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TAU SAIL-IL RoboBoat 2023 Technical Design Review 

SAIL-IL Team, Tel Aviv University, Tel Aviv, Israel 

Abstract— This report describes the entire 
strategy, system engineering, design 
consideration and project life cycle process 
include design, integration, verification, and 
validation of the 2023 Tel Aviv University 
SAIL-IL team, as part of the RoboBoat 
annual contest. 
 
I. INTRODUCTION 
SAIL-IL is Tel Aviv University’s Engineering 
Department RoboBoat team, competing third 
year in a row at the RoboBoat competition and 
the only team from the state of Israel. The 
RoboBoat program aims to create an 
environment that allows students to practice 
research and development in the challenging and 
evolving world of autonomous vessels. This 
year the mission was to continue last year work 
and develop the program further with new tasks. 

The objective was to develop a fully 
autonomous ASV (Autonomous Surface 
Vehicle) to operate autonomously under 
various missions including obstacle avoiding 
route, obstacle detection and classification, 
platform control and localization. The 
development process was based on agile 
development due to the tight constraints of the 
project and uncertainties. It required an 
ongoing planning and execution method and 
integration between multidisciplinary teams 
and various sub-systems. 
 
II. COMPETITION STRATEGY  
This year we focused on improving and 
further developing of the system based on 
conclusions from last year work. The 
beginning of the development process focused 
on system engineering process, understanding 
the requirements from the operational concept 
as well as internal requirements related to last 
year conclusions and allocating them to the 
various sub-systems as well as to the related 
teams. The team focused on the ability to add 
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more capabilities to the current system to be 
adaptable to new missions and requirements. 
We began by prioritizing the autonomous 
state machine along with the navigation 
systems abilities. We see these items as the 
core of the ASV and as such, we devoted the 
most attention to these parameters. We 
implemented new, complex, and more 
accurate navigation methods. The water 
cannon was improved significantly with a 
new servo-based operating system allowing 
the ASV to aim the cannon without needing to 
reposition itself entirely. The ball cannon was 
designed an implemented from scratch, with 
simplicity and effectiveness in mind. The 
docking missing was initially implemented by 
training our neural network but later switched 
to an image-processing algorithm for accurate 
detection of various docking stations. The 
“Ocean Cleanup” task in which the ASV must 
detect an active underwater pinger and collect 
racquetballs from the ocean floor will not be 
attempted, this was decided based upon the 
abilities and timeframes of the tasks at hand 
for each team. 

All tasks are based on recognizing and 
classifying objects and have similar 
manoeuvrability requirements. The entire 
software architecture is based on ROS (Robot 
Operating System) framework1. Add to this 
that the architecture is loosely coupled 
between the various sub-systems allow 
parallel and scalable development (for 
example obstacle avoidance using Computer 
Vision and LIDAR in case one was not 
sufficient) as well as sub-system pairs 
integrations. Another advantage of ROS was 
noticed when the shore station was connected 
to the ASV via wireless network thus 
eliminating the need to write Server-Client 
infrastructure from scratch. To lower risks and 
mitigate the development all off-the-shelf 
components integrated in the system are 
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compatible with ROS and has built-in SDK’s. 
This allowed the teams to focus on algorithm 
and system software development. 
 
A. Navigate the Panama Canal 
To demonstrate basic autonomous capabilities, 
the navigation task is mandatory and must be 
completed first. To accomplish this task the 
ASV should identify both gates and navigate 
through them, keeping linear course. Preparing 
for this task allowed us to develop and improve 
all the basic capabilities such as object 
detection, localization, control, and path 
planning. In addition, it allowed us to test the 
stability and reliability of the trimaran hull. 
B. Magellan’s Route 
The obstacle channel requires the ASV to 
identify the next gate and pass through it 
without hitting obstacle and gate buoys. This 
task requires updating the path continually 
while keeping the ASV in a curvy lane. Using 
stereo lab camera with 120˚ FOV, the buoys are 
detected and classified. Once the nearest set of 
buoys detected, the ASV will navigate to the 
mean point between them. Practically, the 
course is divided into segments which makes 
the path planning easier, as only one point is 
targeted and less obstacles should be identified 
at once, allowing for better error correction. 
 
C. Beaching & Inspecting Turtle Nests 
The docking task requires the ASV to 
recognize docking stations based upon their 
colors and dock at the desired station while 
counting and reporting the number of “turtles” 
at the “nest” to the on-shore control station. 
The image-processing algorithm uses the data 
from the ZED-Camera to determine the layout 
of the stations. 
 
D. Northern Passage Challenge 
The ASV must pass through a set of buoys, 
identify the turn-around marker and maneuver 
around the marker and back through the buoys 
in the opposite direction through which it 
entered the task. The ASV uses the LiDAR and 
CV to identify the task and the state-machine 

sets the correct algorithm for the desired 
maneuvers. 
 
E. Feed the Fish – Ball Cannon 
This task requires identifying a target with three 
buckets and firing three balls, one into each of 
the buckets. This demonstrates the ASV’s 
ability to sense and interact with its environment 
showing precise control, aiming and hull 
stability as the ASV should relatively stay in 
place. The ball cannon was designed, 
implemented, and tested in various conditions. 
The cannon has three barrels each loaded with a 
single racquetball and released by a solenoid-
based propulsion system. 
 
F. Ponce de Leon – Water Cannon 
This task requires identifying a target and filling 
a tank until the ball reaches the marked line. It 
demonstrates precise control, aiming and hull 
stability as the ASV should relatively stay in 
place. The water cannon from the 2022 team 
was improved with a servo-based control 
system to aim the pitch and angle of the cannon. 
An improved detection and aiming algorithm 
was implemented. 
 
G. Explore the Coral Reef 
This task requires the ASV to autonomously 
navigate back to the starting point of the mission 
while avoiding all obstacles on the way. The 
state-machine recognizes the completion of all 
the tasks and activates the return-to-home 
algorithm. 
 
III. DESIGN CREATIVITY  
In the struggling 2023 market, we were unable to 
raise funds as done in previous years. With a very 
limited budget we were able to acquire few new 
components in order to improve the ASV from the 
2022 model. Many of the improvements were 
completed in-house. We performed a cost benefit 
analysis on each design component to best utilize 
our very limited budget. 
 
A. Hull & Propulsion Design  
This year’s model uses the same hull design of 
the 2022 model which is based on the trimaran 
design with two azimuth stern thrusters at 90˚ 
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and one bow thruster embedded into the center 
hull. This allows the “crab-like” sailing which 
is useful for avoiding obstacles and 
maneuvering at low speeds. As most of the 
center hull is placed underwater, most of the 
weight is centralized thus allows less pitching. 
Furthermore, stability is gained also from 
submerging the side hulls and creating a 
predictable increase in righting moment. To 
meet this requirement, the vessel has a 
symmetrical design. 

The hulls are made from foamed 
polystyrene, which was milled with a CNC 
machine. Foamed polystyrene was chosen due 
to its lightweight and ability to bear strikes. 
After producing the desired shape of the hull, it 
was coated with fiberglass, carbon fiber, and 
epoxy to keep it sealed and stiff. The deck of the 
ASV is made from layers of birch wood. To 
ensure the electronic systems on the ASV are 
cooled properly, the electronic box placed on 
deck is cooled by using a heat sink which are 
placed under the wooden deck and create and 
ideal convection. 
 
B. Computer Vision  
1. AI Interface Algorithm 
For object detection we decided to use the real-
time object detection algorithm model 
YOLOv4-tiny2, which offers a good balance 
between speed and accuracy. The model was 
trained and deployed via darknet framework, 
which enables integration of the model with the 
rest of the system through ROS3. 
 
2. AI Training 
To create our custom trained model, we 
assembled a dataset of the required objects as 
detailed in the competition rules. The dataset 
was composed of pictures from a variety of 
sources, including previous competitions and 
pictures we staged ourselves during test runs in 
the field. The dataset was then expanded by 
creating augmentation and different variations to 
simulate variance in angle, exposure, saturation, 

 
2 See reference 2 
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brightness, noise, etc. The dataset was split into 
three different sets:  training set (70%), 
validation set (20%) and testing set (10%). 
 
3. Deployment 
After the model was trained, it was then 
integrated into the system such that it would 
process live images from the camera and 
augment them with bounding boxes. This data 
stream is fused with the camera’s pointcloud to 
create a marker array detailing type, relative 
location, and certainty of detected objects.4 
 
C. Range Estimation  
As part of last year's conclusions, we planned to 
fuse the data from the stereo camera and the 
LiDAR system. The stereo camera is used to 
classify obstacles in the close surrounding and 
the LiDAR is used for both detecting obstacles 
from further range and improving the accuracy 
of the object range estimation. Throughout the 
work, we understood that we can get even more 
information by separating the two sensors’ data 
collecting and processing. Hence, we decided to 
use the LiDAR to generate Laser Scan data for 
the navigation process and SLAM5 (Hector)6.  

The LiDAR used is the InnovizOne LiDAR 
which is a solid-state sensor with 115˚x25˚ FOV 
and up to 250m Detection Range. 

D. Localization  
The MTI 680 INS by XSENS provides IMU 
and GNSS capabilities. The device is first 
configured to the team’s needs. Using a 
provided software, parameters such as data 
type, data rates, signal to collect and more, are 
set. The raw data is processed using XSENS’s 
ROS driver and the product is published to the 
system for further interpretation by other units. 

Navigation unit utilizes GNSS and IMU 
data to determine the boat’s location. 

Control unit utilizes IMU data to allow 
precise motors control as determined by the 
navigation unit. 

5 See reference 3 
6 See appendix B.3 
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Sensors unit utilizes IMU data to create a 
SLAM map. 
 
E. Path Planning 
First, the sensors team creates the SLAM map 
of the environment, using  the G-mapping 
which is  an open-source algorithm for building 
maps of indoor environments using a mobile 
robot equipped with a range sensor, such as a 
laser scanner. We take the SLAM map and 
send goal points to the start of each mission 
starting from Mission #1, where the ASV will 
navigate to autonomously using the 
“move_base” method, which is a navigation 
stack in the Robot Operating System (ROS) 
that provides a robust and flexible way to move 
a mobile robot from one place to another. The 
“move_base” package consists of several ROS 
nodes that work together to plan and execute 
robot motion. After we reach the goal points, 
the relevant mission code will begin executing, 
and by relying on the information received 
from the sensors in real time, [camera and the 
LiDAR], and by sending the needed velocities 
(of the goal points inside the mission) to the 
control team, we are able to execute the 
mission as desired. 

 
F. Control 
Nvidia Jetson AGX Orin is used as a Controller 
that receives angular and linear velocity 
according to data from different sensors (such as 
INS, camera, etc.). Linear velocity is extracted 
from the INS data by integration of the 
accelerations in different axes. In addition, the 
INS provides measurements of the changes in 
angles in two axes, which enables the calculation 
of the angular velocity. For the thrust 
configuration, BlueRobotics datasheet was used  
to establish the momentum generated by the 
engines in respect to Pulse Width Modulation 
(PWM) and voltage that are provided through 
Arduino Nano board. 
 
G. Water Cannon 

 
7 See appendix B.6 
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A cannon was designed based on reverse 
engineering of an RC jet-ski waterjet system. 
The following design7 enables to deliver large 
amounts of water. The cannon has two main 
stages, called First Stage and Second Stage, 
where propellers are set in a water leak proof 
enclosure and driven by a shaft connected to a 
brushless motor. This brushless motor can rotate 
at very high RPM (Max. 40,560RPM) at voltage 
of 12V. It is located on the bow, above the 
camera and LiDAR on a variable degree adapter. 

To obtain the task, the target is identified via 
the computer vison system described above. By 
conducting several experiments, we were able to 
determine the angle of the cannon8, the right 
R.P.M and the distance from the target to fill the 
tank in the most efficient way. The cannon 
shoots in specific time intervals and readjusts the 
boat’s location and the cannon’s R.P.M 
according to the target’s updated location. This 
strategy was chosen to avoid the use of complex 
computer vision and delicate angle changes. 
 
H. Autonomy  
The autonomous function of the ASV is 
governed by a state machine9, managing the 
flow and transition between competition 
tasks, and monitoring the various onboard 
systems to detect and handle hazards. 

Provided that all start-up checks 
have passed, and we have successfully 
reached our desired starting point (e.g., 6 ft 
from the mandatory navigation channel), 
the ASV transitions to autonomous mode. 
In this mode, the state reflects the current 
task, with the basic flow of: (a) locate task 
starting point (for example, gate buoys). (b) 
perform task; More complex tasks, such as 
the Water Blast, are divided into subtasks, 
each represented by its own state. (c) Move 
to next task according to our competition 
strategy; location is predefined using the 
provided course configuration. In addition 
to the regular flow, there are flows 
dedicated to hazard handling and recovery, 
for example in the case of a malfunctioning 

9 See appendix B.8 
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sensor. Finally, there is a general "return to 
home" state. 

For implementing the state 
machine, we looked for a framework that 
natively supports integration with ROS, 
since the state machine should 
communicate with the other ASV 
components over a distributed ROS 
network. As the state machine is a new 
addition to the ASV, we did not have a 
previous implementation to build on, and it 
was important for us to focus our efforts on 
developing the state machine itself rather 
than on drivers, APIs, or possible 
compatibility issues. Additionally, we 
preferred tools that allow for testing and 
simulation, in both isolated and real-world 
environments, with relative simplicity. 

Following initial difficulties with 
Gazebo, we decided to use Stateflow and 
Simulink from MathWorks, who also 
kindly offered us guidance through the first 
steps of the project. Stateflow supports 
many features for state machine design, 
including global variables, code and 
graphical functions, timeout-based state 
transitions and more, all in a graphical 
interface. This enabled us to focus on the 
underlying logic and design a more robust 
state machine, that maintains autonomous 
control for as long as possible. Moreover, 
the MathWorks ecosystem includes a 
complete ROS toolbox that can generate 
C++ code for a ROS node running our state 
machine. Besides significantly reducing 
coding time, running on C++ is of critical 
importance, since our state machine is 
intended to be run on an Nvidia Jetson 
Xavier NX and is required to operate in 
real-time. 
 
I. Communication 
For the physical network, we used a 
communication switchboard, which all the ASV 
computers are connected via Ethernet cables 
(802.3) and the shore station's computer is 
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connected via a closed WIFI 2.4Ghz (802.11) 
network10. 

For software implementation, the 
Rosmaster package11 was used. With Rosmaster, 
one computer is configured as the master in all 
the computers that are connected to the network, 
thus all ROS nodes and topics are shared 
between all on deck and shore computers12. 
Since most of the modules on the ASV already 
use ROS as their platform to publish 
information, the connection and integration 
were immediate. 

A communication package was coded 
that allows recording sensors’ data, present real-
time data of system health in shore station and 
perform emergency shut down. 
 
J. Simulation 
The ASV simulator is based on the “gazebo” 
simulator, it is a dedicated model for robotic 
systems that includes a high level of detail 
including physical behaviors such as friction and 
buoyancy. In the simulator, we mounted engines 
and sensors on the boat model as they exist on 
the ASV and performed calibration as it exists in 
reality. We built the different routes by modules 
of floats and surfaces. The simulator interpolates 
data from the simulative sensors according to the 
simulated environment in relation to the boat, 
the boat performs the entire navigation and 
control process as designed, while at the same 
time publishes back to the simulator the 
commands of the engine that drives the boat in 
the simulator. In order to carry out this 
connectivity, we created a “Publish” function for 
all the sensors and implanted a similar function 
in the control code that encrypts the motors' 
command after converting to a format [as well 
as units] which are suitable for the simulator. 
 
IV. EXPERIMENTAL RESULTS  
The very first experiments we conducted 
involved reinstating the 2022 model from last 
year’s competition. We examined the different 
systems during basic lab experimentation and 

12 See appendix B.10 
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determined the necessary improvements and 
adjustments. 
 After completing the laboratory 
experimentations, we completed the first in-
water experiment and test run based upon the 
2022 model. 
 Multiple in-water tests were done in the 
university swimming pool as well as the TLV 
Lake while each time testing more advanced 
implementations of the various systems as well 
as the ASV as whole. The goals of the 
experiments were set by the progress of each 
team individually as well as the continuously 
updated competition guidelines. 
 The majority of our experimentations 
were conducted in the laboratory, where we 
learnt that it is easier and more effective to tackle 
issues that arise. 
 The final stage of experimentations were 
completed using the new simulation software 
developed for this purpose. 
 
A. Object Detection 
During both lab and field experiments photos of 
all obstacles were taken in different environment 
conditions to expand database. The system 
generates a consistent live data stream of 7 
marker types, with stable speeds averaging at 24 
FPS, and mean average precision of 86.29%. 
This is an improvement of previous year’s CV 
team, which achieved identification of 4 
obstacle types at mAP of 68%, at higher speeds 
of 30 FPS.   
 
B. Path Planner 
To verify the correctness of the algorithm 
simulations in RVIZ13 and Gazebo were used. 
Using simulation allowed parallel development 
of the path planner, independent from the 
platform and control development. The 
characteristics of the platform and the missions’ 
elements was injected to the simulator. This 
allowed easier debugging.  
 
C. Floating Platform 

 
13 See appendix B.11 

As the hull was custom made an experiment to 
ensure buoyancy and stability was conducted. 
The hull was tilted and loaded with weights. We 
found that the hull is very much stable in all 
directions and can carry up to 30 kg.  
 
D. Communication  
As there are multiple computers on deck we used 
the rosmaster protocol. In the experiment we 
published multiple messages to ensure that all 
the computers are subscribed to the relevant 
topics and identify the master computer. we 
found that all CPUs can communicate and there 
is neglected latency in retrieving data. This 
allows better control and easy data transferring. 
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Appendix A - Component Specifications

Component Vendor Model/Type Specifications Custom/ 
Purchased 

Cost 
[$] 

Year of 
Purchase 

ASV Hull 
Form/Platform nanofiber Custom 

foamed polystyrene 
covered fiberglass, 
carbon fiber, and 
epoxy. 

Custom 2,507 2022 

Waterproof 
Connectors 

MPH 
Electrical 
Engineering 

EKPK 180 G 
2538055 outdoor 
junction boxes 

 Purchased 111 2022 

Propulsion BlueRobotics T200 T200 Specs Purchased 210 2022 

Power System Fullymax LIPO 14.8V 
5000mAh  Purchased 144 2022 

Power System Fullymax LIPO 14.8V 
7500mAh  Purchased 212 2022 

Power System Fullymax LIPO 18.5V 
5750mAh  Purchased 206 2022 

Power System Fullymax LIPO 7.4V 
7500mAh  Purchased 123 2021 

CPU Nvidia Jetson AGX Orin 
Developer Kit 

Jetson Orin 
Datasheet Sponsored  2021 

       
Motor Controls SeeedStudio PCA9685 PCA specs Purchased 20 2022 
Teleoperation Ubiquti Bullet M5 Bullet M5 specs Purchased 115 2021 
GNSS/INS Movella XSENS MTi-680 Xsens MTi-680 Purchased 3000 2023 
       
Camera StereoLabs ZED2 Camera specs Purchased 500 2021 
LiDAR Innoviz InnovizOne LiDAR specs Sponsored  2022 

Water Cannon  Custom, self- 
production    2022, 

2023 

Ball Cannon  Custom, self-
production    2023 

Algorithms        

Vision  YOLOv4 and 
darknet    2022 

Localization and 
Mapping  

Custom based on 
Dijkstra, DMW 
ROS package and 
robot_localization 
package 

 Custom  

2022 

Autonomy MathWorks Simulink    2022 

Communication  Custom based on 
rosmaster package    2022 

Open-Source 
Software  ROS    2022 
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Appendix B 
 
 
1. 
 

 
Figure 1 - CV Interface Architecture 

2. 

 
Figure 2 - Bounding Boxes / Real-Time Accuracy 

 
3. 

 
Figure 3 - LiDAR Interface Architecture 

Pc2l – gets as input the sensor point cloud. 
converting it to 2D, filtering the relevant FOV 
(angle and height, mainly filtering out the 
water), and publishing laser scan message. 
Hector SLAM – gets as input the laser scan and 
uses it to create an obstacle map (Occupancy 
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Grid) of the environment and to estimate the 
boat's movement and its position on the map. 
 
4. 

 
Figure 4 - Localization Interface Architecture 

 
5. 

 
Figure 5 - Momentum vs. PWM14 

 
6. 

 
Figure 6 - Water Cannon Design 
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7. 

 
Figure 7 - Water Cannon Angle Calculation 

 
8. 

 
Figure 8 - State Machine 

9. 

 
Figure 9 – Communication Interface Architecture 

 

10. 

 
Figure 10 - System Deployment 

 

 

 

11. 

 
Figure 11 - RVIZ Simulation 

 
12.  

 
Figure 12 - Control Interface Architecture 

 
13. 

 
Figure 13 - Simulation "Gazebo" 

 
14. 

 
Figure 14 - Ball Canon Mount 
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15. 

 
Figure 15 – Water Cannon Mount 
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Appendix C – System Architecture 
 

 
Figure 16 System architecture 
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Figure 17 - System Block Diagram 

 

 

Figure 18 - System Modules 


