
FAR EASTERN FEDERAL UNIVERSITY Page 1 of 8

FEFU RoboSub 2016
Autonomous underwater vehicle

Anton Tolstonogov, Vladislav Goi, Maksim Sporyshev, Sergey Kulik,
Roman Babayev, Artem Kostianko, Ivan Chemezov, Igor Blinov,

Tatiana Ian, Kirill Podberezin, Oleg Snegirev, Olga Riabaia
Far Eastern Federal University

8, Sukhanova str., 690950, Vladivostok, Russia
Email: tolstonogov.anton@gmail.com

Abstract—The following paper describes the develop-
ment of the AUV which our team has prepared for
RoboSub 2016. The major goals of the vehicle are the
competition, the research and development of vision-based
navigation and control methods, and the research of group
control methods.

Keywords—Autonomous underwater vehicle, RoboSub
2016.

I. INTRODUCTION

Our team has been participating in Robosub for
last 4 years and each year we consistently reach
the final stage of the competition. Each year give
us lessons of robotics development. We started to
develop the vehicle from scratch twice, given the
experience of previous years during four years of
participation. All components of the vehicle: both
electronics design and programming have been up-
graded, and sometimes re-designed from scratch.

We prefer the evolutionary path of development
of the vehicle, wherein the only one part of the AUV
is significantly changing at a time. For example, we
substantially redesigned the frame of the vehicle,
almost not touching other parts from last year.
Now we have kept the design of the last year’s
vehicle and partially renovated electronics. But our
main achievement of the year is radically modified
software architecture. This year we have completely
migrated to ROS.

You can see at figure 1 how the vehicle has been
implemented.

Fig. 1: Implemented of the vehicle.

II. HARDWARE

A. General construction

Approximate dimensions of the vehicle are: 0.9×
0.5× 0.4 meters, weight 30 kilos.

The frame of the vehicle is represented by two
main vertical polypropylene plates, which hold all
the equipment by means of special clamps.

The following housing layout is applied:

• electronics unit, front camera, and depth sen-
sor are in front of the AUV;

• battery unit and side thruster in the center;

• DVL unit, bottom camera, air housing for



FAR EASTERN FEDERAL UNIVERSITY Page 2 of 8

pneumatic actuators and two remaining hor-
izontal thrusters in the back.

There are two vertical thrusters located in front
and back side of vehicle.

A compass, Wi-Fi access point and LED of
Control-Emergency System are placed in a separate
transparent plastic housing located in the upper
section of the vehicle as far as possible from the
thrusters.

Hydrophones are spaced at four corners and
located at the bottom in the inner side.

Block scheme of the vehicle is demonstrated on
fig. 2.

B. Frame and housings

The vehicle construction consists of a rigid frame
made of polypropylene sheets. This material per-
fectly suits to our vehicle because it does not change
its properties under water, it is easy to process,
its density is less than water density but still it is
strong enough. The whole hardware is attached by
the clamps which are made of the same material
as a frame. They hold the hardware hard enough
and can be easily detached with the hardware for
technical maintenance, repair, etc. Prepared sketches
are forwarded to the water jet cutting where all
the frame components are made from the plane
polypropylene sheet.

Render of the vehicle frame with new propulsion
system is demonstrated on fig. 3.

All electronic housings are custom-build. They
are manufactured of aluminum and then oxidized
for corrosion prevention. Our special focus is put
on the waterproofing of all electronic housings. It
is accomplished with the O-rings, that are sized
according to each housing.

C. Sensors

Navigation system represented by three sensors:

1) Depth sensor (model PD100). Accuracy of
this sensor is about a couple of centimeters,
which is sufficient to stabilize a given depth
during missions.

Fig. 3: Render of the vehicle frame with new propul-
sion system.

2) Inertial Module Xsens Mti IMU. It inte-
grates three-axis gyroscope, accelerometer
and magnetometer, as well as the Kalman
filter is implemented, which provides suffi-
cient accuracy for stabilization of roll, pitch
and heading.

3) Doppler Velocity Log from RD Instruments.
We integrate velocities in order to get cur-
rent coordinates. This coordinate system is
further used to return to the locality of
points of interest. It is very useful when
implementing a sequence of missions.

These sensors allow us to control the vehicle in
5 out of 6 degrees of freedom.

Video system. This system includes two profes-
sional cameras (model: Prosilica GC 1380). One
of them is directed forward and the other one is
directed down. The cameras work in 400 × 300 px
mode (maximum resolution: 1360×1024) and allow
us to adjust exposure, color correction and frame
resolution in a fairly wide range, both in manual and
automatic mode. This greatly facilitates of computer



FAR EASTERN FEDERAL UNIVERSITY Page 3 of 8

Fig. 2: Block scheme of the vehicle.

vision detection, allowing to deal with the adverse
conditions of the open water. The camera operates
at 30 frames per second at maximum resolution, but
we are working with a frequency of 5-7 frames per
second.

Finder sonar. There are digital signal processor
based on STM32F4Discovery with integrated DSP
unit and 4 hydrophones used in the AUV to perform
the pinger task.

Safety system. Safety sensors are mounted in
every waterproof housing. A warning message is
sent immediately to a GUI operator program if one
of them is activated. Control emergency system of
the vehicle signals for a dangerous situation, if the
vehicle is under the water and is not connected with
operator.

D. Actuators

For successful tasks execution the AUV is
equipped with pneumatic system for torpedo shoot-
ing. It contains 2 tubes with aluminum torpedoes
inside. Tubes are linked to the air bottle which
becomes opened right after the supervisor signal.

AUV is equipped with a system for dropping
cargoes based on electromagnets.

Fig. 4: Render of pneumatic actuator.

We have designed a pneumatic grabber to deal
with new buckets (fig. 4).

All actuators are spaced near the corresponding
cameras to work efficiently with computer vision.

There are 5 thrusters on the AUV: 2 vertical ones
and 3 horizontal. Thrusters use 24 volts Faulhaber
motors and polyurethane propellers.



FAR EASTERN FEDERAL UNIVERSITY Page 4 of 8

E. Computers

Two uniform computers are used for calcula-
tions — single-board computer PC/104-Plus with
processor Cool RoadRunner 945GSE with processor
Intel Atom N270 (1.6 GHz, 1 GB SDDR2, 533
MHz). Most of our software modules (including
a mission module) and sensor data processing is
executed on the mission computer. The second com-
puter processes computer vision and acoustics.

F. Low-level devices

Supervisor. There is a supervisor board of our
team design placed in the electronic hull. The board
is based on a STM32F207 micro controller and
has an Ethernet interface for the communication
purpose. This board digitizes the data from the depth
sensor, stores the data from all water sensors and the
voltage and amperage from the battery. It ensures the
thrusters control signal transmission and controls the
actuators power. Also the low level of the control-
emergency system is implemented on supervisor.

Digital signal processor. For the acoustic pinger
signals processing we use a separate signal proces-
sor board. First step is signal amplification with 4
hydrophones, then a passive filtration and a voltage
level conditioning for the further signal digitizing.
After that, the signal digitizing and further process-
ing of the signals from four channels is ensured
by the micro controller STM32F407VGT6, which
contains DSP instructions. The controller does the
digital filtration with the narrow bandpass IIR filter
and if the signal was received in all four channels,
the relative time of signal delay is calculated. Then,
the calculated time is sent to the computer, that con-
trols the acoustic data processing, via USB protocol.

G. Power supply

The power to run our vehicle is provided by a
lithium-polymer battery 5 Ah, which is located in
a separate housing with a detachable connector. If
necessary, we simply remove the discharged battery
housing and replace it with the charged one. Such
an approach saves a lot of time and is safe enough.
Battery power is supplied to the main electronics
unit, where it has already been distributed between
all devices.

Fig. 5: Power scheme.

Our power system scheme is presented at fig. 5.

III. SOFTWARE

A. ROS structure

This year we decided to use Robot Operating
System as an interprocess communication frame-
work and all the utils that come with it. ROS pro-
vides us with a lot of different features. Among them
message passing system, compatible with a lot of
different ROS packages. Recording and playback of
messages with later visualization of camera images
and plotting numerical values helps us to analyze
the mission execution process.

In our system we decided to follow the conven-
tion over configuration principle. Our messages are
divided into two groups commands and data mes-
sages. Only one module can receive command of a
specific type, but everyone may send them. Only one
module can send data message of a specific type, but
everyone may subscribe to receive it. That’s why
every command is kept in a topic with a name of
receiving node plus the name of message type and
every data message is kept in a topic with a name of
sending node plus the name of message type. This
convention allowed us to build simpler and more
convenient messaging system with a help of ROS.
And still if you want to have an exception from
this convention you may have it, but use raw ROS
functions to subscribe to a topic. On the following



FAR EASTERN FEDERAL UNIVERSITY Page 5 of 8

Fig. 6: ROS nodes graph of our system.

Fig. 7: Example of our webGUI.

figure (fig. 6) you can see our nodes visualized by
rqt.

B. WebGUI

This year we created web interfaced console to
visualize numerical data for messages in real time.
It uses roswww package as a server running on a
vehicle computer and roslib.js to implement client
side part. We may plot the numerical values over
time and send commands to our vehicle through
a web page which may be accessed through every
devise even not having ROS on it. We also may
visualize navigation data for some object that can
be detected by our vehicle on the map. Web GUI
console is one of the most useful tools for us. On the
figure 7 you may see example of the web interface.

C. Navigation node description

Navigation is developed to solve two main prob-
lems:

1) Filtration and broadcasting data from IMU,
DVL and other sensors.

2) Path‘s calculation based on information of
velocity and heading.

The first problem is related to the abstraction
consumer of navigation data from the sensor data
providers. For example, motion node uses a velocity
calculated by navig node during motion stabiliza-
tion, without worrying about sensor delivers this
speed actually. In turn, the navigation node receive
messages from DVL and publishes speed on its
own behalf if it just received. If the data become
obsolete navigation node corrects old DVL data
using acceleration’s data provides by compass.

The problem of path’s calculation is solved by
classic method (integration of the vehicle’s speed,
taking into account the orientation data).

D. Mission node description

The mission node contains the motion and ac-
tions logic of the vehicle.

This node consists of separate tasks, which are
executed in a linear sequence. The order of exe-
cution is described in a set of configuration files.
There is a global map that stores information about



FAR EASTERN FEDERAL UNIVERSITY Page 6 of 8

recently found orange stripes. This information is
used for vehicle positioning before starting the next
scheduled task.

Our previous task execution scheme was pretty
similar to the state machine. The set of states
for each task is explicitly formulated for a state
machine. We have strictly structured our code in
accordance with that and developed a corresponding
object oriented structure. A typical action in one of
the states is stabilization of the vehicle in front of
an object on the video frame.

YAML is used for mission configuration files.
Each task reads parameters from three sources in
the following order:

• task.yml

• task name.yml

• mission.yml

The task.yml file describes default parameters which
are common for all tasks. A separate file for each
kind of task gives parameters common to all in-
stances of that kind. The mission.yml file contains
the whole mission parameters. A task may have
about 50 parameters, and this approach allows to
decrease the size of the main configuration file
and to make preparation for the run easier. The
mission execution time can be essential this year.
So, it is important to stabilize faster at objects of
interest. We have added a differential component to
a vision regulator to deal with that. We have adjusted
coefficients using ROS tools.

E. Motion control

Motion control divided in two functional part:
motion node and TCU (thruster control unit or
propulsion system) node.

Motion solve high level motion problem includ-
ing stabilization. The vehicle motion control is per-
formed in the event loop. The data from navigation
module is processed at the each iteration of this
loop. The message containing thrusts in all six
degrees of freedom is formed on the basis of this
data. The vehicle is able to control only five degrees
of freedom, so the roll thrust is always equal to zero.

One of the aims during module development was
the extensibility and opportunity of code reusing
for different vehicles with different configurations.
Hence, we use the following structure: a separate
regulator implemented as a module is created for
each control command (heading stabilization, posi-
tion stabilization, etc.). Such a module subscribes
to a message, that describes the module command
and activates the regulator. Regulator’s lifetime is
defined by the command execution time. After its
creation regulator reserves necessary control degrees
(e.g. position regulator reserves longitudinal, trans-
verse and heading axes). Capability control channels
conflicts are solved in command creation order: new
command, which uses these axes, replaces the old
one.

Each regulator is the means for solving the phys-
ical control problem. PID controller is used on this
vehicle for solving mathematical control problem.

Propulsion system node is to receive thrusts and
torques from motion module and calculates control
signals for each thruster on the basis of received
values. In accordance to each thruster orientation its
direction can be described with 3-dimensional vec-
tor in vehicle coordinate system. Wherein thrusters
having a part in calculating thrust at different axes
have the contribution to the corresponding axis
proportionally the angle between the axis and the
thruster vector. Given information above and each
thruster shoulder we get 5 x 5 matrix which shows
the thruster (moment) allocation at the certain axis
among thrusters.

Thruster’s firmware receives control signals
(codes) in [-128, 127] interval. So the module have
to convert these variables from [-1, 1] interval to
the proper interval. The vehicle uses symmetrical
propellers. Its performances were received during
bench tests. We are able to calculate control signal
for any thrust sign linear interpolation if we know
a number of conformance points between thruster’s
thrust and control signal.

F. Video module

The main goal of the video module is analyzing
images taken from cameras and passing information
about detected objects to mission module. Mission



FAR EASTERN FEDERAL UNIVERSITY Page 7 of 8

sends to video module a list of required objects and
the number of camera to take images from.

OpenCV library is used for image processing. We
use version 2.4.8, because this is the most stable and
reliability version at the current time.

Each detection algorithm usually consists of the
following parts:

• Preprocessing. It’s done by applying filters or
clustering algorithms to correct underwater
colors, remove noise and small useless de-
tails. Color correction is done by increasing
red channel in RGB image. Then three ways
of image preprocessing are used: median
blur, Gaussian blur. Median and Gaussian
filters are implemented in OpenCV.

• Color binarization. The source image is
translated to HSV color space and the bi-
narization is executed by hue and saturation
threshold.

• Contour analysis. It is based on OpenCV
implementations of Suzuki-Abe algorithm
and polygon approximation, a custom Hough
implementation is also used.

We have calibrated our cameras using OpenCV
calibration tools. A chessboard of 1 x 1 meter size
was made. The chessboard is positioned so that it
lies entirely in the field of vehicle camera view, the
camera takes images. Then the images are given
to calibration program which detects angles on the
chessboard and calculates camera parameters, such
as focal distance and radial, tangential distortion
factors. All this parameters are considered in our
camera model which helps us to calculate the head-
ing to the detected object and determine distance to
this object more accurately.

G. Implementation

C++ programming language is used in our vehi-
cle control system software implementation. Some
modules significantly depend on C++11 standard
features so we were to update GNU compiler to
4.8 version. Boost libraries provides us with some
useful extensions that we apply to, for example,
our thread pool implementation. We also need it
in command line interface implementation for our

Fig. 8: Gazebo GUI.

tools. Cmake intelligent build system is used to
build our system. Bash scripts are used to launch
it. We have 6 software engineers in our team. Git
version control system and central private repository
on bitbucket.org are chosen to organize their team
development process.

IV. TESTS AND TRIALS

A. Simulator

Our simulation system was implemented using
Gazebo simulation tools. One of the advantages
using ROS core is native Gazebo interaction. ROS
have build-in plugins for using Gazebo playground,
so we need just build competition scene for testing
our mission algorithms. Simulation system GUI
shown in fig. 8.

B. Debugging

For data logging and playback, ROS uses the bag
format. We use bag file for recording vehicle data
and telemetry. Rosbag is a ROS plugin for recording
all messages between nodes in our system. We can
easily look the states of all values in the messages
in any time of recording. Rosbag can play back
selected messages and visualize the contents with
plotting of numerical values. These benefits allow
us to conveniently and quickly check the progress
of the mission and look for bugs analyzing bagfiles
of the mission. Example of rosbag build-in viewer
is shown on figure 9.



FAR EASTERN FEDERAL UNIVERSITY Page 8 of 8

Fig. 9: Rosbag build-in viewer.

C. Pool tests

One of the most essential parts in vehicle prepa-
ration is testing in the swimming pool. This process
is required to detect hardware failures, produce some
components setup and find out unexpected bugs,
that haven’t been appeared earlier. We started to test
our vehicle in pool at the beginning of June in our
campus swimming pool.

We used a new way to monitor our vehicle state
using a real time webGUI and thin debugging wire.
That gave us the ability to find out bugs and failures
in real time and not spend to much time watching
bagfiles after mission execution. Furthermore, the
Gazebo simulation reduced necessity of vehicle test-
ing in vivo to a minimum.

ACKNOWLEDGMENT

The development of FEFU AUV is supported by
Far Eastern Federal University and by Institute for
Marine Technology Problems of Far Eastern Branch
of Russian Academy of Sciences. We would like to
thank our mentor Dr. Alexander Scherbatyuk. We
also would like to thank those from FEFU and IMTP
FEB RAS who have supported us in this work.

REFERENCES

[1] P. Newman, MOOS - mission orientated operating suite, Mas-
sachusetts Institute of Technology, Tech. Rep. 2299/08, 2008.

[2] M. Burkardt, L. Barron, T. Brook et al, Cornell University
Autonomous Underwater Vehicle: Design and Implementation
of the Ragnarok, http://cuauv.ece.cornell.edu.

[3] M. Quigley, B. Gerkey, K. Conley et al, ROS: an open-source
robot operating system, Open-source software workshop of the
Int. Conf. on Robotics and Automation, Kobe, Japan, 2009.

[4] O.T. Chang, G.E. Wei, J. Ong et al, BBAUV: Autonomous
Underwater Vehicle, software overview, www.bbauv.com.

[5] M.V. den Bergh, X. Boix G. Roig et al, SEEDS: Superpixels
Extracted via Energy-Driven Sampling, ECCV 2012.


