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Abstract— This paper describes the development process and com-
petition strategy of Sea Serpent, the University of Michigan’s boat
submission for the 2022 RoboNation RoboBoat competition.

Fig. 1.

Sea Serpent During Mock Competition

I. INTRODUCTION

UM::Autonomy is the University of Michigan's Autonomous
boat engineering build team. This is the 16th year that
UM::Autonomy has participated in the RoboNation RoboBoat com-
petition. This is also the first year back to being able to work in
person, which was beneficial in many regards, but also came with
its own set of challenges. Through this year, the five subteams (elec-
trical, hulls & systems, advanced capabilities, artificial intelligence,
and business) came together to learn and grow while making Sea
Serpent.

II. COMPETITION STRATEGY

The introduction of new challenges in place of old ones in
this year’s competition necessitated the establishment of a strong
foundation for the accommodation of new hardware and software
development as well as thorough sensor integration. This strong
foundation, the team decided, must compose of a durable hull
design and a fast, small, lightweight system that provided enough
room for mounting electronics and hardware while also being
largely accessible and modular such that any components could be
easily reached and removed for troubleshooting. In order to better
utilize our time, UM:: Autonomy went against tradition and decided
to refurbish one of our boats from a previous season rather than
building a boat from scratch - this gave the team an opportunity
to spend this time elsewhere, while also being able to work with
the boat for hands-on testing and design of hardware for the new
challenges.

While the team wanted to attempt most of the challenges in
the competition, challenges were prioritized based on their worth
in points as well as the complexity and time needed to master

each challenge, Looking at the specific tasks our team wanted to
prioritize, we wanted to focus on completing Navigation Channel,
Avoid the Crowds, Find a Seat at the Show, and Snack Run the
most. After that our we would consider the water blast challenge
and especially the skeet ball challenges as reach goals.

A. Thrust-to-Weight

In 2019, UM::Autonomy earned 140 points in thrust-weight static
judging, with a weight of 501b and a thrust of 20lbs. This year, the
team aims to double the thrust with a six-thruster setup that features
two sets of forward facing thrusters. However, due to the reuse of
a boat with foam hulls as opposed to lighter carbon-fiber hulls, the
expected weight to increase to around 70lbs. Overall, the aim is to
earn 140 points in this category again. In Figure 2, you will find the
Thrust-To-Weight goal setting graph we created to delineate point
totals from thrust and weight points from the point system in the
rule book. Here, the purple point represents our goal for 2022.

(i

(20.230)

200

), 140

[ }

(

(68! 140)

100l (60.123:333)

0 100 200

Fig. 2. Thrust-To-Weight Goal Setting Graph

B. Navigation Channel

Given that this challenge is mandatory to attempt any other
challenges in the competition, completing this challenge quickly
and successfully is one of the biggest priorities of the team this year.
While it may not require any fancy algorithms, it still requires all
parts of the boat to work together to perceive, localize, and move. In



2019, the boat could only successfully pass the navigation channel
once out of four qualification runs as a result of a major electrical
failure onboard. As such, the team set this as a High Priority
challenge that we aimed to rigorously test prior to competition while
also ensuring boat modularity so that any system failures could be
assessed separately from the completion of this challenge. The team
established a goal to complete the challenge successfully in 14 out
of every 15 test runs.

C. Snack Run

As it is a timed challenge with lots of scoring potential that
really only requires basic navigational capability and a fast boat, this
challenge was a priority for the team this year. After assessing the
score breakdown from the 2017 Speed Challenge, it was determined
that the team could easily earn the points for entering and exiting
the gates and circling the mark, for a total of 250 points. Simply
doing this was a High Priority task for the team, with a goal set
to complete the challenge successfully at least 9 out of every 10
runs. Based on the 2019 score-sheet, the team assessed that a time
between 25-45s is needed to remain competitive in the Snack Run
challenge, with the fastest 2019 run coming in at 27 seconds. A
baseline goal of 35 seconds was set for the completion of a timed
run, with an optimistic goal of 26 seconds.

D. Avoid the Crowds

Since this challenge also requires minimal external hardware or
software development and mainly just involves careful navigational
operability and fine motor control, this was a High Priority task. One
of the biggest advantages that was found is that this challenge could
be tested and fine-tuned really early in the development process. The
aim was to complete this challenge successfully nine out of every
ten test runs.

E. Find a Seat

This challenge is a bit more involved in terms of CV and
color/shape recognition, which is why the team declared this a
Medium Priority task - still very doable, but something that would
come after successful completion and mastery of the Navigation
Channel, Snack Run, and Avoid the Crowds. Again, since this did
not involve any external hardware development, the team found that
it could definitely be accomplished with enough time provided for
in-water testing with the boat. For this challenge, UM:: Autonomy
aimed to complete the challenge correctly in at least eight out of
every ten runs.

FE. Water Blast

Being one of the new challenges in the competition, the Water
Blast challenge was something the team set early on as a Low
Priority task. This does not mean that UM:: Autonomy did not invest
time in it, however - instead, the team repurposed the old Drone
sub-team into the Advanced Capabilities sub-team specifically so
that the hardware and software required for this challenge and
Skeeball could be developed throughout the season. But, since this
is the first season with this challenge and hardware and software
development of external mechanisms pushed back actual testing, we
knew that immediate mastery of this task would be difficult and time
consuming, and should only be attempted after other challenges.
The team aims to complete the challenge successfully in at least
three of every five runs. UM::Autonomy chose to only focus on
completing the Water Blast challenge this year, though work was
done throughout the year to complete the Skeeball task in the future.

III. DESIGN CREATIVITY

A. Hulls & Systems

After deciding to reuse the Flying Sloth hull (2017) there was
much rework to be done. The first step that was taken in the
reparation process was to sand off the existing paint to reveal
the fiberglass work below. What the team discovered was that the
fiberglass and foam structure inside had rotted out in some places
and that there were many areas where the fiberglass was bumpy
and rough. To fix this the team started by adding a primary layer
of Duraglass to reinforce the hull and fill in the cavities as seen
below in Figure 3.

Fig. 3. Sea Serpent After Duraglass Installation

Next Bondo resin was applied and sanded to smooth the surface.
This process was repeated about seven times until the hull became
smooth and reached the desired contour. During this process one
and a half gallons of Bondo was used, along with half a gallon
of Duraglass. Then surface was sanded with sandpaper up to 1500
grit, as seen in Figure 4 below. Then the hull was ready for painting
and waterproofing.

Fig. 4. Sea Serpent Final Resin Sanding

For the painting process the team started off with adding a layer
of primer and sanding it. This process was repeated several times
until the boat had a thick layer of primer. Next the white paint was
applied and the University of Michigan stripe detailing, as seen in
Figure 5 below. Finally the boat was coated in a layer of clear coat
to add a layer of water resistance and to apply a gloss finish.



Fig. 5. Sea Serpent Post Clear Coat

The last thing the team did was apply scale-like detailing to our
aluminum deck using a rotary brush tool, to match the chosen name
of the Sea Serpent as seen in Figure 6 below.

Fig. 6. Deck Detailing

When determining how to integrate this older hull with our
current thruster setup, the team found that the existing thruster
mounts were designed for an older model of thruster that the
team had phased out years back. To be able to mount our current
thrusters (BlueRobotics T200), a new pair of aluminum rails was
fabricated to serve as an interface between the boat and the thrusters.
Historically, one of our subteam objectives has been to develop a
flexible system where thruster positioning could be adjusted prior
to deployment, so that optimal placement could be determined
experimentally. The team was able to accomplish this with these
thruster rails by drilling as many mounting holes as was possible
into the aluminum bar, and devising a system to easily bolt and

unbolt thrusters. This multitude of mounting holes is shown in
figure 7 during the initial drilling attempt. The flexibility of this
system also allows us to easily expand our current 4 thruster setup
to, for instance, a 6 thruster setup, if it was deemed necessary.

Fig. 7. Thruster Rails at Beginning of Manufacturing

B. Artificial Intelligence

A new method to detect objects such as docks and buoys was
implemented using computer vision. Images from previous years
were labeled and then used to train a YOLOv4 machine learning
algorithm. Training was done using Google Colab to allow for easy
and repeatable training using different data sets. The various data
sets were made using image augmentations to change the images
so the model did not overfit to training data allowing for better
performance. With the help of the onboard GPU the model is able
to quickly and accurately detect and classify objects as seen in
Figure 8 below.

Fig. 8.

CV Object Detection

Previous years planning algorithms implemented a Theta* ap-
proach for more optimal results compared to an A* based algorithm
at the cost of higher compute times. In an effort to be able to run
the planning algorithm more often for controls, this years planner
switched to a Hybrid A* algorithm that trades faster compute times
for less optimal paths. The Hybrid A* algorithm works by creating
a tree starting from the start node where any two adjacent nodes
are connected via a precomputed motion primitive. The primitives
are computed using a linearized dynamics model which accounts
for fluid drag. The cost assigned to any given node was the sum
of the cost from the start to the node plus the estimated cost from
the node to the goal. The estimated cost was calculated by taking
the maximum of the Reeds-Shepp cost and the cost from running
vanilla 2D A* on the node. Using the maximum of these made the
heuristic admissible.



C. Systems Engineering

An overall change regarding team organization involved the
use of Jira and Confluence for task tracking and technical docu-
mentation. Jira facilitated breakdown of tasks into smaller, more
manageable tasks and allowed members to always be up to date
regarding progress and also be able to delegate tasking among
themselves. This would work together with Confluence, where
anyone can add the technical knowledge on any particular topic
to be accessed as a reference by others.

IV. EXPERIMENTAL RESULTS
A. Superstructure

This year the team chose to create a superstructure to our vessel.
The purpose of this was to protect our sensors, improve the overall
look of the boat, and to develop skills in mold manufacturing and
carbon fiber layup.

Therefore, in order to be able to make this super structure, there
were two test runs of carbon fiber layup attempted - with minor
variations from one to the next in order to have a better outcome.
The first run did not have a good result, which was concluded to be
because there was not a good enough vacuum created. An image
of the first run is shown in Figure 9. The second run had a much
better result, as the issue with the vacuum was much improved. The
set up and final product from the second run is shown in Figure
10.

Fig. 9. Run one of carbon fiber layup

After practicing carbon fiber layup, the team then proceeded
with developing the superstructure. To do this the team started by
creating a CAD model of the superstructure in Rhino 3D, as shown
in Figure 11. From there it was sent to Fusion and created a female
mold of our superstructure.

After considering the height limitations of the Shopbot Router
that would be used to CNC the mold, the mold was split into three
different parts. At this point the team was ready to create the molds
as seen below in Figure 12.

There were a few options for what to use as a deck material,
either now or for future seasons, so its ability to withstand a load,
and be fastened to other surfaces was tested. The main material that
was being considered is shown in Figure 13. The main comparison
point for this material was a plank of wood - as used in previous
years.

To determine if it was worth switching to the honeycomb mesh
material, the team ran several tests on its strength and usability.

Fig. 11. Fusion Model of Sea Serpent with Superstructure

Fig. 12.

Using the Shopbot Router to Create the Superstructure Mold

Since the team would be applying the mounts to the hull on the
edges of the deck, the team decided to test the material’s ability to
maintain strength for these conditions. To do this several size holes
were drilled at varying distances from the edges of the sample
material to see if the honeycomb mesh would crumple during the
drilling process. Next, bolts were fastened and the deformation was
measured when tightened on the drilled holes. The final test that
was ran was placing the deck on top of two spaced planks of wood



Potential Deck Material

Fig. 13.

and applying a heavy load in the center to see if the material would
buckle. In the end, the material passed all these tests and greatly
surpassed our expectations and mission requirements.

B. LiDAR Deep Learning

For the first half of this year, the Al subteam was exploring the
possibility of running a 3D deep learning model for our LIiDAR. The
plan was to fuse these results with our CV deep learning model’s
results, providing a more robust dock and buoy detection system.

The team used MMDetection3D’s VoteNet implementation as
our model architecture, and our dataset consisted of only 529
point clouds from competition ROS bags and data collected on
a university pond. The labels included 3 classes: dock, tall buoy,
and round buoy.

The team suspected results would be subpar given our limited
dataset, and this was quickly confirmed. There was just not suffi-
cient data to learn anything meaningful. The baseline results can
be seen below in Figure 14. At best, we achieve a 0.4 mAR at a
0.25 IoU threshold, and our precision at any loU threshold is very
near 0.
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Fig. 14. Baseline results for the team’s VoteNet model.

Despite the objectively poor performance, the problems of limited
data were approached and class imbalance as one would with any
deep learning project. To address class imbalance, we tweaked class
weights in the loss functions, where class weight for class X was
calculated as (total number of objects / total number of instances of
class X). Data augmentations were also implemented to combat our

extremely limited dataset. These included point jitter, rotation and
scaling, and horizontal flips. The results for mAR and mAP at IoU
threshold 0.25 are shown below in Figures 15 and 16. The class
weights showed no real improvement, and while the augmentations
showed relative improvement, our best results were still well below
where they needed to be for deployment.
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Fig. 15. IoU 0.25 mAR results for various data augmentations.
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Fig. 16. 1oU 0.25 mAP results for various data augmentations.

In the end, the team chose to put this project aside in favor
of more competition-focused projects. While interesting, simply a
larger dataset was needed for this to be viable and having members
spend their semester labeling data was not something that the team
was interested in doing, especially given that there are have other
methods of detection already implemented. As an experimental
project, however, this had a lot of value in teaching members about
deep learning workflows and addressing real world dataset issues.
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