
Gonzaga University Autonomous Underwater
Vehicle Implementation

Tyler Willis, Liam Jones, Aaron Wong, Daniel Mobley, Navath Nhan, Aaron Weber, Brandon Takahashi,
Kevin Mattappally, Kimbrell Larouche, Eric Av, Marissa Encarnacion, Jalen Tasciat, Philip Whitney

Abstract—Gonzaga’s first RoboSub AUV entry features ideas
that adapt to limited resources and experience, but are mostly
in themselves unique. Due to limited access to experienced
individuals, the design for the autonomous systems was completed
by our memebers after years of creative brainstorming and trying
new approaches.
The most prominent acheivment of this design is having a
fundamental structure that is easy to reproduce by others because
all the code relies on open source frameworks and our hardware
is not very costly to obtain. We have also aimed to make
our Graphical User Interface as easy to use as possible. Our
mechincal design is unlike our previous two generations of
protoypes which were heavy, leaky, not easily maneauverable, and
difficult to maintain from test to test. Our new design resolves
all these issues and allows for adaptiblity in future competitions.
Most Importantly, the overall design allows us to have something
to build on and continue moving forward with as our project
grows in the years to come.

I. INTRODUCTION

The Gonzaga RoboSub Team is in its very early stages and
after a couple years of research and development has figured
out a way to compete while still allowing the chance to learn
practical approaches to problems presented by competition
tasks. Our primary focus this year will be to learn as much
as possible and score as many points as our current system
will allow us. We inherited a large, bulky platform that served
us well for learning about motors and sensors, but had far too
many practical limitations to be worth bringing to competition.
Beginning in the spring semester of this year, we built a
lightweight chassis that is currently equipped only for the
specific tasks we’ve chosen to complete, but with room to add
other capabilities later on. With the very limited resources we
have (i.e. money, faculty, prior experience) we’ve had to make
critical decisions based on the competition’s design to decide
which competition goals we could attempt.

II. APPROACH TO COMPETITION STRATEGY

Our plan of approach to the complexity of the course is
keeping things as simple as possible for the first time around
to maximize success. Our final decision about the course was
to be able to do the qualifying maneuver, obtain a chip from
the dispenser, and lastly hit a six sided dice. The rest of the
competition would require system solutions that are currently
beyond the limit of our resources and skills. That being said,
we left space open for additions and modifications going into
next years competition.

III. MECHANICAL COMPONENTS

We inherited a design that featured a large enclosed volume
requiring a lot of ballast weight, a flat frame that didnt allow
room to add actuators or cameras, and a finicky sealing
mechanism that took a lot of force to close and required a
time consuming seal check every time we closed it. That
vehicle allowed us to develop and test our motion tracking
system and our motion control system, but that was about all
we could build into it. Starting when Daniel and Navath took
over as mechanical leads in January, we knew we needed a
new chassis to work with. All we really knew was what to
avoid, and what other teams and companies designs looked
like. We also had a tight timeframe, needing to create an
original design that would be easily manufacturable, while
addressing the clumsiness issues of the first generation and
providing a base to develop on in future challenges. With these
goals in mind, we created the sub you see today.

A. Frame

The old subs frame was a flat rectangle, good for mounting
motors and holding the hull, but that was about it. Adding
launchers or actuators would have been hard to balance, be-
cause they would be by necessity offset from the center of the
sub. For the new design, we wanted to have it be self-righting,
have space for actuators, grippers, and launchers, and be easily
adjustable as future needs require. This lead to the open box
design, with the electronics and battery tubes suspended from
the top of the frame and space for future development below.
The crossbars were moved inwards to maximize the cameras
field of view and reduce unnecessary frame components. We
chose the outside dimensions of 24x18x14 inches because it
worked well with the electronics and battery packages we need
to incorporate, while being small enough to be easily handled
above water. Finally, we built the frame out of 80-20 T slot
aluminum for its expandability and ease of modification.

B. Hull

The old subs hull was 40 inches long and about 16 inches
outside diameter, requiring an absurd amount of ballast to
compensate for the displacement. We had to go smaller. We
based our main hull size on the Bluerobotics 4.5 inch series
because it was the smallest platform that would accommodate
the electronics we use, and because it had a proven thru-
hull connector design that would work with the motor wires
we use. Based on designs from bluerobotics, other Robosub
teams, and our own volume calculations, we realized we could

minimize displacement by moving the batteries to external
tubes, which would also give us more freedom in locating
them for maximum stability. This did add complexity in terms
of more seals and more cable connectors, but we think that
the benefits of a smaller main tube are worth it.

C. Electronics Rack

In the old sub, the electronics tray was a piece of yard sign
mounted between two of the same pieces that were used for the
subs frame. This excessively closed in design decimated the
usable space in the otherwise too-large hull, making routine
maintenance and upgrades a challenge. In the new sub, we
took cues from the Bluerobotics design, but realized that we
didnt need the external bracing system. This design allows
us to maximize space by using both sides of the board to
attach electronics and controls. We made a strong push towards
using 3D printed brackets and mounts instead of hot glue and
cardboard, as this encouraged more forward planning and a
cleaner look, which is very necessary with a clear hull.

IV. ELECTRONICS SYSTEMS

The Submarine is powered by six 5000 mAh Lithium
Polymer batteries and is connected in-line with a relay to act
as our killswitch, which is activated when a magnet is removed
from a Hall effect sensor.

V. MISSION COMPUTER

It was determined that it would be best to have a Mission
Computer running Linux on board to handle all autonomy
related decisions, interface with the image recognition cam-
era and communicate with the Microcontroller with easy-to-
use functional control commands via a custom UART serial
protocol (described in more detail in the Microcontroller
Unit section). All Mission Computer code is written in Java,
and all communications with the Microcontroller and camera
are abstracted away for ease of use. The Computer follows
sequential step by step procedures to complete each task, while
making real-time decisions that allow the Computer to decide
when and how to perform each tasks. There is also a graphical
user interface that it is used for testing and debugging and was
made with the idea of keeping debugging time to a minimum.
OpenCV for Java was used for interfacing with a Logitech
Camera.

VI. EMBEDDED SYSTEMS

A. Microcontroller Unit

The microcontroller used is the TM4C123GH6PM. This
unit was chosen for its widespread support as well as flex-
ibility in functionality. These qualities made it possible to
prototype and develop functionalities in a timely manner.
The microcontrollers functionalities were accessed through
the widely supported TivaWare drivers. The drivers made it
easy to use the various peripherals provided without extensive
knowledge in the microcontrollers architecture. The flexibility
of the Nested Vectored Interrupt Controller allowed for a
responsive system. The use of interrupts provide an illusion

of concurrency which is a key component of the embedded
system. The interrupt service routines provide 3 main control
loops. The main function loop, the UART receiving interrupt
service routine, and the real time interrupt service routine. The
UART receiving interrupt service routine is triggered when a
character is received on the UART channel. The main function
loop controls prototyping and specific function testing, the
real time interrupt service routine runs the PID loop that
alters motor values to achieve the given set point. The UART
interrupt service routine appends the received characters onto
a global string. When the interrupt service routine has received
our predetermined ”end of transmission” character, it will then
proceed to process the string it has received. Each of these
strings will be 6 bytes long, 1 byte as an identifier character,
4 bytes as a standard IEEE 752 floating-point number and
the final byte as our predetermined ”end of transmission”
character, the ” ”. The identifier character appended to the start
of the string will signify what the subsequent floating value
represents. Different identifiers have been selected to represent
different values such as desired depth, desired heading or
desired forward thrust. A special identifier character ”*” signi-
fies that the subsequent characters will represent a debugging
string that the main function loop will handle. Upon receiving
the special identifier character, a flag will be raised to signify
for the main function loop to execute its debugging scripts.
Upon receiving a general identifier with a floating point value,
the UART interrupt service routine will store the received float
in its appropriate variables and change the appropriate flags
to signal a new setpoint has been received. The main function
loop waits on the ”foundEOT” flag. This flag is raised when
a special identifier character * has been received. The main
function will then parse through the received string which
often contains a debugging request like ”pssr” which requests
for the microcontroller to test the pressure sensor, or ”mtr”
which requests a motor test. This main function loop is used
primarily for debugging and prototyping purposes. The real
time interrupt service routine waits its timer to expire before
triggering. It is set to trigger once every 100ms. The real time
interrupt service routine will run through a PID calculation,
taking in the current sensor data and comparing it to the
desired sensor data. It will then compute the error between
the two values and the 3 corresponding proportional, integral
and derivative values. These values are recombined to give a
motor output value that will be used to bring the submarine
closer to the set point. This loop will run continuously to bring
the submarine to its set point and hold its set point. Due to
the nature of the PID algorithm, the computation has to be
computed at very specific intervals for the output value to be
meaningful. The use of a real time interrupt service routine is
crucial to maintaining a consistent sample time.

B. Sensors

The TM4C123GH6PM also interfaces with a large por-
tion of the sensors on the submarine. These include the
depth sensor, accelerometer, gyroscope and magnetometer.
The MPU9150 is used to provide acceleration, gyroscopic

and magnetic heading data while the MS5837 is used to
provide pressure data. The MPU9150 is housed as a sensor
boosterpack for the TM4C123GH6PM while the MS5837
is housed as the Bar30 as provided by BlueRobotics. The
microcontroller interfaces with the MPU9150 through I2C and
performs a complementary filter and a discrete cosine matrix
calculation to compute the submarines current magnetic head-
ing in degrees. Currently, the depth sensor is being interfaced
with through an Arduino Nano. The Arduino Nano reads the
data from the depth sensor through I2C, applies the appropriate
conversions, and sends the depth to the TM4C123GH6PM
through UART.

VII. DESIGN CREATIVITY

In writing the software for the submarine, the team was
faced with the challenge of designing a protocol that was
easy to use, efficient and descriptive. The protocol had to
communicate both the Raspberry Pi as well as the Texas
Instruments TM4C123GH6PM. In addition to the hardware
restrictions, the software team had chosen to use Java as
their programming language for the mission computer. In light
of these restrictions, the software team designed a protocol
around the rudimentary UART serial communication. UART
serial communication is widely used in both microcontrollers
like the TM4C123GH6PM as well as Raspberry Pis. The team
was tasked with configuring a Java application to communicate
through UART, designing a communication protocol that was
efficient, and implementing the protocol on all systems.

In order to access the serial communication port, the soft-
ware team wrote a driver to wrap the JSerialComms Library.
The driver configured the serial port to have no parity bits,
one stop bit with flow control disabled. This driver allowed
us to easily write byte or char arrays to the serial port.
This was used to send characters that could then be read as
commands by a receiving microcontroller. These commands
were used for debugging and prototyping. A protocol was
written around UART communication to send data values
between the Raspberry Pi and the TM4C123GH6PM.

The communication protocol designed uses 6 bytes for
a single communication unit. The communication unit can
describe an identifier and a floating point value attributed
to that identifier. The identifier can describe a characteristics
like a desired depth that the mission computer would like
to achieve or a current magnetic heading that the submarine
is facing towards. The first of the six bytes would contain
the identifier character followed by 4 bytes that describe the
standard IEEE 752 floating-point number and the final byte as
our predetermined ”end of transmission” character, the ” ”.
Using a single byte as an identifier allows us 255 unique
messages which was sufficient to communicate with. This
protocol proved to be lightweight, easy to implement and
sufficient for communicating between the microcontroller and
the mission computer.

VIII. EXPERIMENTAL RESULTS

The software team went through several control
boards before settling on the current Texas Instruments
TM4C123GH6PM microcontroller. The team initially used
an Arduino Mega as a microcontroller. The Arduino Mega
provided the team with quick prototyping, essential low level
features as well as access to a wide range of open source
libraries. The Arduino Mega was essential in allowing the
team to develop the mission computer and other peripheral
components. The Arduino Mega was unfortunately limited in
the interrupt capabilities available. The software team found
it essential to have a consistently timed sample rate for the
PID control loop. The Arduino Mega had limited support
for its interrupt service routines and could not provide the
functionalities needed. The software team then transitioned
into prototyping for a flight controller as the submarines
control board. The flight controller selected was the PixHawk
V2. This flight controller along with the ArduSub framework
allowed the team to experiment with a robust control
system. While the PixHawk provided the software team with
numerous functionalities, the software team found it difficult
to interface with PixHawk through their mission computer.
The software team finally landed on the TM4C123GH6PM.
This unit was chosen for its widespread support as well
as flexibility in functionality. The flexibility of the Nested
Vectored Interrupt Controller allowed for multiple interrupt
service routines which is heavily used in the submarines
control system.

The mechanical team did a number of experiments to make
sure the new tubes were sealed, involving different types
of grease and different designs for the O-ring grooves. 3D
printing allowed us to create, test, observe, and change designs
much more rapidly than if we had to send off drawings to a
machine shop, as well as adding more ports to the caps as
the electrical team needed them. We also experimented with a
number of different sealing greases for the o-rings. We started
with vaseline since its what we had in our cabinet, but we
werent impressed by its sealing ability or its durability. We
tried a generic silicone grease from Ace hardware, and it was
better at sealing, but it still would wash away after a few
tests. Finally, we got some silicone grease from our local pool
supply store called Magic Lube, and its significantly greater
viscosity

ACKNOWLEDGMENTS

We’d like to thank Janeane Schmidt who has been a big
help in shedding some publicity light on our project, and our
advisor Patrick Nowacki who always listens to our crazy ideas
and helps us move forward.

APPENDIX: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (If New)
Buyancy Control NA NA NA NA

Frame 8020 1x1 in. T Slot 20 feet, cut to length $60
Waterproof Housing Bluerobotics, Home Depot Acrylic PVC pipe, 3D printed endcaps 4.5 in dia 0.5 in. thick $80

Thrusters Blue Robotics T200 $169x8
Motor Control Texas Instruments TM4C123GH6PM $16

High Level Control Raspberry Pi Raspberry Pi 3B+ $36
Actuators
Propellers Blue Robotics Propellor Set $5

Battery Turnigy 4S1P 14.8V 20C Hardcase Pack $32.80x6
Converter
Regulator

CPU Raspberry Pi BCM2837B0 Quad-core A53 64-bit @ 1.4GHz
Internal Comm Network
External Comm Network
Programming Language 1 Java
Programming Language 2 C++

Compass Texas Instruments MPU9150 (SensorHub BoosterPack) $40
Inertial Measurment Unit Texas Instruments MPU9150 (SensorHub BoosterPack) $40

Doppler Velocity Log
Camera(s) Logitech C310 720p Webcam

Hydrophones
Manipulator

Algorithms: Vision Open-Source OpenCV Free
Algorithms: Acoustics

Algorithm: localization and mapping
Algorithms: Autonomy Texas Instruments TivaWare
Open Source Software OpenCV, Raspbian Jessie OS

Team Size 16
HW/SW Expertise Ratio 1:3
Testing Time: Simulation
TEsting Time: In Water 15 Hours

