
FEFU RoboSub 2015
Autonomous underwater vehicle

Vladislav Goi, Andrei Gatsenko, Gleb Shestopalov, Maksim Sporyshev,
Anton Tolstonogov, Mark Guliaev, Sergey Kulik, Vitalii Storozhenko

Far Eastern Federal University
8, Sukhanova str., 690950, Vladivostok, Russia

Email: tolstonogov.anton@gmail.com

Abstract—The following paper describes the develop-
ment of the AUV which our team has prepared for
RoboSub 2015. The vehicle is intended for the competition,
the research and development of vision-based navigation
and control, and group control research (as a member of
a fleet).

Keywords—Autonomous underwater vehicle, RoboSub
2015.

I. INTRODUCTION

Our team have been participating in RoboSub for
last 3 years. This year we have got a new frame,
payload of the vehicle and propulsion system, how-
ever we retained our classic housings and electronics
from last years.

As a lesson from the last year, we use new
Enthernet cameras. This type of connection is more
reliable then USB which we had before.

As for software, we have significantly improved
our propulsion system driver and PID controllers.

II. HARDWARE

A. General construction

Approximate dimensions of the vehicle are: 0.9×
0.5×0.4 meters, weight 30 kilos. The design of the
AUV is demonstrated on fig. 1.

The frame of the vehicle is represented by two
main vertical polypropylene plates, which hold all
the equipment by means of special clamps.

The following housing layout is applied:

• electronics unit, front camera, and depth sen-
sor are in front of the AUV;

Fig. 1: Render of the AUV model.

• battery unit and side thruster in the center;

• DVL unit, bottom camera, air housing for
pneumatic actuators and two remaining hor-
izontal thrusters in the back.

There are two vertical thrusters located in front
and back side of vehicle.

A compass, Wi-Fi access point and LED of
Control-Emergency System are placed in a separate
transparent plastic housing located in the upper
section of the vehicle as far as possible from the
thrusters.

Hydrophones are spaced at four corners and
located at the bottom in the inner side.

Block scheme of the vehicle is demonstrated on
fig. 2.

Far Eastern Federal University Page 1 of 9



Fig. 2: Block scheme of the vehicle.

B. Frame and housings

The vehicle construction consists of a rigid frame
made of polypropylene sheets. This material per-
fectly suits to our vehicle because it does not change
its properties under water, it is easy to process,
its density is less than water density but still it is
strong enough. The whole hardware is attached by
the clamps which are made of the same material
as a frame. They hold the hardware hard enough
and can be easily detached with the hardware for
technical maintenance, repair, etc. Prepared sketches
are forwarded to the water jet cutting where all
the frame components are made from the plane
polypropylene sheet.

Render of the vehicle frame with new propulsion
system is demonstrated on fig. 3.

All electronic housings are custom-build. They
are manufactured of aluminum and then oxidized
for corrosion prevention. Our special focus is put
on the waterproofing of all electronic housings. It
is accomplished with the O-rings, that are sized
according to each housing.

C. Sensors

Navigation system represented by three sensors:

Fig. 3: Render of the vehicle frame with new propul-
sion system.

1) Depth sensor (model PD100). Accuracy of
this sensor is about a couple of centimeters,
which is sufficient to stabilize a given depth

Far Eastern Federal University Page 2 of 9



during missions.
2) Inertial Module Xsens Mti IMU. It inte-

grates three-axis gyroscope, accelerometer
and magnetometer, as well as the Kalman
filter is implemented, which provides suffi-
cient accuracy for stabilization of roll, pitch
and heading.

3) Doppler Velocity Log from RD Instruments.
We integrate velocities in order to get cur-
rent coordinates. This coordinate system is
further used to return to the locality of
points of interest. It is very useful when
implementing a sequence of missions.

These sensors allow us to control the vehicle in
5 out of 6 degrees of freedom.

Video system. This system includes two profes-
sional cameras (model: Prosilica GC 1380). One
of them is directed forward and the other one is
directed down. The cameras work in 400 × 300 px
mode (maximum resolution: 1360×1024) and allow
us to adjust exposure, color correction and frame
resolution in a fairly wide range, both in manual and
automatic mode. This greatly facilitates of computer
vision detection, allowing to deal with the adverse
conditions of the open water. The camera operates
at 30 frames per second at maximum resolution, but
we are working with a frequency of 5-7 frames per
second.

Finder sonar. There are digital signal processor
based on STM32F4Discovery with integrated DSP
unit and 4 hydrophones used in the AUV to perform
the pinger task.

Safety system. Safety sensors are mounted in
every waterproof housing. A warning message is
sent immediately to a GUI operator program if one
of them is activated. Control emergency system of
the vehicle signals for a dangerous situation, if the
vehicle is under the water and is not connected with
operator.

D. Actuators

For successful tasks execution the AUV is
equipped with pneumatic system for torpedo shoot-
ing. It contains 2 tubes with aluminum torpedoes
inside. Tubes are linked to the air bottle which
becomes opened right after the supervisor signal.

Fig. 4: Render of pneumatic actuator.

AUV is equipped with a system for dropping
cargoes based on electromagnets.

We have designed a pneumatic grabber to deal
with new buckets (fig. 4).

All actuators are spaced near the corresponding
cameras to work efficiently with computer vision.

There are 5 thrusters on the AUV: 2 vertical ones
and 3 horizontal. Thrusters use 24 volts Faulhaber
motors and polyurethane propellers.

E. Computers

Two uniform computers are used for calcula-
tions — single-board computer PC/104-Plus with
processor ool RoadRunner 945GSE with processor
Intel Atom N270 (1.6 GHz, 1 GB SDDR2, 533
MHz). Most of our software modules (including
a mission module) and sensor data processing is
executed on the mission computer. The second com-
puter processes computer vision and acoustics.

F. Low-level devices

Supervisor. There is a supervisor board of our
team design placed in the electronic hull. The board
is based on a STM32F207 micro controller and
has an Ethernet interface for the communication
purpose. This board digitizes the data from the depth
sensor, stores the data from all water sensors and the
voltage and amperage from the battery. It ensures the

Far Eastern Federal University Page 3 of 9



Fig. 5: Power scheme.

thrusters control signal transmission and controls the
actuators power. Also the low level of the control-
emergency system is implemented on supervisor.

Digital signal processor. For the acoustic pinger
signals processing we use a separate signal proces-
sor board. First step is signal amplification with 4
hydrophones, then a passive filtration and a voltage
level conditioning for the further signal digitizing.
After that, the signal digitizing and further process-
ing of the signals from four channels is ensured
by the micro controller STM32F407VGT6, which
contains DSP instructions. The controller does the
digital filtration with the narrow bandpass IIR filter
and if the signal was received in all four channels,
the relative time of signal delay is calculated. Then,
the calculated time is sent to the computer, that con-
trols the acoustic data processing, via USB protocol.

G. Power supply

The power to run our vehicle is provided by a
lithium-polymer battery 5 Ah, which is located in
a separate housing with a detachable connector. If
necessary, we simply remove the discharged battery
housing and replace it with the charged one. Such
an approach saves a lot of time and is safe enough.
Battery power is supplied to the main electronics
unit, where it has already been distributed between
all devices.

Our power system scheme is presented at fig. 5.

Fig. 6: Control system structure.

III. SOFTWARE

A. General structure

We have used hierarchic structure of control
system for our vehicle. Each node of this structure
is implemented as a separate executable module.
Information transfer between modules is organized
by messaging.

Our control system structure is presented at fig.
6.

System consists of 9 modules. Mission module
defines the vehicle behavior is placed on top of
the hierarchy. Regulators module is responsible for
motion control.Navigation module processes the in-
formation from navigation sensors and passes it to
motion and mission modules. Other modules are
designed to interact with hardware devices. It sends
commands to actuators and processes sensor data.

B. Operator software

Our operator software allows us to monitor the
vehicle status. It connects to the control system

Far Eastern Federal University Page 4 of 9



modules via local network (connection is established
between router on the vehicle board and operators
laptop via Ethernet or Wi-Fi). During development
of the operator software we paid special attention to
the information from safety sensors such as water
alarm sensors and battery voltage.

Besides, the GUI provides the capabilities for
vehicle remote control, video module control and
receiving images from cameras (images are com-
pressed in JPEG format for transmitting over the
network).

One of the tabs of the operator GUI interface is
given in fig. 7.

C. Module communication framework

We use IPC library [1] for communication be-
tween modules in our control system. There were
several problems with IPC related to necessity of
accurate description for each message, neat mem-
ory management, the usage of C interface for the
message processing, which inevitably led to errors.

Data transfer between modules is a common
topic and there are some means in robotics soft-
ware frameworks to solve this problem. It could be
solved via both shared memory (e.g. MOOS control
system [2], Cornell University Team control system
[3]), and via messaging. We decided to use the
second option since our current software is based
on messaging. Among robotics platforms which use
messaging we have chosen ROS [4] as our future
platform - its usage is growing intensively, there are
examples of its use in an AUV specially designed
for RoboSub (e.g. Bumblebee team [5]).

Full transition to ROS is a labour-intensive pro-
cess. So, we decided to implement a step-by-step
transition, starting with the declarative description
of messages in ROS format.

We have developed a program for this, which
uses ROS format text description to generate mes-
sages in IPC format and C++ code that translates
parts of the messages into C++ object-oriented struc-
tures and automatically manages the resources.

We have also developed a library, which encap-
sulates all IPC facilities and simplifies programmers
work in modules communication.

D. Mission module

The mission module contains the motion and
actions logic of the vehicle.

This module consists of separate tasks, which
are executed in a linear sequence. The order of
execution is described in a set of configuration files.
There is a global map that stores information about
recently found orange stripes. This information is
used for vehicle positioning before starting the next
scheduled task.

Our previous task execution scheme was pretty
similar to the state machine. The set of states
for each task is explicitly formulated for a state
machine. We have strictly structured our code in
accordance with that and developed a corresponding
object oriented structure. A typical action in one of
the states is stabilization of the vehicle in front of
an object on the video frame.

The mission module is implemented with several
C++ classes, their interaction is shown at fig. 8.

The Environment class receives and processes
navigation messages and stores the physical vehicle
parameters (e.g. it stores camera models) and in-
formation about environment objects used by tasks.
Tasks can communicate with each other via this
class. The Environment is the interlayer for the
interaction between mission and lower layers.

The mission class is designed to create, configure
and execute each of the tasks. The configuration
of each task is formed here. Each task has a
corresponding C++ class. Each of those classes
analyses the data from the Environment and uses
a state machine implementation to process its states
consequently.

YAML is used for mission configuration files.
Each task reads parameters from three sources in
the following order:

1) task.yml
2) <task name>.yml
3) mission.yml

The task.yml file describes default parameters
which are common for all tasks. A separate file for
each kind of task gives parameters common to all
instances of that kind. The mission.yml file contains

Far Eastern Federal University Page 5 of 9



Fig. 7: Interface of one of operator GUI tabs.

the whole mission parameters. A task may have
about 50 parameters, and this approach allows to
decrease the size of the main configuration file and
to make preparation for the run easier.

The mission execution time can be essential this
year. So, it is important to stabilize faster at objects
of interest. We have added a differential component
to a vision regulator to deal with that. We have
adjusted coefficients using our post processing tools.

E. Low-level controls

Motion module. The vehicle motion control is
performed in the event loop. The data from navi-
gation module is processed at the each iteration of
this loop. The message containing thrusts in all six
degrees of freedom is formed on the basis of this
data. The vehicle is able to control only five degrees
of freedom, so the roll thrust is always equal to zero.

One of the aims during module development was
the extensibility and opportunity of code reusing
for different vehicles with different configurations.

Hence, we use the following structure: a separate
regulator implemented as a module is created for
each control command (heading stabilization, posi-
tion stabilization, etc.). Such a module subscribes
to a message, that describes the module command
and activates the regulator. Regulators lifetime is
defined by the command execution time. After its
creation regulator reserves necessary control degrees
(e.g. position regulator reserves longitudinal, trans-
verse and heading axes). Capability control channels
conflicts are solved in command creation order: new
command, which uses these axes, replaces the old
one.

Each regulator is the means for solving the phys-
ical control problem. PID controller is used on this
vehicle for solving mathematical control problem.

Propulsion system module. Propulsion system
module task is to receive thrusts and torques from
motion module and calculates control signals for
each thruster on the basis of received values. In
accordance to each thruster orientation its direction
can be described with 3-dimensional vector in ve-

Far Eastern Federal University Page 6 of 9



Fig. 8: UML class diagram used in the mission.

hicle coordinate system. Wherein thrusters having a
part in calculating thrust at different axes have the
contribution to the corresponding axis proportionally
the angle between the axis and the thruster vector.

Given information above and each thruster shoul-
der we get 5×5 matrix which shows the thruster
(moment) allocation at the certain axis among
thrusters.

Thrusters firmware receives control signals
(codes) in [−128, 127] interval. So the module have
to convert these variables from [−1, 1] interval to
the proper interval. The vehicle uses symmetrical
propellers. Its performances were received during

Fig. 9: Example of heading control with the new
motion module.

bench tests. We are able to calculate control signal
for any thrust sign linear interpolation if we know
a number of conformance points between thrusters
thrust and control signal.

F. Video module

The main goal of video module is analyzing
images taken from cameras and passing information
about detected objects to mission module. Mission
sends to video module a list of required objects and
the number of camera to take images from.

OpenCV library is used for image processing.
The version 2.4.8 is installed on the vehicle.

Each detection algorithm usually consists of the
following parts:

1) Preprocessing. It’s done by applying filters
or clustering algorithms to correct under-
water colors, remove noise and small use-
less details. Color correction is done by
increasing red channel in RGB image. Then
three ways of image preprocessing are used:
median blur, gaussian blur, SEEDS super-
pixel segmentation. Median and gaussian
filters are implemented in OpenCV. We have
developed a custom SEEDS implementation
following [6].

2) Color binarization. The source image is
translated to HSV color space and the bi-

Far Eastern Federal University Page 7 of 9



narization is executed by hue and saturation
threshold.

3) Contour analysis. It is based on OpenCV
implementations of Suzuki-Abe algorithm
and polygon approximation, a custom
Hough implementation is also used.

We’ve calibrated our cameras using OpenCV
calibration tools. A chessboard of 1 × 1 meter size
was made. The chessboard is positioned so that it
lies entirely in the field of vehicle camera view, the
camera takes images. Then the images are given to
the calibration program which detects angles on the
chessboard and calculates camera parameters, such
as focal distance and radial, tangential distortion
factors. All this parameters are considered in our
camera model which helps us to calculate the head-
ing to the detected object and determine distance to
this object more accurately.

G. Implementation

C++ programming language is used in our vehi-
cle control system software implementation. Some
modules significantly depend on C++11 standard
features so we were to update GNU compiler to
4.8 version. Boost libraries provides us with some
useful extensions that we apply to, for example,
our thread pool implementation. We also need it
in command line interface implementation for our
tools. Cmake intelligent build system is used to
build our system. Bash scripts are used to launch
it. We have 6 software engineers in our team. Git
version control system and central private repository
on bitbucket.org are chosen to organize their team
development process.

IV. TESTS AND TRIALS

A. Simulator

Our simulation system was implemented using
Gazebo simulation tools and API. Gazebo uses
Protobufs for interprocess communication, so we
use adapter tool which converts messages from our
internal format to protobufs. This approach allows
us to use the same software with both simulator and
real devices.

Simulation system GUI shown in fig. 10.

Fig. 10: Gazebo GUI.

B. Pool tests

One of the most essential parts in vehicle prepa-
ration is testing in pool. This process is required to
detect hardware failures, produce some components
setup and find out unexpected bugs, that have not
been appeared earlier. We started to test our vehicle
in pool at the beginning of June in our campus
swimming pool.

C. Debugging

We use text logs to debug our software. It is
human-readable could be fluently analyzed without
special software. We have an agreement of a ”basic
form” of the log file. It is a CSV-like format with
series of numbers. We have developed log lot a
Python utility using Matplotlib to show charts for
series in a basic form log. Log plot has more then
10 parameters allowing to point out a given period
of time, axis names etc. It receives the data from
the standard input.

We also have a log merge utility for merging to
logs form two separate modules.

The mission log is not in the basic form since in
contains text messages for human analysis. A simple
run on the file with regular expressions can extract
the specified info and represent in is the basic form.

Since all of our utilities use standard input and
output, Unix pipes can be used for rapid log analy-
sis.

Far Eastern Federal University Page 8 of 9



ACKNOWLEDGMENT

The development of FEFU AUV is supported by
Far Eastern Federal University and by Institute for
Marine Technology Problems of Far Eastern Branch
of Russian Academy of Sciences. We would like to
thank our mentor Dr. Alexander Scherbatyuk. We
also would like to thank those from FEFU and IMTP
FEB RAS who have supported us in this work.

REFERENCES

[1] R. Simmons, Inter-Process Communication: a reference manual,
http://www.cs.cmu.edu.

[2] P. Newman, MOOS - mission orientated operating suite, Mas-
sachusetts Institute of Technology, Tech. Rep. 2299/08, 2008.

[3] M. Burkardt, L. Barron, T. Brook et al, Cornell University
Autonomous Underwater Vehicle: Design and Implementation
of the Ragnarok, http://cuauv.ece.cornell.edu.

[4] M. Quigley, B. Gerkey, K. Conley et al, ROS: an open-source
robot operating system, Open-source software workshop of the
Int. Conf. on Robotics and Automation, Kobe, Japan, 2009.

[5] O.T. Chang, G.E. Wei, J. Ong et al, BBAUV: Autonomous
Underwater Vehicle, software overview, www.bbauv.com.

[6] M.V. den Bergh, X. Boix G. Roig et al, SEEDS: Superpixels
Extracted via Energy-Driven Sampling, ECCV 2012.

Far Eastern Federal University Page 9 of 9


