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Abstract – The paper describes the 

development of the AUV which our team has 
prepared for RoboSub 2014. The major 
application of the vehicle besides the 
competition is its usage for research and 
development of vision-based navigation and 
control methods. 

I. INTRODUCTION 

Our team has participated in RoboSub twice – 
in 2012 and 2013. Our vehicle is a modification of 
the previous one. 

The vehicle design (fig. 1) is well-proven 
during the last year, so we decided not to make 
essential changes in it. The design was slightly 
refined with a new tool added to perform a 
manipulation task. 

Significant changes were made regarding to the 
software. These changes give a base for future 
transition to more convenient tools, save us time 
during programming and pool tests. Here is a 
short list of the most significant software updates 
compared to the last year: 
 more reliable approach to messaging; 
 refined mission structure; 
 task parameters separation; 
 Gazebo based simulator; 
 segmentation algorithm for vision module; 
 postprocessing tools. 

II. HARDWARE 

A. Frame and housings 

AUV frame is made of polypropylene. 
Housings were manufactured from aluminum and 
oxidized. Pneumatic system compensates the 
water pressure and prevents leaks. 

 

 

Fig. 1. The AUV appearance. 

B. Sensors 

Three sensors are used for navigation in space: 
a depth sensor (DMP331), an inertial module 
(Xsens Mti IMU) and a Doppler velocity log 
(Teledyne RD Instruments Explorer DVL). These 
sensors allow us to control the vehicle in 5 out of 
6 degrees of freedom, which is sufficient to 
accomplish the mission. 

There are also two digital USB cameras (EVS 
VEC-245) on the AUV. One of them is directed 
forward and the other one is directed down. The 
cameras work in 800×600 px mode, 15 fps. 
However only 3-5 fps are used for vision-based 
control. 

There are digital signal processor (DSP, 
Danville’s dsp stack 21369zx) and 3 hydrophones 
are used in the AUV to perform the pinger task. 

Safety sensors are mounted in every waterproof 
housing. A warning message is sent immediately 
to a GUI operator program if one of them is 
activated. 
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C. Actuators 

For successful tasks execution the AUV is 
equipped with pneumatic system for torpedo 
shooting which is located directly above the front 
camera and with system for dropping cargoes 
based on electromagnets. 

A grabber is used for execution of 
manipulation task. The fig. 2 depicts the 
disposition of the front camera, torpedoes and the 
grabber. 

There are 5 thrusters on the AUV: 2 vertical 
ones and 3 horizontal. Thrusters use 24 volts 
Faulhaber motors and polyurethane propellers. 

D. Computers 

Two computers are used for calculations. The 
first one is a single-board computer PC/104-Plus 
with processor Vortex 86DХ (600 MHz, 256 Mb 
RAM). Most of software modules (including a 
mission module) and sensor data processing is 
executed on the computer. The second computer is 
used for image and hydroacoustics processing. It 
uses an Intel Atom D510 1.66 GHz processor and 
1Gb of RAM. 

Fig. 3 shows the structure of the AUV LAN. 
Two computers are connected through a router. 
Other components are joined to them via USB and 
RS-232. Microcontroller for power management 
and peripherals control is linked in a single CAN 
bus with thruster microcontrollers. The bus is 
linked to the computer through a USB-CAN 
bridge. 

E. General construction 

Approximate dimensions of the vehicle: 
1.1×0.5×0.4 meters, weight – 40 kilos.  

The design of the AUV is demonstrated on 
fig. 4. There are housing with electronics in front 
of the AUV and housings with the DVL and the 
battery in the back. 

The inertial unit containing a compass is placed 
in a separate housing located in the upper section 
of the vehicle as far as possible from the thrusters. 
Hydrophones are spaced at three corners and 
located at the bottom in the inner side. 

III. SOFTWARE 

A. Operator software 

Our operator software allows us to control the 
vehicle and to monitor the vehicle status.  

 

 

Fig. 2. CAD drawing of the front part of the 
vehicle. Torpedoes, the front camera and the 

grabber can be seen. 

 

Fig. 3. AUV LAN. 

 

Fig. 4. The AUV CAD model 
(exported to FreeCAD). 
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It connects to the control system via local network 
(connection is established between the router on 
the vehicle board and operator’s laptop via 
Ethernet or Wi-Fi). During development of 
operator software we paid special attention to the 
information from safety sensors such as water 
alarm sensors and battery voltage. 

Besides, the GUI provides the capabilities for 
vehicle remote control, for video module control 
and for receiving images from cameras (images 
are compressed in JPEG format for transmitting 
over the network). 

The operator GUI interface is given in fig. 6. 

B. General structure 

We have used hierarchic structure of control 
system for our vehicle. Each node of this structure 
is implemented as a separate executable module. 
Information transmission between modules 
organized by messaging. 

Our control system structure presented at fig. 5. 
System consists of 10 modules. Mission 

module which defines vehicle actions is placed on 
top of the hierarchy. Regulators module is 
responsible for motion control. Navigation 
module processes the information from navigation 
sensors to provide it to regulators and mission 
module. Other modules exchange data with 
hardware devices. They send commands to 
actuators and process sensor data. 

 

Fig. 5. Control system structure. 

 

C. Module communication framework 

We use an IPC library [1] for communication 
between modules in our control system. There 
were several problems with IPC related to 
necessity of accurate description of each message, 
neat memory management, the usage of C 
interface for message processing, which inevitably 
led to errors. 

Data transfer between modules of control 
system is a common topic and there are some 
means in robotics software frameworks to solve 
this problem. It could be solved via both shared 
memory (e.g. MOOS control system [2], Cornell 
University Team control system [3]), and via 
messaging. We decided to use the second option 
since our current software is based on messaging. 
Among robotics platforms which use messaging 
we have chosen ROS [4] as our future platform – 
its usage is growing intensively, there are 
examples of its use in an AUV specially designed 
for RoboSub (e.g. Bumblbee team [5]). 

Full transition to ROS is a labour-intensive 
process. So, we decided to implement a step-by-
step transition, starting with the declarative 
description of messages in ROS format. We 
developed a program for this, which allows to 
generate a IPC formats end an according C++ 
code for messages described in ROS format.  

We have also developed a library, which 
encapsulates all IPC facilities and simplifies 
programmer’s work in the process of writing or 
alternating modules. 

D. Mission module 

The mission module is located on the top of 
control system hierarchy. It concentrates the 
motion and actions logic of the vehicle.  

The mission consists of separate tasks, which 
are executed in a linear sequence. The order of 
execution is described in the set of configuration 
files. There is a global map that stores information 
about recently found orange stripes. This 
information is used for vehicle positioning before 
starting the next scheduled task. 

Our previous task execution scheme was pretty 
similar to the state machine. This year the set of 
states for each task is explicitly formulated for a 
state machine. We have strictly structured our 
code in accordance with that and developed a 
corresponding object oriented structure. A typical 
action in one of the states is stabilization of the 
vehicle in front of an object in the video frame. 
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Fig. 6. Interface of one of operator GUI sheets.

 

 

Fig. 7. Finite state machine for the shooting task. 

An example of the finite state machine for the 
shooting task is shown in the fig. 7. 

The mission module is implemented in several 
C++ classes, their interaction is shown in fig. 8. 

The Environment class receives and processes 
navigation messages, and also stores the physical 
vehicle parameters (e.g. it stores camera models) 
and information about environment objects used 
by tasks. Tasks can communicate via this class. 
The Environment is the interlayer for interaction 
between mission and lower layers. 

The mission class is designed to create, 
configure and execute each of the tasks. The 
configuration of each task is formed here. Each 
task has a corresponding C++ class. Each of those 
classes uses the state machine implementation for 

process its states. It analyses data from the 
Environment. 

 

Fig. 8. UML class diagram used in the mission. 

A YAML is used for mission configuration 
files description. A tasks reads parameters from 
three sources in the following order: 

1. task.yml 

2. <task_name>.yml 

3. mission.yml 

The task.yml file describes default 
parameters which are common for all tasks. A 
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separate file for each kind of task gives parameters 
common to all instances of tasks of this kind. The 
mission.yml file  contains mission run 
parameters. A task could have about 50 
parameters, this approach allows to decrease the 
size of the main configuration file and to make a 
run setup easier. 

The mission execution time can be essential 
this year. So it’s important to stabilize fast at 
objects of interest. We have added a differential 
component to a vision regulator for that. We have 
adjusted coefficients using our postprocessing 
tools. The fig. 9 depicts a process of stabilization 
at the orange stripe using a new regulator.  

E. Low-level controls 

Regulators is a module which mission module 
communicates with for controlling the AUV 
motion. Regulator interface provides separate 
control for coordinates, roll, depth and heading. 
We use PID-controllers for stabilizations. The 
result of heading control during one of runs is 
shown in fig. 10. 

F. Video module 

The main goal of video module is analyzing 
images taken from cameras and passing 
information about detected objects to mission 
module. Mission sends to video module a list of 
required objects and the number of camera to take 
images from. 

OpenCV library is used for image processing. 
The version 2.4.8 is installed on the vehicle. 

Each detection algorithm usually consists of 
the following parts: 

1. Preprocessing. It's done by applying filters 
or clustering algorithms to correct underwater 
colors, remove noise and small useless details. 
Color correction is done by increasing red channel 
in RGB image. Then three ways of image 
preprocessing are used: median blur, gaussian 
blur, SEEDS superpixel segmentation. Median 
and gaussian filters are implemented in OpenCV. 
We have developed a custom SEEDS 
implementation following [6]. 

2. Color binarization. The source image is 
translated to HSV color space and the binarization 
is executed by hue and saturation threshold.  

3. Contour analysis. It is based on OpenCV 
implementations of Suzuki-Abe algorithm and 
polygon approximation, a custom Hough 
implementation is also used.  

We’ve calibrated our cameras using OpenCV 
calibration tools. A chessboard of 1×1 meter size 
was made. The chessboard is positioned so that it 
lies entirely in the field of vehicle camera view, 
the camera takes images. Then the images are 
given to the calibration program which detects 
angles on the chessboard and calculates camera 
parameters, such as focal distance and radial, 
tangential distortion factors. All this parameters 
are considered in our camera model which helps 
us to calculate the heading to the detected object 
and determine distance to this object more 
accurately. 

G. Implementation 

C++ programming language is used in our 
vehicle control system software implementation. 
Some modules significantly depend on C++11 
standard features so we were to update GNU 
compiler to 4.8 version.  

Boost libraries provides us with some useful 
extensions that we apply to, for example, our 
thread pool implementation. We also need it in 
command line interface implementation for our 
tools. 

Cmake intelligent build system is used to build 
our system. Bash scripts are used to launch it. 

We have 6 software engineers in our team. Git 
version control system and central private 
repository on bitbucket.org are chosen to organize 
their team development process. 

IV. TESTS AND TRIALS 

A. Simulator 

Our simulation system was implemented using 
Gazebo simulation tools and API. 

Gazebo uses Protobufs for interprocess 
communication, so we use adapter tool which 
converts messages from our internal format to 
protobufs. This approach allows us to use the 
same software with both simulator and real 
devices. 

Simulation system GUI shown in fig. 11.
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Fig. 9. Position of the orange path center in the frame. The distance is shown in pixels. X axis shows time 
(in seconds). The center of the frame is (200, 150). Straight line on “row” is due to the fact that the path does 

not fit into the frame completely. 

 

Fig. 10. Change of the programmed and the actual heading during one of runs. The heading is measured in 
radians. X axis shows time (in seconds).

 

Fig. 11. Gazebo GUI.
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B. Pool tests 

One of the most essential parts in vehicle 
preparation is testing in pool. 

This process is required to detect hardware 
failures, produce some components setup and find 
out unexpected bugs, that haven't been appeared 
earlier. 

We started to test our vehicle in pool at the 
beginning of June in our campus swimming pool 
(see fig. 12). 

We use text logs to debug our software. It Is 
human-readable could be fluently analyzed 
without special software. We have an agreement 
of a “basic form” of the log file. It is a CSV-like 
format with series of numbers. We have 
developed log_lot – a Python utility using 
Matplotlib to show charts for series in a basic 
form log. Log_plot has more then 10 parameters 
allowing to point out a given period of time, axis 
names etc. It receives the data from the standard 
input. 

We also have a log_merge utility for merging 
to logs form two separate modules. 

The mission log is not in the basic form since 
in contains text messages for human analysis. A 
simple run on the file with regular expressions can 
extract the specified info and represent in is the 
basic form. 

Since all of our utilities use standard input and 
output, Unix pipes can be used for rapid log 
analysis. For example: 
ssh user@auv cat /home/run/mission.log | 
log_parser.py | log_plot.py row col 

 

Fig. 12. FEFU pool with the AUV 
during a pool test. 
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