Tel Aviv University SAIL-IL

TAU SAIL-IL 2022 RoboBoat competition technical design review

SAIL-IL team, Tel Aviv University, Tel Aviv, Israel

Abstract— This report describes the entire
strategy, system engineering, design
consideration and project life cycle process
include design, integration, verification, and
validation of the 2021-2022 Tel Aviv
University SAIL_IL team, as part of the
RoboBoat annual contest

L. INTRODUCTION
SAIL-IL is the Tel Aviv University’s
Engineering Department RoboBoat team,
competing second year in a row at the RoboBoat
competition and the only team from the state of
Israel. The RoboBoat program aims to create an
environment that allows students to practice
research and development in the challenging and
evolving world of autonomous vessels. This
year the mission was to continue last year work
and develop the program further with new tasks.
The objective was to develop a fully
autonomous ASV (Autonomous Surface
Vehicle) to operate autonomously under
various missions including obstacle avoiding
route, obstacle detection /classification,
platform control and localization.
development process was based on agile
development due to the tight constraints of the
project and uncertainties. It required an on
going planning and execution method and
integration between multidisciplinary teams
and various sub-systems.

II. COMPETITION STRATEGY

This year we focused on improving and
further developing of the system based on
conclusions from last year work. The
beginning of the development process focused
on system engineering process, understanding
the requirements from the operational concept
as well as internal requirements related to last
year conclusions and allocating them to the
various sub-systems as well as to the related
teams. The team focused on the ability to add

! See reference 1

more capabilities to the current system to be
adaptable to new missions and requirements.
We prioritized the mandatory navigation task
and the navigation channel as they require
similar system capabilities, and later added
the speed gate. As the water and ball cannons
missions were defined at a late stage, we
chose to prepare only for the water blast task.
The docking task was not attempted due to
lack of resources.

All tasks are based on recognizing and
classifying objects, on the fly path planning
and have similar manoeuvrability
requirements. The entire software architecture
is based on ROS (Robot Operating System)
framework!. Add to this that the architecture
is loosely coupled between the various sub-
systems allow parallel and scalable
development (for example obstacle avoidance
using Computer Vision and LIDAR in case
one was not sufficient) as well as sub-system
pairs integrations. Another advantage of ROS
was noticed when the shore station was
connected to the ASV via wireless network
thus eliminating the need to write Server-
Client infrastructure from scratch. To lower
risks and mitigate the development all off-the-
shelf components integrated in the system are
compatible with ROS and has built-in SDK’s.
It allowed the teams to focus on algorithm and
system software development.

A. Mandatory Navigation Channel
To demonstrate basic autonomous capabilities,
the navigation task is mandatory and must be
completed first. To accomplish this task the
ASV should identify both gates and navigate
through them, keeping linear course. Preparing
for this task allowed us to develop and improve
all the basic capabilities such as object
detection, localization, control, and path
planning. In addition, it allowed us to test the
stability and reliability of the trimaran hull.

Tel Aviv University SAIL-IL

B. Obstacle Channel

The obstacle channel requires the ASV to
identify the next gate and pass through it
without hitting obstacle and gate buoys. This
task requires updating the path continually
while keeping the ASV in a curvy lane. Using
stereo lab camera with 120° FOV, the buoys are
detected and classified. Once the nearest set of
buoys detected, the ASV will navigate to the
average point between them. Practically the
course is divided to segments which makes the
path planning easier, as only one point is
targeted and less obstacles should be identified
at once, and allows better error correction.

C. Water Blast

This task requires identifying target and filling
a tank until the ball reaches to the marked line.
It demonstrates precise control, aiming and hull
stability as the ASV should relatively stay in
place. Although this mission was published in a
later stage, we decided to attempt it as we had
dedicated team for it. Furthermore, we already
had the propulsion system controller which
made easier integration of the cannon. A cannon
was built and positioned on deck.

D. Snack Run!

The Snack Run task demonstrates hull form
efficiency coupled with its propulsion system,
and the resulting maneuverability. The ASV
should enter through gate buoys, go around the
mark buoy and exits through the same gate
buoys as quickly as possible. This year we
decided on a trimaran design that allowed as a
bi-directional movement and better stability.

III. DESIGN CREATIVITY

Since it is yet fairly new program, we raised funds
for the project throughout the year. We performed a
cost benefit analysis on each design component to
best utilize our limited budget. For example, we
decide to manufacture most our hull in-house via
CNC and manual sheet metal bending machines
and 3D printers.

2 See reference 2

A. Hull & Propulsion Design

Last year’s platform was a catamaran. Although
it was fairly stable platform, the stern sank and
tilted. Furthermore, a lot of water reaches the
deck mostly in reverse drifting. Moreover, we
decided to prioritize manoeuvrability and
platform stability over speed. That led us to the
trimaran design with two azimuth stern thrusters
at 90° and one bow thruster embedded into the
center hull. This allows the “crab-like” sailing
which could be useful for avoiding obstacles
and maneuvering at low speed. As most of the
center hull is placed underwater, most of the
weight is centralized thus allows less pitching.
Furthermore, stability is gained also from
submerging the side hulls and creating a
predictable increase in righting moment. To
meet this requirement, we chose to design a
symmetrical vessel.

The hulls are made from foamed
polystyrene, which was milled with a CNC
machine, like surfboards production. Foamed
polystyrene was chosen due to its lightweight
and ability to bear strikes. After producing the
desired shape of the hull, it was coated with
fiberglass, carbon fiber, and epoxy to keep it
sealed and stiff. The deck of the ASV is made
from layers of birch wood. To ensure the
electronic systems on the ASV are cooled
properly, the electronic box placed on deck is
cooled by using a heat sink which are placed
under the wooden deck and create and ideal
convection.

B. Computer Vision

1. Al Interface Algorithm

For object detection we decided to use the real-
time object detection algorithm model
YOLOv4-tiny?, which offers a good balance
between speed and accuracy. The model was
trained and deployed via darknet framework,
which enables integration of the model with the
rest of the system through ROS?.

2. Al Training
To create our custom trained model, we
assembled a dataset of the required objects as

3 See appendix B.1

Tel Aviv University SAIL-IL

detailed in the competition rules. The dataset
was composed of pictures from a variety of
sources, including previous competitions and
pictures we staged ourselves during test runs in
the field. The dataset was then expanded by
creating augmentation and different variations to
simulate variance in angle, exposure, saturation,
brightness, noise, etc. The dataset was split into
three different sets: training set (70%),
validation set (20%) and testing set (10%).

3. Deployment

After the model was trained, it was then
integrated into the system such that it would
process live images from the camera and
augment them with bounding boxes. This data
stream is fused with the camera’s pointcloud to
create a marker array detailing type, relative
location, and certainty of detected objects.*

C. Range Estimation
As part of last year's conclusions, we planned to
fuse the data from the stereo camera and the
LiDAR system. The stereo camera is used to
classify obstacles in the close surrounding and
the LiDAR is used for both detecting obstacles
from further range and improving the accuracy
of the object range estimation. Throughout the
work, we understood that we can get even more
information by separating the two sensors’ data
collecting and processing. Hence, we decided to
use the LiDAR to generate Laser Scan data for
the navigation process and SLAM?’ (Hector)®.
Innoviz joined as sponsor and offered
InnovizOne Lidar which is a solid-state sensor
with 115°x25° FOV and up to 250m Detection

Range.

D. Localization

For localization a 6 axis IMU and GPS were
used. For sensor fusion and minimizing error
Kalman Filter was used through Robot
Localization ROS package’. This package
integrates inputs from IMU and GPS and uses

4 See appendix B.2
* See reference 3
& See appendix B.3
7 See reference 4

Kalman filter to evaluate the relative position of
the boat. The Kalman filter algorithm receives as
input a series of noisy measurements of different
localization values representing the state of a
system at a given time, and estimates the system
location, based on the result of the filter in the
past®.

E. Path Planning

Path planner relies solely on information
received from the sensors in real time, i.e.
localization given by the odometry (GPS, IMU),
the buoys identified by the camera and obstacle
detection conducted by LiDAR sensor. Two
planners are used to get a robust path planning:
Global Planner — algorithm based on Dijkstra’s
algorithm” was coded to create a path around
obstacles known to the robot. While A* is
known to be the better algorithm in term of
computational power, the Dijkstra’s algorithm
performed better through experiments.

Local Planner — we chose DWA (Dynamic
Window Approach) Planner’® to produce
obstacle avoidance functionality. In general,
DWA is an online collision avoidance approach
in robotics that takes under consideration the
constraints imposed by limited velocities and
accelerations of the robot. DWA ROS package
is used to follow the global plan and to consider
new obstacles in the way. The Local Planner
sends cmd_vel which is velocity commands to
the controllers.

F. Control

Nvidia Jetson Nano is used as a controller, that
receives cmd_vel commands from the path
planner which provides angular and linear
velocity. IMU and magnetometer data are used
by a feedback loop to compare the wanted and
practical velocities. Linear velocity is extracted
from IMU data by integration of the
accelerations in different axes. In addition, the
magnetometer and IMU provide measurements
of the changes in angles in two axes, which
enables the calculation of the angular

& See appendix B.4
9 See reference 5
10 See reference 6

Tel Aviv University SAIL-IL

velocity. For the thrust configuration,
BlueRobotics data sheet was used'! to establish
the momentum generated by the engines in
respect to pulse width modulation (PWM) and
voltage!'?. PID controller is used in which the
required velocity by the algorithm is being
transformed into momentum needed and in turn
changes the PWM signal that is being sent to the
engines.

G. Water Cannon
A cannon was designed based on reverse
engineering of an RC jet-ski waterjet system.
The following design'’ enables to deliver large
amounts of water. The cannon has two main
stages, called First Stage and Second Stage,
where propellers are set in a water leak proof
enclosure and driven by a shaft connected to a
brushless motor. This brushless motor can rotate
at very high RPM (Max. 40,560RPM) at voltage
of 12V. It is located on the bow, above the
camera and LiDAR on a variable degree adapter.
To obtain the task, the target is identified via
the computer vison system described above. By
conducting several experiments, we were able to
determine the angle of the cannon'?, the right
R.P.M and the distance from the target to fill the
tank in the most efficient way. The cannon
shoots in specific time intervals and readjusts the
boat’s location and the cannon’s R.P.M
according to the target’s updated location. This
strategy was chosen to avoid the use of complex
computer vision and delicate angle changes.

H. Autonomy

The autonomous function of the ASV is
governed by a state machine'’, managing
the flow and ftransition between
competition tasks, and monitoring the
various onboard systems to detect and
handle hazards.

Provided that all start-up checks
have passed, and we have successfully
reached our desired starting point (e.g., 6 ft
from the mandatory navigation channel),

11 See appendix B.5
12600 appendix B.12

the ASV transitions to autonomous mode.
In this mode, the state reflects the current
task, with the basic flow of: (a) locate task
starting point (for example, gate buoys). (b)
perform task; More complex tasks, such as
the Water Blast, are divided into subtasks,
each represented by its own state. (¢) Move
to next task according to our competition
strategy; location is predefined using the
provided course configuration. In addition
to the regular flow, there are flows
dedicated to hazard handling and recovery,
for example in the case of a malfunctioning
sensor. Finally, there is a general "return to
home" state.

For implementing the state
machine, we looked for a framework that
natively supports integration with ROS,
since the state machine should
communicate with the other ASV
components over a distributed ROS
network. As the state machine is a new
addition to the ASV, we did not have a
previous implementation to build on, and it
was important for us to focus our efforts on
developing the state machine itself rather
than on drivers, APIs, or possible
compatibility issues. Additionally, we
preferred tools that allow for testing and
simulation, in both isolated and real-world
environments, with relative simplicity.

Following initial difficulties with
Gazebo, we decided to use Stateflow and
Simulink from MathWorks, who also
kindly offered us guidance through the first
steps of the project. Stateflow supports
many features for state machine design,
including global variables, code and
graphical functions, timeout-based state
transitions and more, all in a graphical
interface. This enabled us to focus on the
underlying logic and design a more robust
state machine, that maintains autonomous
control for as long as possible. Moreover,
the MathWorks ecosystem includes a

13 See appendix B.6
14 See appendix B.7
15 See appendix B.8

Tel Aviv University SAIL-IL

complete ROS toolbox that can generate
C++ code for a ROS node running our state
machine. Besides significantly reducing
coding time, running on C++ is of critical
importance, since our state machine is
intended to be run on an Nvidia Jetson
Xavier NX and is required to operate in
real-time.

I. Communication

For the physical network, we used a
communication switchboard, which all the ASV
computers are connected via Ethernet cables
(802.3) and the shore station's computer is
connected via a closed WIFI 2.4Ghz (802.11)
network'®,

For software implementation rosmaster
package!” was used. With rosmaster, one
computer is configured as the master in all the
computers that are connected to the network,
thus all ROS nodes and topics are shared
between all on deck and shore computers'®.
Since most of the modules on the ASV already
use ROS as their platform to publish
information, the connection and integration
were immediate.

A communication package was coded
that allows recording sensors’ data, present real-
time data of system health in shore station and
perform emergency shut down.

IV. EXPERIMENTAL RESULTS

Before all water experiment multiple lab
experiments were conducted. Although our lab
time was greater than water time, we learned that
it makes experiments more efficient.

A. Object Detection

During both lab and field experiments photos of
all obstacles were taken in different environment
conditions to expand database. The system
generates a consistent live data stream of 7
marker types, with stable speeds averaging at 24
FPS, and mean average precision of 86.29%.
This is an improvement of previous year’s CV
team, which achieved identification of 4

16 See appendix B.9
17 See reference 7

5

obstacle types at mAP of 68%, at higher speeds
of 30 FPS.

B. Path Planner

To verify the correctness of the algorithm
simulations in RVIZ' and Gazebo were used.
Using simulation allowed parallel development
of the path planner, independent from the
platform and control development. The
characteristics of the platform and the missions’
elements was injected to the simulator. This
allowed easier debugging.

C. Floating Platform

As the hull was custom made an experiment to
ensure buoyancy and stability was conducted.
The hull was tilted and loaded with weights. We
found that the hull is very much stable in all
directions and can carry up to 30 kg.

D. Communication

As there are multiple computers on deck we used
the rosmaster protocol. In the experiment we
published multiple messages to ensure that all
the computers are subscribed to the relevant
topics and identify the master computer. we
found that all CPUs can communicate and there
is neglected latency in retrieving data. This
allows better control and easy data transferring.

V. ACKNOWLEDGMENTS

We would like to thank Tel Aviv University’s
Faculty of Engineering and to Dean Prof. Yossi
Rosenwaks allowing us to participate in this unique
project, and for offering us support and resources.
Special thanks to Danny Berko and Jacob
Fainguelernt, our academic directors, and Tel Aviv
University faculty members, who believed in the
project and helped make all our ideas come true.
Thanks to all our professional mentors for offering a
lot of knowledge, experience, and support: Dr.
Hanan Spond, Roi Raich, Bental Tavor, Hanoch
Aharon, Amitai Peleg and Omer Karakukli.

Thanks to all our gracious sponsors for funding and
accompanying the team: Rafael Advanced Defence
Systems, Valens, Systematics Ltd., Innoviz
Technologies and Lake TLV.

18 See appendix B.10
19 See appendix B.11

Tel Aviv University SAIL-IL

VI. RFERENCES

1. Morgan Quigley, Brian Gerkey, Ken Conley, Josh
Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob
Wheeler, Andrew Ng, "ROS: an open-source Robot
Operating System", ICRA workshop on open source
software. Vol. 3. No. 3.2. 2009.

2. Alexey Bochkovskiy, Chien-Yao Wang, Hong-
Yuan Mark Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection”, arXiv:2004.10934,
2020.

3. Robot Mapping course [online], 2013.

4. robot_localization Package Summary, ROS Wiki.
5. Huijuan Wang, Yuan Yu, Quanbo Yuan,
“Application of Dijkstra algorithm in robot path-
planning”, 2011 Second International Conference on

Mechanic Automation and Control Engineering,
2011.

6.dwa_local planner Package Summary, ROS Wiki.

7. rosmaster Package Summary, ROS Wiki.
8. BlueRobotics T200 specs [online].

Tel Aviv University SAIL-IL 7
Appendix A - Component Specifications
Custom/ Year of
Component Vendor Model/Type Specs Purchased Cost $ Purchase
foamed polystyrene
ASV Hull . covered fiberglass,
Form/Platform nanofiber custom made carbon fiber, and custom 2,507 |2022
€pOXY.
Wat £ MPH EKPK 180 G
aterproo Electrical 2538055 outdoor purchased | 111 | 2022
Connectors . ; .)
Engineering | junction boxes
Propulsion BlueRobotics | T200 T200 specs purchased 210 2022
LIPO 14.8V
Power System Fullymax 5000mAh purchased 144 2022
LIPO 14.8V
Power System Fullymax 7500mAh purchased 212 2022
LIPO 18.5V
Power System Fullymax 5750mAh purchased 206 2022
LIPO 74V
Power System Fullymax 7500mAh purchased 123 2021
CPU Nvidia Jetson Xavier NX i?)t:fsn Xavier NX sponsored 2021
CPU Nvidia Jetson Nano Jetson Nano specs sponsored 2021
Motor Controls | SeeedStudio | PCA9685 PCA specs purchased 20 2022
Teleoperation Ubiquti Bullet M5 Bullet M5 specs purchased 115 2021
. . GY-271 Magnetometer
Compass Yiqgigou QMC5883L specs purchased 11 2022
GPS U-blox c94-m8p GPS specs purchased 2021
. GY-521 MPU-
IMU HilLetgo 6050 MPU6050 IMU specs purchased 10 2022
Camera StereoLabs ZED2 Camera specs purchased 500 2021
LiDAR Innoviz InnovizOne LiDAR specs sponsored 2022
Water Cannon Custom. self
production
Algorithms
Vision YOLOv4 and 2022
darknet
Custom based on 2022
Localization and Dijkstra, DMW
Maoi ROS package and custom
apping robot_localization
package
Autonomy MathWorks Simulink 2022
L Custom based on 2022
Communication
rosmaster package
Open-Source ROS 2022

Software

Tel Aviv University SAIL-IL

Appendix B
1.
I | Raw data
Custom - .
image { ZED2
datas,eg_ o Images camera
-c.g -';l wrapper A
.Darknet) o, I
trainer A oies
. detemr J

Tralrled

mudel l

Marker array

bb-pcl
fI.ISiOI'I

Jetson
Xavier
Computer

Figure 2 : bounding boxes and accuracy in real time

LIDAR

Ros AP1

sensor_mags/

=8

senzor_mags/

PoirtCloud2?

LaverScan

Neﬂor

A

ummp,r
| ml

Obstacle
map

Kalman
Filter

Figure 3 : LiDAR interface architecture

Pc2l — gets as input the sensor point cloud.
converting it to 2D, filtering the relevant FOV
(angle and height, mainly filtering out the
water), and publishing laser scan message.
Hector SLAM — gets as input the laser scan and
uses it to create an obstacle map (Occupancy
Grid) of the environment and to estimate the
boat's movement and its position on the map.

20 See reference 8

(13—\ Katman Fiter

Figure 4 : Localization interface architecture

Figure 5 : momentum vs. PWM?20

Figure 6 : Water cannon design

Tel Aviv University SAIL-IL

7. 11.

1
¥=te¥yemnl(f) - g’

X =+ Vg + caslf)

Figure 7 : Water cannon angle calculation

Figure 8 : state machine

w— S ﬁ—‘-‘
BE. . l“‘ g
'. — :‘ R _m—cﬁ; -

Figure 9 : Communication interface architecture

10.

I ™ s Y
[opsmoone | | somec moduie
\
— —
mod ¥
Cop=D) J——
H P J | Power module
1 e B x e
I \ — ~ —_—
| camers maduie pam unumnmJ [Pemesrsnere moduas
. J)
0 —
p) . - LS -
| [waomation modusa|) || Epnesmosss | |)
M vy A LS
ZIT
™y
s sution
At the shaore)
[ey)
_moviie
Iy

Figure 10 : System deployment

” o PU contraller

] MU magnetomenes

o,

Figure 11 : RVIZ simulation

}gwu-. MOTORS

Figure 12 Control interface architecture

Tel Aviv University SAIL-IL

Appendix C — System Architecture

—
camera

Image point cloud

! : |
YOLO4 ‘

Recording

Bounding box

filter

Algorithrm r '
Software e LiDAR
Hardware s |
Paint cloud
‘ fusion —|
pC21 ‘
‘ Laser scan
‘ Hector
| SLAM ‘
[map
L
nav_msg/odometry
[system
‘ A 4
GPS }—NavSatFixh
J | Kalman
|

IMU IMU /dataps

System
manager

—t-nav_msg/odometry-m

|
cmd_vel

_r geometry_msgs/ twist
Dijkstra ‘ |

ate ‘

cannon
alg !
| _I_ cmd_vel

geometry_msgs/twist

Figure 13 System architecture

Telemetry &

Steering
control

10

