
GEORGIA TECH 1

The High Performance Plongeur v2.0
Georgia Tech RoboSub 2019

Praneeth Eddu, Eric Phan, Rahul Rameshbabu,
Jonny Tan, Anthony Velte, Joshua Dulle

Patrick Meyer, Michael Steffens

Abstract—This paper describes the design of Georgia Tech’s
platform for the 2019 Robosub competition. This years theme
was iteration. The main vehicle design has stayed largely con-
sistent for the last two years, with small updates for improved
performance. The major updates for this year include additional
ease of use features, such as LED status lights, and further
improvements to the modular internal electronics tray. This
consistency in hardware allowed for a greater focus on software.
The autonomy framework has largely been rebuilt entirely after
integrating lessons learned during the 2018 team’s trial of the
ROS middleware system. This undertaking has led to a more
modular autonomy framework that can be quickly adapted to
changing competition conditions. As in the past, our strategy for
the competition is to focus on consistency. This is born out in our
focus on a limited set of tasks that can be accomplished mainly
through solid navigation and perception, with minimal additional
actuation required. Our focus on navigation and perception has
shown promising results in current testing, and we look forward
to building on our performances in previous years.

I. COMPETITION STRATEGY

The Georgia Tech Marine Robotics Club is excited to once
again be participating in the annual RoboSub competition. As
we have continued to learn from our past competitions, we
have taken home the lesson that consistency is what really
leads to results at these competitions. As such, the theme
for this year was iteration and improvement. This led to the
choice to leave the main vehicle platform largely unchanged
from the previous year. Minor updates to the hardware side of
the competition include an improved dropper mechanism and
additional ease of use features. These new features include an
LED status display, greatly improving understanding of the
vehicle’s performance during testing.

To utilize our pre-competition development time efficiently
while attempting to maximize the score, the team chose tasks
that primarily required vision coupled with navigation and
control. The key objectives are:

• 9.1 Journey to the Undead Realm
• 9.2 Enter the Undead Realm (Gate)
• 9.4 Path
• 9.5 Slay Vampires (Buoy)
• 9.6 Drop Garlic (Bins)
• 9.8 Expose to Sunlight
This strategy negates the added complexity of actuators for

firing and picking things up and does not rely on a robust
hydrophone system to locate pingers. (See Appendix A for
full strategy.)

The choice to develop strong navigation and control over
other hardware/software was easily justified, because a solid
moving base is needed to implement any more advanced
hardware/software. This was assessed by bench tests of motor
responsiveness followed by and weekly pool tests. During pool
tests the PID controllers were tuned and autonomous navi-
gation was verified, culminating in an attempted autonomous
gate run for pre-qualification. Six weeks were dedicated to the
reliability of the navigation and control hardware and software.

Software development on the detection and classification
tasks was started simultaneously, with the goal of having
a functional perception stack at the eight-week mark. The
backbone of the perception stack treats perception as a service,
which fits with the design goal of a modular software system
by allowing the back-end (neural net, OpenCV, or other tools)
not to matter. Multiple approaches are being tested such as
having a single model for all objects or splitting the objects
up between different neural network models. These approaches
will be compared using various metrics.

While designing the neural-network architecture, the team
considered a few crucial factors: complexity, reliability, and
training speed. These factors were quantified and compared
by using metrics such as time taken for set-up to assess
complexity, a confusion matrix to express reliability, and
time elapsed to indicate training speed. Due to the nature of
neural networks, the size and quality of the training set more
greatly influences reliability more than any other factor, so the
complexity was not sacrificed to attain improved reliability.
To balance development of the software with in-water testing
time, precursory test images to train the neural net were
manually collected during pool tests to tune the PID and test
RC control, allowing the time spent to provide dual benefit.

II. VEHICLE DESIGN

The design of the submarine included multiple, creative
decisions on the fronts of hardware and software. The hard-
ware considerations included decisions on the static stability
and degrees of freedom of the physical vehicle. The software
decisions included architecture choices to achieve a balance
of modular design and effectiveness for the RoboSub specific
tasks.

A. Hardware

Among the most creative aspects of the system is the
unorthodox tall frame design, with the main pressure vessel at

GEORGIA TECH 2

Figure 1: 3D Printed Modular Electronics Tray

the top of a rectangular aluminum frame and all ballast placed
at the bottom. As previously discussed, this places the center
of mass significantly below the center of buoyancy for the
vehicle. This leads to vehicle dynamics that have significant
static stability in both pitch and roll. This decision was made to
reduce the degrees of freedom that would need to be controlled
by the submarine. This simplification of the dynamics of the
vehicle was helpful in a matching simplification of the control.

Another major feature of the vehicle is the slotted aluminum
frame. This frame is what allows for the tall design and makes
modifications to sensor and actuator packages much easier.
The slotted rails are commonly used in different applications,
so adapters and connectors of varying forms are readily avail-
able. This makes the integration of new systems significantly
easier than if a custom manufactured frame were used.

Another creative feature of this year’s vehicle is a custom
designed modular electronics tray. This can be seen in Figure
1. Previous years’ vehicles had used assemblies of laser cut
wood for electronics. However, these did not make for an
efficient use of the space. To maximize the space, a 3D printed
rack was designed that could accept trays with components
attached. These trays were designed specifically for the com-
ponents they would hold, and allowed for improved cable
management and heat distribution. Additionally, if certain
components malfunction in testing either in water or on land it
is much easier to identify which components or wiring may be

Figure 2: Final Dropper Design

causing the problem and address them directly. Having a much
cleaner and less-cluttered components tray made connections
easier and reduced the likelihood of plugging wires into wrong
places or missing a connection during setup.

Due to budget constraints, many sensors that would aid in
navigation are not included on board the vehicle. As such,
some creative approaches must be taken to ensure accurate
state estimation. The main navigation sensors are a Microstrain
3DM-GX3-25 IMU and two monocular cameras, one forward
facing and one downward facing. While the IMU is highly
accurate in providing pose information, double integration of
accelerometers causes significant errors to compound with
time. To alleviate this, the use of visual odometry is being ex-
plored. By understanding the shift in location and angle to key
points of reference in a cameras frame, a change in position
and orientation can be estimated. This can be done for both
the forward facing and downward facing cameras. Combining
this information from the cameras with information from the
IMU and an estimated vehicle dynamic model, a relatively
accurate estimate of location relative to the starting location
can be found. This is useful in mapping the area and allowing
the vehicle to return to a task if it believes it can get more
points in a second attempt. This can also be useful in bounding
classification of objects within the course and the triggering
of their associated behaviors.

For the dropper design, the custom markers the team carries
for the garlic drop tasks are golf balls with the team colors
on it. Golf balls were chosen because of their ability to
sink directly down without weighing down the vehicle and
accessibility for the team to have extras when they inevitably
get lost during competition runs. The dropping mechanism was
designed to be 3d printed for rapid prototyping as development
continued. The final design consists of a main cylinder that
houses the two markers and an arm that swivels to release a
single marker at a time. The arm is actuated using a waterproof
servo and returned to the original position by an elastic band.
Figure 2 shows the dropper design.

GEORGIA TECH 3

Figure 3: ADePT-ROS Architecture

B. Software Architecture

The ROS architecture, called ADePT-ROS, has a focus
on modular design. An overview of the architecture can be
found in Figure 3. The architecture is broken into three main
components: the navigation stack, the mission planning stack,
and the perception stack. Other components include a cross-
platform QT-based GUI and drivers to interact with our system
hardware. Arduino micro-controllers are also integrated into
the ROS architecture. Each of the three major components of
ADePT-ROS will be discussed below.

1) Navigation Stack: The navigation stack consists of four
nodes: the state estimator, the global planner, the local planner,
and the controller. The state estimator node produces estimates
of the vehicle’s position and orientation as it moves through
the water. This is done through a combination of taking in
sensor information and a model of our submarine’s motion.
The global planner provides a path the vehicle can follow to
achieve a goal state provided by the tasks. The local planner
is used to follow this path as closely as possible, accounting
for disturbances to the vehicle and potential obstacles in the
environment. Finally, the controller takes in the plan from the
local planner, and converts this to actuation signals to be sent
to each motor.

In the spirit of modularity, each of these nodes is imple-
mented as a wrapper that then instantiates and calls on specific
implementations. This structure serves two purposes. First, it
allows for different implementations across multiple vehicles.
This is important because the structure was also used in both
the RoboBoat and RobotX competitions, which are surface-
based. Surface-based vehicles only need to plan and estimate
in a 2D space, while the sub must plan in 3D. Second, it
allows for multiple algorithms to be implemented for each
node and used interchangeably. Not only does this allow the
team to implement a basic implementation before integrating
more complex algorithms, it also allows the vehicle to choose
the best algorithms for each task.

An illustrating example would be the Slay Vampires task
from this year. For most other tasks, it is ideal to avoid contact
with the task elements. This would lead model-based state
estimators to work well. However, the Slay Vampires task is
built around obvious contact with an obstacle. This may pose a
problem for model-based state estimators, while simpler dead-

reckoning estimators could do well over the short time periods
of this task. By designing the architecture in a modular way,
the vehicle is given the flexibility to change how it’s state
estimation and other navigation is done to best meet each task.
Furthermore, this modularity has allowed us to test methods
from as simple as integrating acceleration measurements to
obtaining an estimate of position to as complex as visual
SLAM techniques that generate maps as well as localization
by using the camera feed.

For vehicle controls, yaw and depth are controlled using
decoupled PID controllers. Translation control is done with
an open loop approach by applying specific commands that
map to specific velocities. These velocities are based on an
empirically derived motion model. This motion model was
built by testing linearly spaced motor commands and hand-
timing the velocities. The velocities in between these points
are linearly interpolated.

2) Perception: The perception stack consists of three
main nodes: pre-processing, filtering, and object classifica-
tion/detection. For our purposes, the distinction between object
classification and detection is based on the output of the node.
If the node identifies both the type of object (or the type
of multiple objects in one image) and where in the image
it is, it falls under object detection. If it only returns the
type of object present in the image, it falls under object
classification. These nodes are implemented similarly to those
in the navigation stack. That is, they are wrapper nodes that
allow for different implementations to be mixed and matched
in a modular fashion depending on the task being performed.
The stack is also formatted in such a way that different nodes
can be skipped entirely, thanks to ROS’s publish/subscribe
architecture. This can be useful for some computer vision
architectures that combine filtering and classification/detection
into a single function.

For vehicle perception, we utilize a forward and downwards
facing camera. By running the forward camera feed through
a trained neural network, we can determine what the sub is
currently seeing. For pre-processing and filtering, the same im-
plementations can largely be used throughout the competition.
This includes common approaches such as image gray scaling
and blurring in pre-processing, and edge detection and feature
extraction in filtering. However, the classification/detection
node requires specialized algorithms trained specifically for
each task. Each task will require a specific implementation to
either classify or detect the objects that are associated with it.

The object detection node implements Faster R-CNN. This
is a neural network architecture that learns image classes
and bounding boxes. This allows us to navigate to buoys
and coffins for various tasks. A single model will be trained
to detect the gate, buoys, and coffins. All buoys will be
considered one class, because less training examples will be
required to get a better prediction and it is more efficient to
have a separate classifier model to classify specific buoys once
they are detected.

The downward camera feed is processed by first filtering for
the orange color of the path. The the path segment is captured
with edge detection. A bounding box is then measured from
the detected edges from which a centroid and angle with

GEORGIA TECH 4

respect to the vertical axis can be calculated and the vehicle
uses this information to follow the path.

3) Mission Planner: The mission planning stack consists
of two major nodes: the task server and the task client.
The task server is an actionlib based server that acts as a
repository of all possible tasks for the vehicle. It is responsible
for the proper setup and shutdown of each task the client
requests. The task client is the main way the vehicle interacts
with the task server. It can provide the set of tasks to be
completed, their parameters, and the interactions between tasks
for a successfully completed mission. The task server is also
in charge of setting up the remainder of the stacks of the
architecture based on its current task. Following the example
above, when the Slay Vampires task is started the task server
will signal the navigation stack to change from a model-based
to dead-reckoning state estimator. The task server will also
signal the perception stack to use the Slay Vampires object
detection algorithms to find the buoys and choose the correct
face.

III. EXPERIMENTAL RESULTS

A general approach to testing was taken that transitions
from basic proof of concept to bench test to in-water testing.
This approach has been incredibly valuable in catching errors
in implementation before the vehicle is in the water. This
also maximizes the debugging capabilities early in the process
when changes are easiest to make. Our desired amount of in
water testing is once per week, which allows us to see the
results of any changes made that week. If any issues come up
during testing, they can be resolved before moving forward
with the sub. We feel that testing once a week is a good balance
between progressing with the design and actually validating
our work.

Lab bench tests have included the debugging of motor
control software, intra-process communications, and basic
sanity checks before putting the sub in the water. Old log files
from previous competitions have also been used to simulate
the competition experience and observe the response of new
algorithms. The bench testing setup with the entire assembled
sub can be seen in 4.

In addition to bench testing, the team has conducted multi-
ple in-water, pool tests as shown in 5. In-water testing began
with testing basics such as strength of the seals of the main and
other pressure vessels, and calibrating ballast for the natural
buoyancy of the sub. A slight positive buoyancy such that
in the case of connection or power failure the sub would
ultimately return to the surface was achieved through attaching
small diving weights to the bottom of the sub. In addition to
these preliminary tests underwater tests were also conducted
for control systems.

The testing procedure for the sub control systems was to
tune the gains for our depth control and our yaw control
separately. This was done by first tuning heading, then tuning
depth without heading, then heading without depth to ensure
torque from the depth motor was being countered properly.

The control system was tested on the bench and in the water.
When the PID control was first implemented on heading and

Figure 4: Bench testing setup, allowing hardware in the loop
simulation of vehicle performance.

Figure 5: Pool Test

depth control, it was accompanied by two test tasks: one for
maintaining heading and one for maintaining depth. Essen-
tially, these tasks took the current submarine heading/depth
from the IMU readings, and tried to command them to zero.
Through ROS, we were able to see that the commands to fire
the motors were indeed being sent and the motor commands
would cease as the desired heading/depth were reached by
moving the submarine on the bench. Next a similar test
was conducted in a swimming pool, with the change being
that the overshoot from the un-tuned gains was apparent in
the water. The gains were tuned in real-time by utilizing
the ROS dynamic reconfigure functionality. The results were
accurate control in depth and yaw with minimal overshoot and
oscillations. One lesson learned from the initial trial was that
heading needed a small dead-band (a small tolerance) so that
oscillations would not occur when heading was approximately
reached.

Additional testing related to navigation and control includes
driving the sub in a box pattern to verify the robustness of
the controllers when performing a maneuver in which both

GEORGIA TECH 5

controllers are active. This simultaneously tested the ability to
hold heading while maneuvering.

So far, the testing process applied to our vision systems have
been proof of concept. The systems that have been validated
are gate detection, path detection, buoy classification, and buoy
detection. To accomplish these proof of concept tests, the team
reconstructed the buoys, gate, and path from the competition,
took pictures of them in water, and tested our vision algorithms
on them. The buoy and gate props are shown in 6.

(a) Buoys (b) Gate

Figure 6: Props

For object classification, we evaluated the MLP classifier
on images of the Vetalas buoy. The neural network was
tested both offline and online. Offline, the trained model was
validated against a testing set, which provided metrics such as
accuracy and precision. The results of the test are shown in 8a.
To test online, buoys were placed in the water alongside the
sub with a loaded neural network to verify that it is classifying
the buoys properly.

Similar to the MLP classifier, a faster-R-CNN model for
object detection was tested using a test data set. The metric
used for evaluation of the object detection model is mean
average precision (mAP). The mAP value resulting from
testing the faster-R-CNN model trained on 343 images on a
test set of 80 images was 0.986 (mAP is bounded from 0 to 1)
[1]. As illustrated in 8b, one lesson learned from the test set
was that a method needs to be developed to ignore reflections
of buoys.

Initial testing for the “Follow the Path” section consisted of
taking pictures with the vehicle of an orange path segment
underwater from different angles and distances. The code
was then written with the help of those images and once
implemented on the vehicle, live testing was done to make
adjustments. A sample of the path detection is shown in Figure
7.

In summary, the results of the current computer vision are
positive, with successful edge and color detection for the
orange path and successful buoy classification and detection.
While all results so far are proof of concept, additional testing
will be done in-water in a variety of conditions such as
high sun glare, mottled pool floor coloring, and sharp angle
of features with respect to the submarine. Additional future
testing plans include recreating task scenarios using the props.
Also, other neural network architectures will be tested for
object classification and detection to try and improve speed
and performance.

Figure 7: Path Detection

(a) MLP Classifier Accuracy (b) Faster R-CNN Detection

Figure 8: Neural Network results

IV. CONCLUSION

Our main goal in approaching this year’s competition was
to develop a platform capable of consistent performance. This
took shape through the iteration and improvement of the vehi-
cle hardware and a major rewriting of the platform software.
This software rewrite prioritized modularity, simplifying the
path to implementing new and improved algorithms in each
of the competitions three key areas of perception, navigation,
and mission planning. A base level of navigation has been
integrated to ensure the vehicle is capable of completing our
targeted tasks. New ideas for perception have been integrated
into the rest of the autonomy stack and have shown promising
results in live testing. After a long year of work improving
on past performances, we’re excited to see our results at this
year’s competition!

ACKNOWLEDGMENTS

We would like to thank the GT Aerospace Systems Design
Lab for supporting our work on this project. Within the ASDL,
we would also like to give special thanks to the ADEPT
Lab for use of space and manufacturing tools. We would
also like to acknowledge the GT Campus Recreation Center

GEORGIA TECH 6

staff for helping us schedule testing times in the diving well
and understanding the sometimes frustrating parts of robotics
(sorry for the no-shows!). Finally, we would like to thank
all the previous team members here at Georgia Tech, your
experience and guidance has been invaluable throughout this
process.

REFERENCES

[1] “Faster r-cnn (object detection) implemented by keras for
custom data from google’s open images dataset v4.” https:
//towardsdatascience.com/faster-r-cnn-object-detection-implemented-
by-keras-for-custom-data-from-googles-open-images-125f62b9141a.
Accessed: 2019-07-08.

GEORGIA TECH 7

APPENDIX A
EXPECTATIONS

Subjective Measures
Maximum Points Expected Points Points Scored

Utility of team website 50 50
Technical Merit (from journal paper) 150 150
Written Style (from journal paper) 50 50
Capability for Autonomous Behavior 100 100
Creativity in System Design (static judging) 100 100
Team Uniform 10 10
Team Video 50 50
Pre-Qualifying Video 100 100
Discretionary Points (static judging) 40 40
Total 650 650

Performance Measures
Weight See Table 1 / Vehicle
Gate: Pass Through 100 100
Gate: Maintain fixed heading 150 150
Gate: Coin Flip 300 300
Gate: Pass Through 40% section 400 400
Gate: Style +100 (8x max) 800
Follow the ”Path” (2 total) 100 / segment 200
Slay Vampires: Any, Called 300, 600 900
Drop Garlic: Open, Closed 700, 1000 / marker (2 + pickup) 700
Drop Garlic: Move Arm 400 400
Expose to Sunlight: Surface in Area 1000 1000
Finish the mission with T minutes (whole + fractional) Tx100 1500

GEORGIA TECH 8

APPENDIX B
COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if bought new)
Buoyancy Control Sea Pearls Vinyl Coated Lace Thru

Weights
Miscellaneous sizes, 1-5 lbs. Varies, up to $30 for a 5 lb. weight

Frame Rails McMaster-Carr T-Slotted Framing Single $17.68 per 5ft. section
Waterproof Housing Custom Made Clear PVC Tube 7” ID N/A
Waterproof Connectors Amazon Generic IP68 Waterproof

Connector
2-8 pin Roughly $3 / connector

Thrusters Blue Robotics T200 No ESC $169
Motor Control Hobby King Afro ESC 30 Amp $11.36
Mid Level Control Arduino Mega N/A $38.50
Battery (Motors) Hobby King Turnigy Multistar 10000

mAh
4S, 10C $47.64

Battery (Electronics) Hobby King Turnigy Multistar 5200 mAh 4S, 10C $29.04
CPU Intel NUC, i7 (discontinued line) N/A From $212.83
External Comm Interface Microhard VIP2400 N/A N/A
Programming Language
(Navigation)

Python 3.7 N/A N/A

Programming Language (Vi-
sion)

C++ / Python 11 / 3.7 N/A N/A

Inertial Measurement Unit
(IMU)

Lord Microstrain 3DM-GX3-25 (discontin-
ued)

N/A $1615.00

Camera (forward) Genius Widecam F100 120 degree FoV $49.99
Camera (downward) ELP Fisheye Lens 1080p Wide

Angle
$45.00

Open source software ROS OpenCV Scikit-learn
Team Size 15 AE/ME/ECE/CS Rotated throughout year Priceless?
HW/SW expertise ratio 1:2 N/A All team members had basic

HW proficiency
N/A

Testing time: simulation 20 hours
Testing time: benchtop 15 hours
Testing time: in-water 30 hours

