

1

FEFU RoboSub 2014
autonomous underwater vehicle

Roman Babaev, Andrey Gatcenko1, Vladislav Goy, Mark Guliaev,
Andrey Sakharov, Gleb Shestopalov, Maksim Sporyshev, Anton Tolstonogov

Far Eastern Federal University,

Vladivostok, Russia
1gatsenko93@mail.ru

Abstract – The paper describes the

development of the AUV which our team has
prepared for RoboSub 2014. The major
application of the vehicle besides the
competition is its usage for research and
development of vision-based navigation and
control methods.

I. INTRODUCTION

Our team has participated in RoboSub twice –
in 2012 and 2013. Our vehicle is a modification of
the previous one.

The vehicle design (fig. 1) is well-proven
during the last year, so we decided not to make
essential changes in it. The design was slightly
refined with a new tool added to perform a
manipulation task.

Significant changes were made regarding to the
software. These changes give a base for future
transition to more convenient tools, save us time
during programming and pool tests. Here is a
short list of the most significant software updates
compared to the last year:
 more reliable approach to messaging;
 refined mission structure;
 task parameters separation;
 Gazebo based simulator;
 segmentation algorithm for vision module;
 postprocessing tools.

II. HARDWARE

A. Frame and housings

AUV frame is made of polypropylene.
Housings were manufactured from aluminum and
oxidized. Pneumatic system compensates the
water pressure and prevents leaks.

Fig. 1. The AUV appearance.

B. Sensors

Three sensors are used for navigation in space:
a depth sensor (DMP331), an inertial module
(Xsens Mti IMU) and a Doppler velocity log
(Teledyne RD Instruments Explorer DVL). These
sensors allow us to control the vehicle in 5 out of
6 degrees of freedom, which is sufficient to
accomplish the mission.

There are also two digital USB cameras (EVS
VEC-245) on the AUV. One of them is directed
forward and the other one is directed down. The
cameras work in 800×600 px mode, 15 fps.
However only 3-5 fps are used for vision-based
control.

There are digital signal processor (DSP,
Danville’s dsp stack 21369zx) and 3 hydrophones
are used in the AUV to perform the pinger task.

Safety sensors are mounted in every waterproof
housing. A warning message is sent immediately
to a GUI operator program if one of them is
activated.

2

C. Actuators

For successful tasks execution the AUV is
equipped with pneumatic system for torpedo
shooting which is located directly above the front
camera and with system for dropping cargoes
based on electromagnets.

A grabber is used for execution of
manipulation task. The fig. 2 depicts the
disposition of the front camera, torpedoes and the
grabber.

There are 5 thrusters on the AUV: 2 vertical
ones and 3 horizontal. Thrusters use 24 volts
Faulhaber motors and polyurethane propellers.

D. Computers

Two computers are used for calculations. The
first one is a single-board computer PC/104-Plus
with processor Vortex 86DХ (600 MHz, 256 Mb
RAM). Most of software modules (including a
mission module) and sensor data processing is
executed on the computer. The second computer is
used for image and hydroacoustics processing. It
uses an Intel Atom D510 1.66 GHz processor and
1Gb of RAM.

Fig. 3 shows the structure of the AUV LAN.
Two computers are connected through a router.
Other components are joined to them via USB and
RS-232. Microcontroller for power management
and peripherals control is linked in a single CAN
bus with thruster microcontrollers. The bus is
linked to the computer through a USB-CAN
bridge.

E. General construction

Approximate dimensions of the vehicle:
1.1×0.5×0.4 meters, weight – 40 kilos.

The design of the AUV is demonstrated on
fig. 4. There are housing with electronics in front
of the AUV and housings with the DVL and the
battery in the back.

The inertial unit containing a compass is placed
in a separate housing located in the upper section
of the vehicle as far as possible from the thrusters.
Hydrophones are spaced at three corners and
located at the bottom in the inner side.

III. SOFTWARE

A. Operator software

Our operator software allows us to control the
vehicle and to monitor the vehicle status.

Fig. 2. CAD drawing of the front part of the
vehicle. Torpedoes, the front camera and the

grabber can be seen.

Fig. 3. AUV LAN.

Fig. 4. The AUV CAD model
(exported to FreeCAD).

3

It connects to the control system via local network
(connection is established between the router on
the vehicle board and operator’s laptop via
Ethernet or Wi-Fi). During development of
operator software we paid special attention to the
information from safety sensors such as water
alarm sensors and battery voltage.

Besides, the GUI provides the capabilities for
vehicle remote control, for video module control
and for receiving images from cameras (images
are compressed in JPEG format for transmitting
over the network).

The operator GUI interface is given in fig. 6.

B. General structure

We have used hierarchic structure of control
system for our vehicle. Each node of this structure
is implemented as a separate executable module.
Information transmission between modules
organized by messaging.

Our control system structure presented at fig. 5.
System consists of 10 modules. Mission

module which defines vehicle actions is placed on
top of the hierarchy. Regulators module is
responsible for motion control. Navigation
module processes the information from navigation
sensors to provide it to regulators and mission
module. Other modules exchange data with
hardware devices. They send commands to
actuators and process sensor data.

Fig. 5. Control system structure.

C. Module communication framework

We use an IPC library [1] for communication
between modules in our control system. There
were several problems with IPC related to
necessity of accurate description of each message,
neat memory management, the usage of C
interface for message processing, which inevitably
led to errors.

Data transfer between modules of control
system is a common topic and there are some
means in robotics software frameworks to solve
this problem. It could be solved via both shared
memory (e.g. MOOS control system [2], Cornell
University Team control system [3]), and via
messaging. We decided to use the second option
since our current software is based on messaging.
Among robotics platforms which use messaging
we have chosen ROS [4] as our future platform –
its usage is growing intensively, there are
examples of its use in an AUV specially designed
for RoboSub (e.g. Bumblbee team [5]).

Full transition to ROS is a labour-intensive
process. So, we decided to implement a step-by-
step transition, starting with the declarative
description of messages in ROS format. We
developed a program for this, which allows to
generate a IPC formats end an according C++
code for messages described in ROS format.

We have also developed a library, which
encapsulates all IPC facilities and simplifies
programmer’s work in the process of writing or
alternating modules.

D. Mission module

The mission module is located on the top of
control system hierarchy. It concentrates the
motion and actions logic of the vehicle.

The mission consists of separate tasks, which
are executed in a linear sequence. The order of
execution is described in the set of configuration
files. There is a global map that stores information
about recently found orange stripes. This
information is used for vehicle positioning before
starting the next scheduled task.

Our previous task execution scheme was pretty
similar to the state machine. This year the set of
states for each task is explicitly formulated for a
state machine. We have strictly structured our
code in accordance with that and developed a
corresponding object oriented structure. A typical
action in one of the states is stabilization of the
vehicle in front of an object in the video frame.

4

Fig. 6. Interface of one of operator GUI sheets.

Fig. 7. Finite state machine for the shooting task.

An example of the finite state machine for the
shooting task is shown in the fig. 7.

The mission module is implemented in several
C++ classes, their interaction is shown in fig. 8.

The Environment class receives and processes
navigation messages, and also stores the physical
vehicle parameters (e.g. it stores camera models)
and information about environment objects used
by tasks. Tasks can communicate via this class.
The Environment is the interlayer for interaction
between mission and lower layers.

The mission class is designed to create,
configure and execute each of the tasks. The
configuration of each task is formed here. Each
task has a corresponding C++ class. Each of those
classes uses the state machine implementation for

process its states. It analyses data from the
Environment.

Fig. 8. UML class diagram used in the mission.

A YAML is used for mission configuration
files description. A tasks reads parameters from
three sources in the following order:

1. task.yml

2. <task_name>.yml

3. mission.yml

The task.yml file describes default
parameters which are common for all tasks. A

5

separate file for each kind of task gives parameters
common to all instances of tasks of this kind. The
mission.yml file contains mission run
parameters. A task could have about 50
parameters, this approach allows to decrease the
size of the main configuration file and to make a
run setup easier.

The mission execution time can be essential
this year. So it’s important to stabilize fast at
objects of interest. We have added a differential
component to a vision regulator for that. We have
adjusted coefficients using our postprocessing
tools. The fig. 9 depicts a process of stabilization
at the orange stripe using a new regulator.

E. Low-level controls

Regulators is a module which mission module
communicates with for controlling the AUV
motion. Regulator interface provides separate
control for coordinates, roll, depth and heading.
We use PID-controllers for stabilizations. The
result of heading control during one of runs is
shown in fig. 10.

F. Video module

The main goal of video module is analyzing
images taken from cameras and passing
information about detected objects to mission
module. Mission sends to video module a list of
required objects and the number of camera to take
images from.

OpenCV library is used for image processing.
The version 2.4.8 is installed on the vehicle.

Each detection algorithm usually consists of
the following parts:

1. Preprocessing. It's done by applying filters
or clustering algorithms to correct underwater
colors, remove noise and small useless details.
Color correction is done by increasing red channel
in RGB image. Then three ways of image
preprocessing are used: median blur, gaussian
blur, SEEDS superpixel segmentation. Median
and gaussian filters are implemented in OpenCV.
We have developed a custom SEEDS
implementation following [6].

2. Color binarization. The source image is
translated to HSV color space and the binarization
is executed by hue and saturation threshold.

3. Contour analysis. It is based on OpenCV
implementations of Suzuki-Abe algorithm and
polygon approximation, a custom Hough
implementation is also used.

We’ve calibrated our cameras using OpenCV
calibration tools. A chessboard of 1×1 meter size
was made. The chessboard is positioned so that it
lies entirely in the field of vehicle camera view,
the camera takes images. Then the images are
given to the calibration program which detects
angles on the chessboard and calculates camera
parameters, such as focal distance and radial,
tangential distortion factors. All this parameters
are considered in our camera model which helps
us to calculate the heading to the detected object
and determine distance to this object more
accurately.

G. Implementation

C++ programming language is used in our
vehicle control system software implementation.
Some modules significantly depend on C++11
standard features so we were to update GNU
compiler to 4.8 version.

Boost libraries provides us with some useful
extensions that we apply to, for example, our
thread pool implementation. We also need it in
command line interface implementation for our
tools.

Cmake intelligent build system is used to build
our system. Bash scripts are used to launch it.

We have 6 software engineers in our team. Git
version control system and central private
repository on bitbucket.org are chosen to organize
their team development process.

IV. TESTS AND TRIALS

A. Simulator

Our simulation system was implemented using
Gazebo simulation tools and API.

Gazebo uses Protobufs for interprocess
communication, so we use adapter tool which
converts messages from our internal format to
protobufs. This approach allows us to use the
same software with both simulator and real
devices.

Simulation system GUI shown in fig. 11.

6

Fig. 9. Position of the orange path center in the frame. The distance is shown in pixels. X axis shows time
(in seconds). The center of the frame is (200, 150). Straight line on “row” is due to the fact that the path does

not fit into the frame completely.

Fig. 10. Change of the programmed and the actual heading during one of runs. The heading is measured in
radians. X axis shows time (in seconds).

Fig. 11. Gazebo GUI.

7

B. Pool tests

One of the most essential parts in vehicle
preparation is testing in pool.

This process is required to detect hardware
failures, produce some components setup and find
out unexpected bugs, that haven't been appeared
earlier.

We started to test our vehicle in pool at the
beginning of June in our campus swimming pool
(see fig. 12).

We use text logs to debug our software. It Is
human-readable could be fluently analyzed
without special software. We have an agreement
of a “basic form” of the log file. It is a CSV-like
format with series of numbers. We have
developed log_lot – a Python utility using
Matplotlib to show charts for series in a basic
form log. Log_plot has more then 10 parameters
allowing to point out a given period of time, axis
names etc. It receives the data from the standard
input.

We also have a log_merge utility for merging
to logs form two separate modules.

The mission log is not in the basic form since
in contains text messages for human analysis. A
simple run on the file with regular expressions can
extract the specified info and represent in is the
basic form.

Since all of our utilities use standard input and
output, Unix pipes can be used for rapid log
analysis. For example:
ssh user@auv cat /home/run/mission.log |
log_parser.py | log_plot.py row col

Fig. 12. FEFU pool with the AUV
during a pool test.

ACKNOWLEDGMENT

The development of FEFU AUV is supported
by Far Eastern Federal University and by Institute
for Marine Technology Problems of Far Eastern
Branch of Russian Academy of Sciences.

We would like to thank our mentor
Dr. Alexander Scherbatyuk. We also would like to
thank those from FEFU and IMTP FEB RAS who
have supported us in this work.

REFERENCES

1. R. Simmons, Inter-Process Communication: a
reference manual, http://www.cs.cmu.edu.

2. P. Newman, MOOS – mission orientated
operating suite, Massachusetts Institute of
Technology, Tech. Rep. 2299/08, 2008.

3. M. Burkardt, L. Barron, T. Brook et al, Cornell
University Autonomous Underwater Vehicle:
Design and Implementation of the Ragnarök
AUV, http://cuauv.ece.cornell.edu.

4. M. Quigley, B. Gerkey, K. Conley et al, ROS:
an open-source robot operating system, Open-
source software workshop of the Int. Conf. on
Robotics and Automation, Kobe, Japan, 2009.

5. O.T. Chang, G.E. Wei, J. Ong et al, BBAUV:
Autonomous Underwater Vehicle, software
overview, www.bbauv.com.

6. M.V. den Bergh, X. Boix G. Roig et al,
SEEDS: Superpixels Extracted via Energy-
Driven Sampling, ECCV 2012.

