
Tel Aviv University SAIL-IL

1

TAU SAIL-IL RoboBoat 2023 Technical Design Review

SAIL-IL Team, Tel Aviv University, Tel Aviv, Israel

Abstract— This report describes the entire
strategy, system engineering, design
consideration and project life cycle process
include design, integration, verification, and
validation of the 2023 Tel Aviv University
SAIL-IL team, as part of the RoboBoat
annual contest.

I. INTRODUCTION
SAIL-IL is Tel Aviv University’s Engineering
Department RoboBoat team, competing third
year in a row at the RoboBoat competition and
the only team from the state of Israel. The
RoboBoat program aims to create an
environment that allows students to practice
research and development in the challenging and
evolving world of autonomous vessels. This
year the mission was to continue last year work
and develop the program further with new tasks.

The objective was to develop a fully
autonomous ASV (Autonomous Surface
Vehicle) to operate autonomously under
various missions including obstacle avoiding
route, obstacle detection and classification,
platform control and localization. The
development process was based on agile
development due to the tight constraints of the
project and uncertainties. It required an
ongoing planning and execution method and
integration between multidisciplinary teams
and various sub-systems.

II. COMPETITION STRATEGY
This year we focused on improving and
further developing of the system based on
conclusions from last year work. The
beginning of the development process focused
on system engineering process, understanding
the requirements from the operational concept
as well as internal requirements related to last
year conclusions and allocating them to the
various sub-systems as well as to the related
teams. The team focused on the ability to add

1 See reference 1

more capabilities to the current system to be
adaptable to new missions and requirements.
We began by prioritizing the autonomous
state machine along with the navigation
systems abilities. We see these items as the
core of the ASV and as such, we devoted the
most attention to these parameters. We
implemented new, complex, and more
accurate navigation methods. The water
cannon was improved significantly with a
new servo-based operating system allowing
the ASV to aim the cannon without needing to
reposition itself entirely. The ball cannon was
designed an implemented from scratch, with
simplicity and effectiveness in mind. The
docking missing was initially implemented by
training our neural network but later switched
to an image-processing algorithm for accurate
detection of various docking stations. The
“Ocean Cleanup” task in which the ASV must
detect an active underwater pinger and collect
racquetballs from the ocean floor will not be
attempted, this was decided based upon the
abilities and timeframes of the tasks at hand
for each team.

All tasks are based on recognizing and
classifying objects and have similar
manoeuvrability requirements. The entire
software architecture is based on ROS (Robot
Operating System) framework1. Add to this
that the architecture is loosely coupled
between the various sub-systems allow
parallel and scalable development (for
example obstacle avoidance using Computer
Vision and LIDAR in case one was not
sufficient) as well as sub-system pairs
integrations. Another advantage of ROS was
noticed when the shore station was connected
to the ASV via wireless network thus
eliminating the need to write Server-Client
infrastructure from scratch. To lower risks and
mitigate the development all off-the-shelf
components integrated in the system are

Tel Aviv University SAIL-IL

2

compatible with ROS and has built-in SDK’s.
This allowed the teams to focus on algorithm
and system software development.

A. Navigate the Panama Canal
To demonstrate basic autonomous capabilities,
the navigation task is mandatory and must be
completed first. To accomplish this task the
ASV should identify both gates and navigate
through them, keeping linear course. Preparing
for this task allowed us to develop and improve
all the basic capabilities such as object
detection, localization, control, and path
planning. In addition, it allowed us to test the
stability and reliability of the trimaran hull.
B. Magellan’s Route
The obstacle channel requires the ASV to
identify the next gate and pass through it
without hitting obstacle and gate buoys. This
task requires updating the path continually
while keeping the ASV in a curvy lane. Using
stereo lab camera with 120˚ FOV, the buoys are
detected and classified. Once the nearest set of
buoys detected, the ASV will navigate to the
mean point between them. Practically, the
course is divided into segments which makes
the path planning easier, as only one point is
targeted and less obstacles should be identified
at once, allowing for better error correction.

C. Beaching & Inspecting Turtle Nests
The docking task requires the ASV to
recognize docking stations based upon their
colors and dock at the desired station while
counting and reporting the number of “turtles”
at the “nest” to the on-shore control station.
The image-processing algorithm uses the data
from the ZED-Camera to determine the layout
of the stations.

D. Northern Passage Challenge
The ASV must pass through a set of buoys,
identify the turn-around marker and maneuver
around the marker and back through the buoys
in the opposite direction through which it
entered the task. The ASV uses the LiDAR and
CV to identify the task and the state-machine

sets the correct algorithm for the desired
maneuvers.

E. Feed the Fish – Ball Cannon
This task requires identifying a target with three
buckets and firing three balls, one into each of
the buckets. This demonstrates the ASV’s
ability to sense and interact with its environment
showing precise control, aiming and hull
stability as the ASV should relatively stay in
place. The ball cannon was designed,
implemented, and tested in various conditions.
The cannon has three barrels each loaded with a
single racquetball and released by a solenoid-
based propulsion system.

F. Ponce de Leon – Water Cannon
This task requires identifying a target and filling
a tank until the ball reaches the marked line. It
demonstrates precise control, aiming and hull
stability as the ASV should relatively stay in
place. The water cannon from the 2022 team
was improved with a servo-based control
system to aim the pitch and angle of the cannon.
An improved detection and aiming algorithm
was implemented.

G. Explore the Coral Reef
This task requires the ASV to autonomously
navigate back to the starting point of the mission
while avoiding all obstacles on the way. The
state-machine recognizes the completion of all
the tasks and activates the return-to-home
algorithm.

III. DESIGN CREATIVITY
In the struggling 2023 market, we were unable to
raise funds as done in previous years. With a very
limited budget we were able to acquire few new
components in order to improve the ASV from the
2022 model. Many of the improvements were
completed in-house. We performed a cost benefit
analysis on each design component to best utilize
our very limited budget.

A. Hull & Propulsion Design
This year’s model uses the same hull design of
the 2022 model which is based on the trimaran
design with two azimuth stern thrusters at 90˚

Tel Aviv University SAIL-IL

3

and one bow thruster embedded into the center
hull. This allows the “crab-like” sailing which
is useful for avoiding obstacles and
maneuvering at low speeds. As most of the
center hull is placed underwater, most of the
weight is centralized thus allows less pitching.
Furthermore, stability is gained also from
submerging the side hulls and creating a
predictable increase in righting moment. To
meet this requirement, the vessel has a
symmetrical design.

The hulls are made from foamed
polystyrene, which was milled with a CNC
machine. Foamed polystyrene was chosen due
to its lightweight and ability to bear strikes.
After producing the desired shape of the hull, it
was coated with fiberglass, carbon fiber, and
epoxy to keep it sealed and stiff. The deck of the
ASV is made from layers of birch wood. To
ensure the electronic systems on the ASV are
cooled properly, the electronic box placed on
deck is cooled by using a heat sink which are
placed under the wooden deck and create and
ideal convection.

B. Computer Vision
1. AI Interface Algorithm
For object detection we decided to use the real-
time object detection algorithm model
YOLOv4-tiny2, which offers a good balance
between speed and accuracy. The model was
trained and deployed via darknet framework,
which enables integration of the model with the
rest of the system through ROS3.

2. AI Training
To create our custom trained model, we
assembled a dataset of the required objects as
detailed in the competition rules. The dataset
was composed of pictures from a variety of
sources, including previous competitions and
pictures we staged ourselves during test runs in
the field. The dataset was then expanded by
creating augmentation and different variations to
simulate variance in angle, exposure, saturation,

2 See reference 2
3 See appendix B.1
4 See appendix B.2

brightness, noise, etc. The dataset was split into
three different sets: training set (70%),
validation set (20%) and testing set (10%).

3. Deployment
After the model was trained, it was then
integrated into the system such that it would
process live images from the camera and
augment them with bounding boxes. This data
stream is fused with the camera’s pointcloud to
create a marker array detailing type, relative
location, and certainty of detected objects.4

C. Range Estimation
As part of last year's conclusions, we planned to
fuse the data from the stereo camera and the
LiDAR system. The stereo camera is used to
classify obstacles in the close surrounding and
the LiDAR is used for both detecting obstacles
from further range and improving the accuracy
of the object range estimation. Throughout the
work, we understood that we can get even more
information by separating the two sensors’ data
collecting and processing. Hence, we decided to
use the LiDAR to generate Laser Scan data for
the navigation process and SLAM5 (Hector)6.

The LiDAR used is the InnovizOne LiDAR
which is a solid-state sensor with 115˚x25˚ FOV
and up to 250m Detection Range.

D. Localization
The MTI 680 INS by XSENS provides IMU
and GNSS capabilities. The device is first
configured to the team’s needs. Using a
provided software, parameters such as data
type, data rates, signal to collect and more, are
set. The raw data is processed using XSENS’s
ROS driver and the product is published to the
system for further interpretation by other units.

Navigation unit utilizes GNSS and IMU
data to determine the boat’s location.

Control unit utilizes IMU data to allow
precise motors control as determined by the
navigation unit.

5 See reference 3
6 See appendix B.3

Tel Aviv University SAIL-IL

4

Sensors unit utilizes IMU data to create a
SLAM map.

E. Path Planning
First, the sensors team creates the SLAM map
of the environment, using the G-mapping
which is an open-source algorithm for building
maps of indoor environments using a mobile
robot equipped with a range sensor, such as a
laser scanner. We take the SLAM map and
send goal points to the start of each mission
starting from Mission #1, where the ASV will
navigate to autonomously using the
“move_base” method, which is a navigation
stack in the Robot Operating System (ROS)
that provides a robust and flexible way to move
a mobile robot from one place to another. The
“move_base” package consists of several ROS
nodes that work together to plan and execute
robot motion. After we reach the goal points,
the relevant mission code will begin executing,
and by relying on the information received
from the sensors in real time, [camera and the
LiDAR], and by sending the needed velocities
(of the goal points inside the mission) to the
control team, we are able to execute the
mission as desired.

F. Control
Nvidia Jetson AGX Orin is used as a Controller
that receives angular and linear velocity
according to data from different sensors (such as
INS, camera, etc.). Linear velocity is extracted
from the INS data by integration of the
accelerations in different axes. In addition, the
INS provides measurements of the changes in
angles in two axes, which enables the calculation
of the angular velocity. For the thrust
configuration, BlueRobotics datasheet was used
to establish the momentum generated by the
engines in respect to Pulse Width Modulation
(PWM) and voltage that are provided through
Arduino Nano board.

G. Water Cannon

7 See appendix B.6
8 See appendix B.7

A cannon was designed based on reverse
engineering of an RC jet-ski waterjet system.
The following design7 enables to deliver large
amounts of water. The cannon has two main
stages, called First Stage and Second Stage,
where propellers are set in a water leak proof
enclosure and driven by a shaft connected to a
brushless motor. This brushless motor can rotate
at very high RPM (Max. 40,560RPM) at voltage
of 12V. It is located on the bow, above the
camera and LiDAR on a variable degree adapter.

To obtain the task, the target is identified via
the computer vison system described above. By
conducting several experiments, we were able to
determine the angle of the cannon8, the right
R.P.M and the distance from the target to fill the
tank in the most efficient way. The cannon
shoots in specific time intervals and readjusts the
boat’s location and the cannon’s R.P.M
according to the target’s updated location. This
strategy was chosen to avoid the use of complex
computer vision and delicate angle changes.

H. Autonomy
The autonomous function of the ASV is
governed by a state machine9, managing the
flow and transition between competition
tasks, and monitoring the various onboard
systems to detect and handle hazards.

Provided that all start-up checks
have passed, and we have successfully
reached our desired starting point (e.g., 6 ft
from the mandatory navigation channel),
the ASV transitions to autonomous mode.
In this mode, the state reflects the current
task, with the basic flow of: (a) locate task
starting point (for example, gate buoys). (b)
perform task; More complex tasks, such as
the Water Blast, are divided into subtasks,
each represented by its own state. (c) Move
to next task according to our competition
strategy; location is predefined using the
provided course configuration. In addition
to the regular flow, there are flows
dedicated to hazard handling and recovery,
for example in the case of a malfunctioning

9 See appendix B.8

Tel Aviv University SAIL-IL

5

sensor. Finally, there is a general "return to
home" state.

For implementing the state
machine, we looked for a framework that
natively supports integration with ROS,
since the state machine should
communicate with the other ASV
components over a distributed ROS
network. As the state machine is a new
addition to the ASV, we did not have a
previous implementation to build on, and it
was important for us to focus our efforts on
developing the state machine itself rather
than on drivers, APIs, or possible
compatibility issues. Additionally, we
preferred tools that allow for testing and
simulation, in both isolated and real-world
environments, with relative simplicity.

Following initial difficulties with
Gazebo, we decided to use Stateflow and
Simulink from MathWorks, who also
kindly offered us guidance through the first
steps of the project. Stateflow supports
many features for state machine design,
including global variables, code and
graphical functions, timeout-based state
transitions and more, all in a graphical
interface. This enabled us to focus on the
underlying logic and design a more robust
state machine, that maintains autonomous
control for as long as possible. Moreover,
the MathWorks ecosystem includes a
complete ROS toolbox that can generate
C++ code for a ROS node running our state
machine. Besides significantly reducing
coding time, running on C++ is of critical
importance, since our state machine is
intended to be run on an Nvidia Jetson
Xavier NX and is required to operate in
real-time.

I. Communication
For the physical network, we used a
communication switchboard, which all the ASV
computers are connected via Ethernet cables
(802.3) and the shore station's computer is

10 See appendix B.9
11 See reference 7

connected via a closed WIFI 2.4Ghz (802.11)
network10.

For software implementation, the
Rosmaster package11 was used. With Rosmaster,
one computer is configured as the master in all
the computers that are connected to the network,
thus all ROS nodes and topics are shared
between all on deck and shore computers12.
Since most of the modules on the ASV already
use ROS as their platform to publish
information, the connection and integration
were immediate.

A communication package was coded
that allows recording sensors’ data, present real-
time data of system health in shore station and
perform emergency shut down.

J. Simulation
The ASV simulator is based on the “gazebo”
simulator, it is a dedicated model for robotic
systems that includes a high level of detail
including physical behaviors such as friction and
buoyancy. In the simulator, we mounted engines
and sensors on the boat model as they exist on
the ASV and performed calibration as it exists in
reality. We built the different routes by modules
of floats and surfaces. The simulator interpolates
data from the simulative sensors according to the
simulated environment in relation to the boat,
the boat performs the entire navigation and
control process as designed, while at the same
time publishes back to the simulator the
commands of the engine that drives the boat in
the simulator. In order to carry out this
connectivity, we created a “Publish” function for
all the sensors and implanted a similar function
in the control code that encrypts the motors'
command after converting to a format [as well
as units] which are suitable for the simulator.

IV. EXPERIMENTAL RESULTS
The very first experiments we conducted
involved reinstating the 2022 model from last
year’s competition. We examined the different
systems during basic lab experimentation and

12 See appendix B.10

Tel Aviv University SAIL-IL

6

determined the necessary improvements and
adjustments.
 After completing the laboratory
experimentations, we completed the first in-
water experiment and test run based upon the
2022 model.
 Multiple in-water tests were done in the
university swimming pool as well as the TLV
Lake while each time testing more advanced
implementations of the various systems as well
as the ASV as whole. The goals of the
experiments were set by the progress of each
team individually as well as the continuously
updated competition guidelines.
 The majority of our experimentations
were conducted in the laboratory, where we
learnt that it is easier and more effective to tackle
issues that arise.
 The final stage of experimentations were
completed using the new simulation software
developed for this purpose.

A. Object Detection
During both lab and field experiments photos of
all obstacles were taken in different environment
conditions to expand database. The system
generates a consistent live data stream of 7
marker types, with stable speeds averaging at 24
FPS, and mean average precision of 86.29%.
This is an improvement of previous year’s CV
team, which achieved identification of 4
obstacle types at mAP of 68%, at higher speeds
of 30 FPS.

B. Path Planner
To verify the correctness of the algorithm
simulations in RVIZ13 and Gazebo were used.
Using simulation allowed parallel development
of the path planner, independent from the
platform and control development. The
characteristics of the platform and the missions’
elements was injected to the simulator. This
allowed easier debugging.

C. Floating Platform

13 See appendix B.11

As the hull was custom made an experiment to
ensure buoyancy and stability was conducted.
The hull was tilted and loaded with weights. We
found that the hull is very much stable in all
directions and can carry up to 30 kg.

D. Communication
As there are multiple computers on deck we used
the rosmaster protocol. In the experiment we
published multiple messages to ensure that all
the computers are subscribed to the relevant
topics and identify the master computer. we
found that all CPUs can communicate and there
is neglected latency in retrieving data. This
allows better control and easy data transferring.

V. ACKNOWLEDGMENTS
We would like to thank Tel Aviv University’s
Faculty of Engineering and to Dean Prof. Noam
Eliaz for allowing us to participate in this unique
project, and for offering us the necessary support and
resources.

Special thanks to Danny Berko and Simcha
Leibovich, our academic directors, and Tel Aviv
University faculty members, who believed in the
project and helped make all our ideas come true.

Thanks to all our professional mentors for
offering a lot of knowledge, experience, and support:
Eitan Avisar, Roi Raich, and Jacob Fainguelernt.
A special thanks to MOVELLA for sponsoring our
project with a XSENSE INU, as well as INNOVIZ
Technologies and Lake TLV.

VI. RFERENCES
1. Morgan Quigley, Brian Gerkey, Ken Conley, Josh
Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob
Wheeler, Andrew Ng,	"ROS: an open-source Robot
Operating System", ICRA workshop on open source
software. Vol. 3. No. 3.2. 2009.
2. Alexey Bochkovskiy, Chien-Yao Wang, Hong-
Yuan Mark Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection”, arXiv:2004.10934,
2020.
3. Robot Mapping course [online], 2013.
4. robot_localization Package Summary, ROS Wiki.
5. Huijuan Wang, Yuan Yu, Quanbo Yuan,
“Application of Dijkstra algorithm in robot path-
planning”, 2011 Second International Conference on

Tel Aviv University SAIL-IL

7

Mechanic Automation and Control Engineering,
2011.
6. dwa_local_planner Package Summary, ROS Wiki.
7. rosmaster Package Summary, ROS Wiki.
8. BlueRobotics T200 specs [online].

Tel Aviv University SAIL-IL

8

Appendix A - Component Specifications

Component Vendor Model/Type Specifications Custom/
Purchased

Cost
[$]

Year of
Purchase

ASV Hull
Form/Platform nanofiber Custom

foamed polystyrene
covered fiberglass,
carbon fiber, and
epoxy.

Custom 2,507 2022

Waterproof
Connectors

MPH
Electrical
Engineering

EKPK 180 G
2538055 outdoor
junction boxes

 Purchased 111 2022

Propulsion BlueRobotics T200 T200 Specs Purchased 210 2022

Power System Fullymax LIPO 14.8V
5000mAh Purchased 144 2022

Power System Fullymax LIPO 14.8V
7500mAh Purchased 212 2022

Power System Fullymax LIPO 18.5V
5750mAh Purchased 206 2022

Power System Fullymax LIPO 7.4V
7500mAh Purchased 123 2021

CPU Nvidia Jetson AGX Orin
Developer Kit

Jetson Orin
Datasheet Sponsored 2021

Motor Controls SeeedStudio PCA9685 PCA specs Purchased 20 2022
Teleoperation Ubiquti Bullet M5 Bullet M5 specs Purchased 115 2021
GNSS/INS Movella XSENS MTi-680 Xsens MTi-680 Purchased 3000 2023

Camera StereoLabs ZED2 Camera specs Purchased 500 2021
LiDAR Innoviz InnovizOne LiDAR specs Sponsored 2022

Water Cannon Custom, self-
production 2022,

2023

Ball Cannon Custom, self-
production 2023

Algorithms

Vision YOLOv4 and
darknet 2022

Localization and
Mapping

Custom based on
Dijkstra, DMW
ROS package and
robot_localization
package

 Custom

2022

Autonomy MathWorks Simulink 2022

Communication Custom based on
rosmaster package 2022

Open-Source
Software ROS 2022

Tel Aviv University SAIL-IL

9

Appendix B

1.

Figure 1 - CV Interface Architecture

2.

Figure 2 - Bounding Boxes / Real-Time Accuracy

3.

Figure 3 - LiDAR Interface Architecture

Pc2l – gets as input the sensor point cloud.
converting it to 2D, filtering the relevant FOV
(angle and height, mainly filtering out the
water), and publishing laser scan message.
Hector SLAM – gets as input the laser scan and
uses it to create an obstacle map (Occupancy

14 See reference 8

Grid) of the environment and to estimate the
boat's movement and its position on the map.

4.

Figure 4 - Localization Interface Architecture

5.

Figure 5 - Momentum vs. PWM14

6.

Figure 6 - Water Cannon Design

Tel Aviv University SAIL-IL

10

7.

Figure 7 - Water Cannon Angle Calculation

8.

Figure 8 - State Machine

9.

Figure 9 – Communication Interface Architecture

10.

Figure 10 - System Deployment

11.

Figure 11 - RVIZ Simulation

12.

Figure 12 - Control Interface Architecture

13.

Figure 13 - Simulation "Gazebo"

14.

Figure 14 - Ball Canon Mount

Tel Aviv University SAIL-IL

11

15.

Figure 15 – Water Cannon Mount

Tel Aviv University SAIL-IL

12

Appendix C – System Architecture

Figure 16 System architecture

Tel Aviv University SAIL-IL

13

Figure 17 - System Block Diagram

Figure 18 - System Modules

