
1

RoboBoat 2023: Technical Design Report
Autoboat, Cornell University

Ithaca, New York, United States

I. Aʙsᴛʀᴀᴄᴛ
Autoboat is a Cornell University student

project team which seeks to innovate novel
maritime technology capable of complex
autonomous behavior. We feature a
trimaran-style boat with fiberglass hulls. The
boat is equipped with a ZED 2i camera to
collect environmental data and the Jetson
Xavier NX and Arduino Mega microcontrollers
to perform computations and control hardware.
It is powered by 14.8 V batteries. Our system
design prioritizes efficiency and safety while
still maximizing efficacy. Our sleek design,
advanced algorithms, creativity, and comradery
will lead to success in our first in-person
competition at RoboBoat

II. Cᴏᴍᴘᴇᴛɪᴛɪᴏɴ Sᴛʀᴀᴛᴇɢʏ
A. Approach

As a new team, our primary goal this year
has been to establish a strong and flexible
foundation to build upon in future years. We
have learned from last year in which we
competed virtually, and have since tried new
techniques and experimented with different
methodologies to learn what works best for our
team. Our other high-level goals on Autoboat
are to always move forward, become better
engineers, and be proud of what we can
accomplish in such short spans of time.

With respect to the competition, our
strategy is to attempt all tasks except the Ocean
Clean Up. To maximize our potential for
points, we prioritized the optimization of our
navigational abilities, catering software to the
Panama Canal, Magellan’s Route, Northern
Passage, Beaching, and Explore the Coral Reef
challenges. However, as there are points
available for attempting all tasks, we also

dedicated time to ensure our boat has the
mechanical capabilities to shoot and aim both a
water gun for the Fountain of Youth challenge
and a Skee-Ball cannon for the Feed the Fish
challenge.
B. Trade-off Studies

We spent a large portion of our time in the
research phase, prioritizing knowledge
accumulation over rushed decisions. Our
research allowed us to weigh the trade-offs of
various design choices such as switching from
a catamaran to a trimaran hull design, utilizing
a ZED 2i camera in place of additional sensors,
adopting a ROS framework, incorporating a
Pure Pursuit and PID controller, and more.

As our system’s complexity increased, we
modified our team’s structure accordingly,
delegating tasks to subgroups within each
subteam and maintaining a clear leadership
hierarchy.

III. Dᴇsɪɢɴ Sᴛʀᴀᴛᴇɢʏ
A. Mechanical Aspects
Hulls

Figure 1: Assembly with skeeball, camera mount, main
hull and amas.

The goal of our hull design is to maximize
the stability of the boat and reduce the
movement of the camera to improve image
quality. For this reason, we opted for a trimaran
design with a displacement main hull (Figure
1). A trimaran provides extra stability with the

Cornell University AutoBoat 2

addition of the amas. If the boat starts to roll in
the water from a turn, one of the amas will dip
into the water and provide a restoring buoyant
force upwards, which correlates to a righting
moment on the main hull [1]. During prototype
testing, it was found that we had an issue with
the trim angle as the boat approached hull
speed. It is important to keep the trim angle to a
minimum so the camera remains flat relative to
the horizon.

To fix this issue and reduce planing, we
modified the new main hull to act as a
displacement hull instead of a semi-planing
hull. This is dictated by the Froude number,
which depends on the waterline length (LWL).
With a LWL of 54in, the Froude number comes
out to about 0.40, pushing the hull to be a
displacement hull. In order to reduce the
Froude number, the water length of the hull
needed to be maximized. Since the main hull is
a displacement hull, it is important that we do
not exceed the hull speed, or else the boat could
start to climb up the back of its own bow wave.
Importantly, this would also increase the trim
angle, so we do not want to exceed this speed
[1]. The calculated waterline is 3in from the
bottom of the boat, meaning the waterline
length is 54in, and the hull speed is 2.84knots
or 1.46m/s.

The amas are long and skinny to optimize
the volume of water displaced while keeping
them hydrodynamic. Ideally, they should barely
be in the water until the boat starts to roll. This
maximizes the amount of extra volume that
could be displaced while not inducing extra
drag. By having the amas skinny, we can also
extend them further from the boat and increase
the righting moment on the main hull [1].
However, the closer the amas are the easier it is
to navigate the buoys.
Hull Manufacturing

The general idea for the manufacturing plan
of the main hull was to cut out profiles of the
boat to use as guides to sand down a foam
mold. We were inspired by the methods in [2].

After the foam was sanded to shape, a
fiberglass layup was done on the mold. Next,
fiberglass was denibbed and lightly sanded

before applying a light body filler. The body
filler was then thoroughly sanded down and the
foam was removed from the fiberglass.
Wooden ribs were inserted for structural
support and the wooden hull top was secured to
the top of the boat. A white gel coat was
applied to the hull for a clean finish.

The amas were created in a similar fashion,
except the foam did not need to be removed
after the fiberglass layup, and we used more
epoxy instead of a light body filler to obtain a
smoother finish.
Simulations of Design

The software ANSYS Fluent was used to
analyze the fluid flow around the boat. Due to
the 512k cell limit imposed by the student
license, it is important to create a uniform mesh
that is not computationally expensive. To
achieve this, multiple body of influence meshes
were used around the free surface and hull
geometry in order to create a more complicated
mesh near the areas of interest (Figure 2) [3]. It
is important to note that a facesize mesh and a
curvature mesh were then used on both the
main hull and the amas to accurately capture
the curvature of the hulls (Figure 3).

Figure 2: Mesh of entire domain with complicated mesh
near free surface and hull.

Figure 3: Inside view of the domain showing the main
hull and ama mesh.

For the solution, the most important
thing to look at was the velocity vectors of the
fluid flow around the boat (Figure 4). The
velocity of the simulation was set to the hull
speed of the boat, which was 1.46m/s. This
solution shows that water flows smoothly

Cornell University AutoBoat 3

around the amas and the main hull, with an area
of low turbulence by the stern of the main hull.
In future iterations, the main hull should be
optimized so the velocity changes gradually
around the main hull. The sudden change in
velocity near the stern should be minimized to
maximize the pressure recovery [1].

Figure 4: Velocity vectors of fluid flow around the boat.

Skeeball Launcher

Figure 5: Skeeball Assembly.

The skeeball mechanism utilizes a single
vertical rubber flywheel to launch the ball for
the shooter task (Figure 5). The wheel, attached
to a metal axle, is powered by a
F2838-350kv-Z underwater DC motor. For the
indexer, a gravity-powered turntable feeding
mechanism is used to store the game pieces. It
is powered by a Nema 17 Bipolar 1.8deg
26Ncm stepper motor which allows for the
balls to be fed to the flywheel incrementally.
The ball then rolls down the ramp and is
ejected from the system. The skeeball launcher
system has a rotating base powered by a Nema
23 Bipolar 1.8deg 1.26Nm stepper motor which
allows it to rotate horizontally for aiming.
Cooling System

Figure 6: Cooling system assembly next to the electrical
bay.

The electrical bay temperature is regulated
via an open water cooling system (Figure 6). In
an open water system, water is pumped in from
the lake and passed through a heat exchanger to
cool the air blowing over the electrical
components. Using the environment to its
advantage, the cooling system will effectively
regulate the electrical bay temperatures using
as little as 10W of power. This cooling system
is also small and light, weighing about 1.5lbs
and taking up minimal space in the back of the
boat hull.
Propulsion

Figure 7: Blue Robotics T200 Thruster and mounting
location underneath the amas.

The boat uses dual T200 thrusters that are
mounted on the back of each ama (Figure 7).
With two thrusters set 2 feet apart, the boat
maneuvers with differential steering; capable of
moving forwards, backwards, spinning in
place, and any combination of the three.
Thrusters are controlled via Electronics Speed
Controllers and Pulse Width Modulation
(PWM) through the Arduino.

B. Electrical Aspects
Sensor Hardware

The core of our sensor system is the ZED 2i
camera from Stereolabs. This camera provides
critical environmental information. Key
features include its dual, wide-angle cameras
and built-in 9-DoF IMU. Combined with the
provided SDK, these features result in custom
object detection, depth perception from 0.2
meters to 20 meters, and 3D position tracking
and mapping. This detailed awareness of its
surroundings enables the boat to make task
completion decisions.

The boat is also equipped with sensors
to monitor battery health and evaluate if the
battery is safe to operate.
Computer Hardware

Cornell University AutoBoat 4

The primary on-board computer is a Jetson
Xavier NX, where all the sensor and control
information is received and processed. This
computer has advanced AI performance,
detailed graphics rendering (384-Core NVIDIA
Volta GPU), 8 GB of RAM, and impressive
computing power (6-Core NVIDIA Carmel
ARM v8.2 64 bit), which means it is perfect for
interfacing with the ZED 2i and supports all of
our CV and AI requirements. The Jetson
communicates with an Arduino Mega
microcontroller through UART serial in order
to control low-level hardware, which includes
the T200 thrusters, stepper motors for the
aiming mechanism, and motors for the water
pump and skeeball flywheel. The Arduino
communicates back to the Jetson with RC
information, battery activity, and the status of
the boat in general (e.g. killswitch activated or
any errors). The Jetson Xavier NX has an
installed wifi module so it can communicate
with our base station through ROS.
Power System

The boat and its electrical components are
powered by a 14.8V, 15.6Ah lithium-ion
battery. This high-capacity battery will provide
more than enough power for the boat to operate
throughout the competition and hours of
testing. The power system also includes a series
of voltage and current regulators to deliver
power to our 24V, 12V, and 5V, subsystems.
Additionally, a kill switch circuit has been
implemented to disconnect power from the
thrusters in situations where the boat acts
unexpectedly. All the relays and regulators
featured are rated for their respective voltages
and maximum currents that each electrical
component draws upon.

C. Software Aspects
System Overview

To support the autonomous capabilities of
the boat, our software consists of two major
systems: the computer vision system and the
motor control system. The computer vision
system is responsible for constructing models
to detect objects in the competition. The motor
control system consists of the algorithms

behind the autonomous decision making
mechanisms and control systems for signaling
the different motors. These two systems
communicate via a ROS framework. Our ZED
2i camera is also part of the ROS system and is
crucial in providing information for
localization. The software system from a
guidance, navigation, control (GNC)
perspective is depicted in Figure 8.

Figure 8: Software full system overview from a GNC
perspective.

Computer Vision
In conjunction with the ZED camera, our

computer vision system enables the boat to
detect and localize objects in its frame of view.
Our team’s workflow consisted of uploading
data, labeling objects, and using the results to
compare then improve the model.

Roboflow was used to create a custom
dataset. We uploaded videos of the buoys in
different environments and from a variety of
angles. The videos were parsed into images
based on the number of frames per second we
chose. The images were then uploaded in
Roboflow to manually label and draw bounding
boxes around the target objects (such as the
different classes of buoys). These labels were
used to train the model.

YOLOv5 is a computer vision model [4].
We specifically tested the nano, small, and
medium models, all of which had their own
advantages and tradeoffs. Most notably, as the
model grew in size, the potential for accuracy
improved, but the real-time speed of detection
slowed. Additionally, training time increased
significantly. Using a GPU through Google

Cornell University AutoBoat 5

Colaboratory, however, made the training
process quite fast, even with the larger models.

Having tried several different models, our
most up-to-date version uses YOLOv5m
(medium), and is quite effective at recognizing
buoys. It is trained on over 1,000 different
images (and counting) over 50 epochs. The
model precision for object detection is around
99%. Confidence levels for detection are also
similarly close to 1.
Motor Control

To support autonomous movement, the
motor control system has two subgroups: path
planning and path execution. Path planning
encompasses the task-specific algorithms to
create a list of waypoints defining the ideal
path of the boat. To calculate these waypoints
we utilize two frames of reference (Figure 9).
The local frame is defined with the ZED
camera as the origin, and is how obstacle
coordinates are represented in the list we
receive of objects detected by our model. The
global frame is initialized where the ZED is
turned on, and represents a more GPS-like
frame which the boat moves through. The
waypoints are global coordinates, yet require
local information to calculate, so we utilize a
mapping function using the current global
position and orientation of the boat provided by
the ZED.

Figure 9: Aerial view depiction of the global and local
coordinate frames.

Following a literature review of various
path planning algorithms including [5], [6], we
decided the waypoint creation will be done via
specialized selection and calculation relative to
given objects for simpler tasks (Panama Canal,

Northern Passage, Beaching), and by an A*
algorithm [7] for more complex tasks
(Magellan’s Route, Explore the Coral Reef).
We handle task transitions by assuming a set
order of tasks to complete, so after finishing
one we know immediately which is next. This
strategy was chosen for simplicity, yet we hope
to create transition sequences more robust to
edge cases in the future. The boat continuously
executes an abstract loop of observing its
surroundings, creating a path, executing the
path, and determining if the task has been
completed. Each task has a specific criteria for
completion.

To execute the waypoint-defined path we
are adapting a Pure Pursuit path follower,
chosen for its success in differential-drive
vehicles, ability to recover from drifting off
path, and existing MatLab implementation [8].
The controller outputs the ideal linear and
angular velocity the boat should maintain to
reach a lookahead point some distance along
the waypoint-defined path until a goal state is
achieved. We use this information in
conjunction with the IMU data provided by the
ZED camera and PID control to send signals to
the motors.

For the shooting tasks, we plan on selecting
a strategic waypoint to orient the boat in front
of the targets. Based on our distance and
orientation from the target, we will aim and
control the shooting speed of the water gun and
skee ball shooter.

IV. Tᴇsᴛɪɴɢ Sᴛʀᴀᴛᴇɢʏ
The testing phase was an integral part of

our development plan, understanding that
verifying and correcting the behavior of our
designs is critical to our success. Our testing
plan consists of simulation, live-camera, and
in-water components.

The simulation testing is purely software.
For the task completion algorithms, simulation
testing consisted of an expansive test suite for
each challenge. Each test suite is a thorough set
of test cases presenting different scenarios that
the boat could experience as it progresses
through the challenge. Specifically, the input
for each test case is the boat’s current position,

Cornell University AutoBoat 6

orientation, and a list of course obstacles paired
with their relative positions to the boat. The test
case would then run the execution algorithm
for the challenge on the provided scenario and
verify that the execution algorithm selected the
appropriate destination waypoints or executed
the correct motor actions.

For the object detection system, we
analyzed the accuracy of our trained models.
The computer vision libraries that we used
included methods for evaluating model
performance and scripts for drawing bounding
boxes, which we relied heavily on. We also
manually and visually verified our models with
live camera tests and ensured that the detection
and position data provided by the ZED camera
was accurate.

The in-water testing is a full-system
software and hardware test, and was the final
phase of our testing. Having verified that our
software plans the correct course of action, the
in-water testing verified that the boat would
correctly execute that course of action on a
physical course. We were able to check that the
object detection, depth perception, path
planning, and motor execution were accurate in
this stage. The in-water testing began with
isolating each challenge (and in some cases,
specific aspects of each challenge). This
eventually grew to combining multiple courses
together so that full autonomous functionality
was tested.

V. Acknowledgements
We would like to acknowledge and thank

all those who supported our team, both
monetarily and otherwise. We appreciate the
Cornell University College of Engineering for
funding our team’s material and travel costs,
providing facilities used in the construction and
design of the boat, and offering course credit
for those participating in the team. We would
also like to thank all of our individual
supporters including friends, family members,
and alumni of the team who have graciously
donated to Autoboat. Doctor Hunter Adams,
our faculty advisor, has also been instrumental
in our team’s success by providing advice and
guidance throughout our research and design

processes. We also thank RoboNation’s
RoboBoat program for giving us an opportunity
to challenge ourselves and grow as both
engineers and teammates. Lastly, we must
acknowledge the hard work and dedication of
past Autoboat team members whose important
contributions allowed us to be where we are
today.

VI. Rᴇғᴇʀᴇɴᴄᴇs
[1] T. J. Grafton, "The Roll Motion of Trimaran
Ships." Order No. U593304, University of
London, University College London (United
Kingdom), England, 2008.
[2] Easy Composites Ltd, “Mouldless Carbon
Fibre Technique for One-Off and Prototype
Components”, Youtube, May 24, 2022.
Available:
https://www.youtube.com/watch?v=0Yaggj16S
08&t=2s.
[3] F. Ahlstrand and E. Lindbergh, “Methods to
Predict Hull Resistance in the Process of
Designing Electric Boats”, Dissertation, 2020.
[4] “Revolutionizing the world of Vision Ai,”
Ultralytics. [Online]. Available:
https://ultralytics.com/yolov5.
[5] J. R. Sánchez-Ibáñez, C. J.
Pérez-del-Pulgar, and A. García-Cerezo, “Path
planning for Autonomous Mobile Robots: A
Review,” Sensors, vol. 21, no. 23, p. 7898,
2021. https://doi.org/10.3390/s21237898.
[6] Vagale, A., Oucheikh, R., Bye, R.T. et al.
“Path planning and collision avoidance for
autonomous surface vehicles I: a review,” J
Mar Sci Technol 26, 1292–1306 (2021).
https://doi.org/10.1007/s00773-020-00787-6.
[7] N. Swift, “Easy A* (star) pathfinding,”
Medium, 29-May-2020. [Online]. Available:
https://medium.com/@nicholas.w.swift/easy-a-
star-pathfinding-7e6689c7f7b2.
[8] R. C. Coulter, “Implementation of the Pure
Pursuit Path Tracking Algorithm,” The
Robotics Institute, Carnegie Mellon University,
Pittsburg, Pennsylvania, Tech. Rep.
CMU-RI-TR-92-01, 1

https://www.youtube.com/watch?v=0Yaggj16S08&t=2s
https://www.youtube.com/watch?v=0Yaggj16S08&t=2s
https://ultralytics.com/yolov5
https://doi.org/10.3390/s21237898
https://doi.org/10.1007/s00773-020-00787-6
https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2

Cornell University AutoBoat 7

VII. Aᴘᴘᴇɴᴅɪx A: Cᴏᴍᴘᴏɴᴇɴᴛ Lɪsᴛ

Component
Name

Vendor Model/Type Specs Custom/Pur-
chased

Cost Year of
Purchase

Jetson Stereolabs Xavier NX - NVIDIA® Jetson™
TX2-NX
- GPU: 256-Core
NVIDIA® Pascal™
- CPU : Dual-Core
NVIDIA Denver 2
64-Bit and Quad-Core
ARM Cortex-A57
MPCore
- Memory : 4GB
LPDDR4 - 51.2 DB/s

Purchased $1,390 2023

Arduino
Mega

Arduino 2560 Rev3 - Operating voltage
(5V)
- Input Voltage (7-12V)
- Flash Memory (256
KB of which 8 KB used
by bootloader)
- SRAM (8 KB)
- Digital I/O Pins (54,
15 PWM)
- Analog Input Pins
(16)
- Clock Speed (16MHz)

Purchased $45 2022

Camera Stereolabs ZED 2i
Stereo
Camera

120 FOV, built-in IMU,
Barometer,
Magnetometer, depth
sensing, positional
tracking, object
detection, IP66-rated
enclosure
https://www.stereolabs.
com/zed-2i/

Purchased $499 2021

ASV Hull
Form/Platfor
m

Self
Developed

N/A 54in x 29in x 8in N/A $400 2023

Propulsion Blue Robotics T200 Up to 5 kg Thrust /
Each

Purchased $400 2021

Power System Blue Robotics Lithium-ion
Battery
14.8V,
15.6Ah

14.8V, 15.6Ah
Max draw 60A
Max Burst 132A

Purchased $330 2021

Stepper
Motor 1

Stepperonline Nema 17
Bipolar

Step Angle: 1.8 deg
Holding Torque:
26Ncm/36.8oz.in
Weight: 230g

Purchased $10 2021

https://www.stereolabs.com/zed-2i/
https://www.stereolabs.com/zed-2i/

Cornell University AutoBoat 8

Stepper
Motor 2

Stepperonline Nema 23
Bipolar

Step Angle: 1.8 deg
Holding Torque:
1.26Nm/178.4oz.in
Weight: 0.7kg

Purchased $15 2021

Remote
Controller

FLYSKY 2.4G
FS-CT6B 6
Radio Model
RC
Transmitter
& Receiver

8 model memory,
digital control, full
2.4GHz 6-channel
radio, 4-Model
memory,
integrated timer,
throttle cut, computer
programmable, USB
Socket

Purchased $50 2021

Motion
Controllers

MATLAB Pure Pursuit
controller
object, PID
controller
object

N/A N/A N/A N/A

Vision Self
Developed

N/A N/A N/A N/A N/A

Localization
and Mapping

Zed 2i and
Self
Developed

N/A N/A N/A N/A N/A

Autonomy Self
Developed

N/A N/A N/A N/A N/A

Programming
Languages

Python 3,
ROS,
Arduino/C++

N/A N/A N/A N/A N/A

Programming
Packages and
Open Source
Software

Numpy,
Pytorch,
MATLAB
engine, ZED
SDK, Google
Collaboratory

N/A N/A N/A N/A N/A

Simulation
Software

ANSYS
Fluent

N/A N/A N/A N/A N/A

