testing by having
the other components output some known, correct
values. This way we can try to identify errors or
inefficiencies at the source without worrying
about cascading errors across multiple sections of
code. When running the simulator, the user can
choose to run a “fake” implementation of the
high-level planner, path-planner, or controller
instead of the real code for that section.

Task planning
Task planning implements the boat’s

high-level decision making by interfacing with
perception, path planning, and controls to
understand the course and complete challenges.
With no in-person competition last year, the task
planner hadn’t been updated since 2019 so we
took this year to implement some useful
functionalities.

Our main goal and accomplishment was to
implement the interface for general, common
movements usable throughout the course and
rethink our challenge approaches based on these
new maneuvers. Our chosen movements allow
the boat to “anchor” itself, strafe, and circle
around a fixed object.

Anchor mode allows the boat to choose a
location and keep itself there. This might be
useful for cases like a acoustic docking, where
remaining stationary would make localizing the
source of the much easier

Strafing enables the boat to move
sideways without changing its yaw. Strafing
through the obstacle channel could help keep the
yellow A-2 buoys in front of the boat and control
our movements as we pass through the gates. We
could also use strafing to sidle up to the dock in
acoustic docking.

Circle mode allows us to specify a center,
radius, and portion of a circle for the boat to
traverse along. This would be useful for
challenges like the obstacle field or speed gates
where circular and semi-circular movement
around a buoy is required.

Creating Paths for Nonholonomic Robots
Last year's path planner did not guarantee

that the output trajectory could be feasibly
followed. Even more problematic, the previous



UM::Autonomy 7

path planner did not take into account yaw value
at all. Our new RRT based planner outputs a path
feasible for our boat's dynamics, and guarantees
the boat's finishes with the desired orientation.

The solution implemented this semester
was an algorithm specific for non-holonomic
vehicles, Theta*-RRT. This implementation is
based on RRT-Based Nonholonomic Motion
Planning Using Any-Angle Path Biasing
(Palmieri 2016).

[Add caption here].
Above is a visualization of the boat trying

to find a path to the middle of the parking stall.
Blue lines are the path segments feasible by our
boat's dynamics connecting the red, random
sample states.

Universal Dev Kit
Over the many years the team has existed,

we have collected a large amount of unlabeled
data in the form of ROS bags. To use this data to
train machine learning models, it was crucial to
converting the data into a usable format (png/jpg
files for camera data and PCD files for LiDAR
data). Additionally, we needed to label the data to
identify instances of buoys or docks. We started
with the vision team and LiDAR teams
individually labeling data for their respective
tasks. However, this resulted in the data only
being usable for the group that labeled it.
Additionally, it wasn't easy to organize the
labeled data when we had multiple people
labeling multiple bags, some of which were only
partially completed.

We needed to develop a way to take all the
data we had labeled in its various data formats
(YOLO for the images and a format unique to the
annotation tool we used for LiDAR) and provide
a simple interface for producing data to train
models on.

After exploring what public datasets are
using for interfacing with their datasets, we
decided to model our interface on the nuScenes'
DevKit, a Python interface for the nuScenes
dataset. The nuScenes' DevKit provides methods

to easily query for specific attributes (which we
could use if we wanted images of buoys of a
certain color), allows tracking objects through
multiple frames (which is useful if the team
decides to use a temporal model in the future),
and provides transformations from the 3D LiDAR
annotations into 2D bounding boxes. This last
capability means that the UMA teams could only
annotate in 3D and receive both 3D annotations
and automatically generated 2D annotations.

We had originally hoped to use the
nuScenes DevKit to interface with our dataset
directly, so our initial focus was on converting our
dataset to match the format of nuScenes. There
were no existing tools to do this, so we needed to
develop our implementation. However, we
eventually realized that we would be unable to
achieve this because the nuScenes dataset uses
GPS coordinates, maps of the road network, and
other features that we did not have.

We decided to pivot our work from
attempting to convert our data to a format usable
by nuScenes to creating our devkit, called the
Universal DevKit. Our idea for the Universal
DevKit was to provide the features we liked the
most from the nuScenes' DevKit but require as
little input as possible (no requirements on GPS,
maps, etc.). We open-sourced our work and made
significant progress on the DevKit. Our current
work can be found on GitHub, and we will finish
up the project in the coming semester.

Drone
A custom designed H-frame was

fabricated to accommodate the UAV portion of
the competition tasks. The H-frame was chosen
over the previous X-frame design to increase
stability in flight and allow for a space-efficient
payload delivery mechanism, and also provided a
larger overall footprint designed around a
stronger flight system. Due to COVID-19
restrictions, reduced access to our workshop
prevented aluminum fabrication used in previous
iterations of the team’s UAV solution. Instead,
prototyping and final fabrication of all
components excluding 4 carbon fiber frame tubes
were manufactured using the team’s 3D printer.
The central electrical system was reworked for
easier access to the components, where all
communication and computational elements were
accessible from a single top plate, and all vision,
rangefinders, and landing components were
mounted onto a bottom plate. A 4S LIPO battery

http://idm-lab.org/bib/abstracts/papers/icra16.pdf
http://idm-lab.org/bib/abstracts/papers/icra16.pdf
https://github.com/nutonomy/nuscenes-devkit
https://github.com/nutonomy/nuscenes-devkit
https://www.nuscenes.org/
https://github.com/EricWiener/universal-devkit


UM::Autonomy 8

sat between these two plates to minimize overall
footprint.

Fundamental differences in the drone’s
design stemmed from the inclusion of a new
payload delivery system to deliver
racquetball-sized objects into a landing zone. Two
space-efficient drop bays were integrated into the
existing H-frame to maintain stability and
efficiently use the existing space. Bay doors were
custom designed and manufactured using a 3D
printer, while the frame itself prevented
translational motion acting as walls. Each bay
door was held in place by a micro servo,
controlled through Raspberry Pi that also served
as an extended computational unit. Servos were
chosen based on their overall motor strength, and
their PWM signals controlled both the speed and
angle for bay doors to open in order for objects to
roll towards the UAV’s center in a controlled
fashion.

Aerial Software System Design
R2-D2’s software is centered around a

finite state machine. This year, we have expanded
its design by adding new search patterns for
landing, improved the design of the computer
vision system, and formalized the documentation
of our software architecture. Our focus on design
and documentation was driven by the need to
collaborate remotely during the pandemic, but
also helped us improve the safety and efficacy of
our system design.

Our new search pattern for dock landing
uses the provided waypoint of the dock, as in past
years. However, the new design adds a grid of
waypoints centered around this target, which
R2-D2 traverses until the dock is found using
computer vision. This lowers the chance of failing
to find the dock due to drift or other errors, and
helps R2-D2 land near the dock’s center to avoid
falling or dropping the payload into the water.

Our new search pattern for boat landing
replaces the IR-lock used in the past with a
computer vision system as the primary method to
center on C-3PO. We made this change because
the IR-lock was not accurate enough to reliably
land the drone on target. Instead, our new design
resembles that of the dock landing system, using
the GPS coordinates of C-3PO (sent using our
MAVLINK communication interface) as an initial
target location then refined with computer vision.
However, in case the CV system loses sight of
C-3PO during the landing process, the IR lock is
retained as a secondary landing procedure.

The computer vision system corrects
R2-D2’s horizontal position during landing by
identifying the landing zone and its center. It is
designed to rely on a neural net model, which
signals the finite state machine to strafe R2-D2
towards the center of the target. To address the
limited availability of training data for aerial
vehicles in our competition, we have introduced
an image generation script that applies
transformations and color shifts to existing
images of the dock and boat, thus increasing the
effective size of the training set.

Drone Electrical System Design
This year’s design consolidates R2-D2’s

electrical system to use one telemetry radio that
handles communication with both the boat and
the ground control station, rather than separate
radios for each external device. The change saves
space and weight while simplifying the electrical
system, reducing the number of points of failure.
We have also replaced our light-based rangefinder
with an ultrasonic sensor in order to more
accurately measure R2-D2’s altitude over water.

Experimental Results
Marine Dynamics Model

In the past few years, UM::Autonomy has
been working to add more advanced maneuvering
and motion capabilities to the team’s boat. These
efforts have included the addition of what are
essentially bow and stern thrusters, with which
the team seeks to add lateral motion capabilities
to the boat’s maneuvering. However, these
additions have forced UM::Autonomy to confront
the present lack of sophistication in the team’s
dynamics model which is used to govern the
boat's autonomous control system.

The issues with the existing dynamics
model were partly due to the knowledge of
UM::Autonomy’s programming team being
historically rooted in autonomous cars and land
vehicles, with significantly less familiarity with
the dynamics of marine surface vehicles. The goal
of this project was to develop a new and
improved marine-dynamics-based model for the
team by integrating knowledge from marine
dynamics, hydrodynamics, and computer
modeling.

The model was built by members of the
UM::Autonomy Hulls & Systems subteam during
the Winter 2021 semester using a combination of
MATLAB, Rhino, and OpenFOAM. The model
was built using the team’s 2020-21 season boat,



UM::Autonomy 9

C-3PO, but the main objective of the project was
to build the model in such a way that it can be
easily adapted to be applied to new boats in future
seasons.

It was a goal of the project that the model
should be able to account for non-linearity in the
coefficients of the boat’s motion. The model
follows the standard marine dynamics form of:

([𝑀] + [𝐴]) η'' + [𝐵] η' + [𝐶] η = ∑ 𝐹
𝑒𝑥𝑡

with all six dynamic degrees of freedom included.
The model accounts for nonlinearity by
continuously updating the coefficients in the
stiffness matrix, [C], and damping matrix, [B],
based on the boat’s position and velocity. The
model also includes hydrodynamic added-mass
effects, accounted for in the added-mass matrix,
[A].

Several nonlinear regressions were
performed using collected datasets encapsulating
aspects of the boat’s dynamic behavior. These
regressions describe the nonlinear relationships
between the boat’s motion and forces resulting
from hydrostatic and hydrodynamic sources, and
facilitate the generation of the force coefficients
populating the matrices in the model based on the
boat’s position and velocity.

Ultimately, the nonlinear dynamics model
has proven to be capable of realistically
representing C-3PO’s dynamics and motion. It is
vital that more marine-dynamics-informed
methods be applied to UM::Autonomy’s
practices, and it was important to seize the
opportunity to undertake this project this year
while the team had a member with the necessary
experience from taking senior-level marine
dynamics courses within the University of
Michigan’s Department of Naval Architecture &
Marine Engineering. It is unknown at this time
whether what was produced this semester by the
team working on this project will be able to be
directly integrated into this or future
UM::Autonomy boats’ autonomous control
systems or the team’s virtual simulation efforts,
but hopefully this project will have left behind a
tool which will be useful to more
programming-focused team members in helping
them think about the boat’s motion from a marine
dynamics point of view.

Outdoor Testing
In the last few years, the team had been

working towards a testing timeline in which the

team can focus on integrating projects and
establishing baseline functionalities in the spring.
With the restrictions in place through the year,
however, we put this testing goal on hold in favor
of a relaxed timeline to accommodate the
difficulties of gathering. We placed our focus on
two testing periods; first, testing last year’s boat
at the beginning of the fall to recover operational
knowledge, and second, having a brief testing
period at the end of the spring to gauge where the
team is at for future development.

With our fall testing period, our largest
priority was to continue evaluating last year’s
boat, Pass, with our new team of officers.
Without a traditional competition cycle,
institutional knowledge about the testing and
operation of the boat could not be handed down
by senior members as normal, so this period was
largely successful in getting that experience to our
newer officers. After a few delays in hardware
nuances, we had successful testing sessions whilst
teleoperating Pass, although a few software flaws
prevented meaningful autonomous navigation.

With our late spring testing, we were able
to assemble C-3PO for one session on the campus
pond. Thanks to diligent design and testing, our
hardware worked flawlessly from the start,
allowing us to teleoperate C-3PO and gauge its
performance. Unfortunately, a critical error
prevented our environment from starting,
preventing us from evaluating our autonomous
capabilities.

Remote Engagement
With many student organizations at the

University of Michigan going remote, the team
anticipated a drop in recruitment and member
retention due to the decreased social engagement
and lack of recruiting opportunities. To combat
the potential decrease in members, the team
experimented with various forms of virtual
activities and structured the team to be more
focused on new member onboarding and training.
These activities included game nights, cooking
nights, tech talks, virtual all-hands meetings
where members could learn about other subteam
projects, a team minecraft server, and more.

As anticipated, the recruitment season
held much less traffic than usual; however, our
efforts to focus on newer members held a higher
retention rate among newer members. The social
events had mixed results as the earlier social
events were well received; however, as the school
year became busier, participation in these optional



UM::Autonomy 10

events dropped. The results of a stronger focus on
new member training was also mixed. For
software oriented subteams, the focus yielded
great new member recruitment and retention. For
hardware oriented teams, it was much harder to
train new members remotely.

Specifically for our hulls and systems
team this was a challenge we tried to overcome.
During a number of the hills and systems regular
weekly zoom meetings, the team was able to
incorporate virtual mentoring sessions which had
some significant pay off. These sessions were
held by more senior members of the team who
would guide the newly joined members in
learning more knowledge useful to their
contributions to the team. One example of this
was the ship terminology and basic principles
learning session where the new members were
able to get more acquainted with various terms
and ideas that may otherwise never be explained
but often used. Concepts such as ship degrees of
motion, ship geometry, buoyancy, and centers of
weight and buoyancy were all examples of topics
discussed. Other instances of these mentoring
sessions also incorporated the downloading and
basic introduction to various modeling softwares
we utilize on the team such as Rhino, AutoCad,
SolidWorks, etc. The hulls and systems team is
typically all hands-on, in person work but having
knowledge of these softwares allowed our newer
members, who were almost all remote, to be able
to contribute to the design and construction of the
boat even if it was only virtually.

Conclusion
The 2020-21 build season challenged our team's
ability to adapt to a largely virtual format. We
continued to uphold our commitment to member
safety in the midst of a global pandemic and
sought learning opportunities for the team to
continue , experimenting and building together.
Looking back at the team's progress the past year,
we are proud of our growth and are excited about
what's to come.

Acknowledgements
The existence and success of our team depends on
the incredible support of the University of
Michigan, our advisor, our committed alumni,
and our industry sponsors. We must highlight the
incredible support we receive from the Ford
Motor Company. A special thanks to Professor
Kevin Maki for being the team’s advisor and his

mentorship in naval architecture and Tony
Lockwood at Ford AV LLC for his mentorship in
software project management.

References
L. Palmieri, S. Koenig and K. O. Arras, "RRT-based

nonholonomic motion planning using
any-angle path biasing," 2016 IEEE
International Conference on Robotics and
Automation (ICRA), 2016, pp. 2775-2781, doi:
10.1109/ICRA.2016.7487439.


