Gonzaga University Robotics Club: Robosub 2019

Tyler Willis, Liam Jones, Aaron Wong, Daniel Mobley, Navath Nhan, Aaron Weber,
Brandon Takahashi, Kevin Mattappally, Eric Av, Anna Smith, Ben Howard, Marissa Encarnacion,
Michael Tome, Jasmine Fischer, Blaine Atkins, Emily Ellewin,

Abstract—Last year, for the first time in club history, GU
Robotics attended the international Robosub competition where
we exceeded our own expectations and learned where to find
room for improvement. This year, club activities attempted to
address the system limitations we came up against last year and
lay a foundation for future advancements. Our work this year
adds functionality to the computer control systems, including
computer vision, and creates a platform to be used in the future
with minimal modifications.

This paper is a documentation of the engineering and technical
work we accomplished on the mechanical, electrical, and com-
puter science systems as we try to increase capability without
sacrificing reliability. This paper should explain what we did
and why we did it, and serve to familiarize someone with
the technical and organizational aspects of GU Robotics 2019
Robosub competition entrant.

I. COMPETITION STRATEGY

Our competition strategy is reliability through simplicity.
Our team is still working on the body of knowledge neces-
sary for object identification, vehicle tracking, and mission
control, so focusing any team’s effort on advanced systems
like grippers or launchers would be working in vain. Our
testing this year focused on getting the most valuable data
from the computer vision system, integrating that with data
from the IMU, and creating the autonomous mission control
scheme from that. Our testing focused on the integration of the
computer vision system, under the belief that reliable computer
vision would be the most bang for our buck in terms of
navigation. Last year, we scored our points by having our diver
point the sub in the right direction and moving in a reliable
curve. This year, we hope to be able to use the compass to
orient ourselves, use the vision system to pass through the
gate on the small side, and as a stretch goal, we’d like to bump
into the buoys. Going beyond that requires either a DVL or an
echolocation system, neither of which we have the financial or
personal resources to acquire or integrate. Someday, we hope
to add those to our platform, which would enable us to make
a good faith attempt at the higher level course challenges.

II. VEHICLE DESIGN
A. Mechanical

Our 2019 development work was heavily influenced by
lessons we learned at competition in 2018. Our previous
strengths were robustness, ease of control, and in-water sta-
bility, while our weaknesses were the time it took to open the
hull, difficulty in arranging and loading the electronic compo-
nents, and limited room for upgraded computer systems. We
introduced a new hull to optimize electronics accessibility, we

created a custom electronics tray for compact arrangement, and
we changed the frame design to support balance adjustments.
We did all this with an eye towards modularity for future
expansion.

1) Hull: We replaced the tube design of last year with an
off-the-shelf underwater enclosure from Polycase, mounting
the electronics to a custom tray and routing the wires through
the lid. Initially, we used a 10x10x12 box, but testing revealed
we could fit all our components in an 8x8x10 box and score
bonus points by minimizing ballast weight. The box is opaque
polycarbonate, but the lid is clear so we can see our indicator
LEDs and inspect for water leaks. Inside the hull, we designed
a custom electronics tray that holds all the electronics and the
batteries, allows for easy removal and component access, and
also serves as a structural brace, protecting the sides of the
box against deflection from water pressure. We used an on-
campus laser cutter to create the interlocking acrylic parts, and
tolerances are within .05 mm of what we expected. Since we
routed all wires through the lid, we designed and 3D printed
custom brackets that allow the lid to clip on the side of the
box while we work on the internal electronics, and version two
will optimize the shape to be epoxied onto the lid. If future
developments require more space, we could switch back to the
larger box and re-cut the electronics tray with new proportions,
and be running within a day.

Fig. 1. Custom Electronics tray in the box

2) Frame: In a change from last years all t-slot aluminum
construction, we used plasma cut aluminum panels on the
side to allow for precise positioning of motors and the hull,
as well as providing extra protection for components if the
sub bumps into walls. These were modified based on test
experience to minimize weight and maximize flexibility of
mount locations. Standardized hole sizes work with the t-slot

mounting brackets, and custom 3D printed motor mounts allow
for near-universal motor positioning.

Fig. 2. Side Panels V1 (left) and V2 (right)

3) Camera Mount: In the creation of the computer vision
system, rather than use two cameras to acheive our desired
field of view (forward and down), we would use one camera
on a pivot mount. Once we selected a waterproof servo, our
team member Michael Tome designed brackets to attach the
rotating camera box, the servo, and the frame. Designed for
3D printing, these brackets fit all the components surprisingly
well, and accounted for the offset pivot point of the servo. In
version two, we improved the accessibility of the mounting
screws and reduced high stress points in the brackets.

Fig. 3. Camera brackets for 3D printing

B.

Electronics Systems

1) Backplane: Most electrical components interface with
the Texas Instruments microcontroller board. The 2018 subma-
rine used a perfboard backplane to facilitate these connections.
In the interest of a more robust, professional backplane for
the 2019 sub, we designed a PCB using Eagle software from
Autodesk and created it using the milling machine provided by
Gonzaga. The microcontroller slots in to the backplane which
connects it to headers for indicator lights, voltage sensing,
current sensing, leak sensing, camera servo and light PWM
outputs, ESC signal outputs, a ground equalizer, auxiliary 5V
high-amperage input, and an I2C bus for connecting the depth
sensor, IMU and further expansion.

2) Leak Sensor: This year we transitioned to a new hull
with our batteries on the bottom of the hull. As such, it was
difficult to access the state of the battery compartment and the
hull’s reliability was an unknown. Any leaks in the battery
compartment would have been a critical issue. With the new
consolidated hull design, we can more reliable verify the state

Fig. 6. Leak Sensor board bottom

of the submarine. To assist in locating leaks, we designed a
leak sensor board which was created on our milling machine.
The board has two independent probe headers to allow for
easier identification of leak location. The board has two LED
indicators, as well as a signal header for communication with
the microcontroller which are both activated when current is
detected across probe leads, indicating the presence of water.

3) Kill Switch: For the ability to cut power to the submarine
from outside the hull, a magnetic hall effect sensor is placed
near the hull wall with a magnet on the outside. Removal of the
magnet opens the hall effect sensor, which kills power to the
submarine. The hall effect sensor switches a transistor which
is used to switch a relay. In previous years this disconnected

Fig. 7. Leak Sensor wiring diagram

Relay Driver Board

2 Vcc Battery (+) i
1,Gnd Battery (-) 2

ol

EA- power input

i B- hall effect sensor -
\

i c- power to relay
|

Fig. 8. Relay Driver Board Wiring Diagram

power to the whole submarine. This year with the addition
of an RFID reader to reset the TI microcontroller, we have
reconfigured the kill switch to only cut power to the thrusters,
allowing us to cease sub operation while not hard resetting the
mission computer. This gives us a quicker turn-around from
resetting our system.

4) Electronics layout: The increase of electrical compo-
nents made efficient, effective and functional layout important.
The IMU (which is mainly used as a compass for now) was
placed in the corner, away from noisy components to minimize
interference. Positioning it in different locations and spinning
the sub revealed this to be one of the few locations where it
remained functional.

To save space on the electronics tray, the ESCs were
attached to the underside of the lid. This also minimized the
number of wires that needed to travel between the penetrators
on the lid and the tray.

To minimize the number of cameras needed, the camera is
mounted in an external box attached to a servo which can
rotate the camera up and down. When this functionality is
enabled in software, it will allow the same camera to serve
the purpose of following lines on the floor, locating targets
ahead, and finding an area to surface.

C. Software

1) Mission Computer: The Mission Control software team
focuses on controlling the actions of the sub and communi-
cation between the different systems running on the sub. The
center of the mission control is a Java program that is executed
on an NVIDIA Jetson TX2. This mission control program
communicates to the TM4CI123GH6PM microcontroller to
control motors and receive sensor data and a Python program
to interpret camera data using OpenCV. The microcontroller
communications are done through UART, and the Python
communications are done through a UDP server. In both cases,
the Java program sends data through a communication protocol
using a set of enums called SendTypes and ReceiveTypes.
These enums are part of a system we developed that sends
a specific character id for what type of data is being sent
(such as a PWM value for a specific motor or a desired depth
value) along with the data. Whenever a SendType is sent the
data being sent and the timestamp of when it was sent are
recorded, so that they can be viewed after testing to find what
commands were sent at what time.The microcontroller and
Python send data to the Java program in the same format, and
the Java program has a list of ReceiveTypes that tell what type
of data the character id corresponds to, and these are recorded
in the same manner as the SendTypes.

It was determined that it would be best to have a Mission
Computer running Linux on board to handle all autonomy
related decisions, interface with the image recognition cam-
era and communicate with the Microcontroller with easy-to-
use functional control commands via a custom UART serial
protocol. All Mission Computer code is written in Java,
and all communications with the Microcontroller and camera
are abstracted away for ease of use. The Computer follows
sequential step by step procedures to complete each task, while
making real-time decisions that allow the Computer to decide
when and how to perform each tasks. There is also a graphical
user interface that it is used for testing and debugging and was
made with the idea of keeping debugging time to a minimum.
OpenCV for python was used for interfacing with our camera.

2) Mission Control: The mission control program is capa-
ble of parsing and running mission scripts written in JSON.
These scripts in JSON contain a series of steps and actions
that the submarine will take, given the right condition is met.
This script can be best thought of as a linked-list where the
mission computer only traverses to the next node when all of
its exit conditions have been met. This mission script allows
us to quickly modify the behavior of our submarine while
allowing it to autonomously execute a set of instructions.
Mission scripts consist of a set of nodes, with each node
having actions and exit conditions. Actions are values that
are sent to the microcontroller or Python program, such as
motor PWM values or setting and enabling a PID loop. Exit
conditions are the conditions that must be met before the
mission can move on to the next node, which can include
simple conditions like a certain amount of time elapsing or
more complex conditions such as holding a certain depth or

heading for a period of time.

D. Embedded Systems

The goal of the Embedded Systems team is to provide an
interface for our Mission Computer to communicate with our
motors, sensors, etc. To do this, we have a Texas Instrument
microcontroller that uses protocols like I2C, UART and PWM
to communicate with the sensors and motors while providing
feedback to the Mission Computer.

1) Microcontroller Unit: The microcontroller used is the
TM4C123GH6PM. This unit was chosen for its widespread
support as well as flexibility in functionality. These qualities
made it possible to prototype and develop functionalities in
a timely manner. The microcontrollers functionalities were
accessed through the widely supported TivaWare drivers. The
drivers made it easy to use the various peripherals provided
without extensive knowledge in the microcontrollers architec-
ture. The flexibility of the Nested Vectored Interrupt Controller
allowed for a responsive system. The use of interrupts provide
an illusion of concurrency which is a key component of the
embedded system.

2) Control Loops: The interrupt service routines provide
3 main control loops. The main function loop, the UART
receiving interrupt service routine, and the real time interrupt
service routine. The UART receiving interrupt service routine
is triggered when a character is received on the UART channel.
The main function loop controls prototyping and specific
function testing, while the real time interrupt service routine
executes the PID control loop that alters motor values to
achieve the given set point.

The UART interrupt service routine appends the received
characters onto a global string. When the interrupt service
routine has received our predetermined “end of transmission”
character, it will then proceed to process the string it has
received. Each of these strings will be 6 bytes long, 1 byte as
an identifier character, 4 bytes as a standard IEEE 752 floating-
point number and the final byte as our predetermined “end
of transmission” character, the ” ”. The identifier character
appended to the start of the string will signify what the
subsequent floating value represents. Different identifiers have
been selected to represent different values such as desired
depth, desired heading or desired forward thrust. A special
identifier character ”*” signifies that the subsequent characters
will represent a debugging string that the main function loop
will handle. Upon receiving the special identifier character,
a flag will be raised to signify for the main function loop
to execute its debugging scripts. Upon receiving a general
identifier with a floating point value, the UART interrupt
service routine will store the received float in its appropriate
variables and change the appropriate flags to signal a new
setpoint has been received.

The main function loop waits on the “foundEOT” flag.
This flag is raised when a special identifier character * has
been received. The main function will then parse through
the received string which often contains a debugging request
like “pssr” which requests for the microcontroller to test

the pressure sensor, or “mtr” which requests a motor test.
This main function loop is used primarily for debugging and
prototyping purposes.

The real time interrupt service routine waits its timer to
expire before triggering. It is set to trigger once every 100ms.
The real time interrupt service routine will run through a PID
calculation, taking in the current sensor data and comparing
it to the desired sensor data. It will then compute the error
between the two values and the 3 corresponding proportional,
integral and derivative values. These values are recombined
to give a motor output value that will be used to bring
the submarine closer to the set point. This loop will run
continuously to bring the submarine to its set point and hold
its set point. Due to the nature of the PID algorithm, the
computation has to be computed at very specific intervals for
the output value to be meaningful. The use of a real time
interrupt service routine is crucial to maintaining a consistent
sample time. The real time interrupt service routine will then
execute a set of triggered actions before sending all internally
stored variables to the Mission Computer to be synchronized.

3) Sensors: The TM4C123GH6PM also interfaces with a
large portion of the sensors on the submarine. These include
the depth sensor, accelerometer, gyroscope and magnetometer.
The MPU9150 is used to provide acceleration, gyroscopic
and magnetic heading data while the MS5837 is used to
provide pressure data. The MPU9150 is housed as a sensor
boosterpack for the TM4C123GH6PM while the MS5837
is housed as the Bar30 as provided by BlueRobotics. The
microcontroller interfaces with the MPU9150 through 12C and
transforms the data through a Madgwick filter to compute the
submarines current magnetic heading in degrees.

4) RFID Inputs: Our team worked on a wireless method to
send signals to the submarine while in untethered. We added an
RFID sensor which communicates with our Mission Control
software through UART. This RFID sensor was specifically
chosen to for its low frequency of 125kHz, allowing it to
communicate even through water. The RFID sensor actively
reads RFID tags that come within Scm. If the RFID tag’s
identification digit matches the stored values within our Mis-
sion Control, it triggers a programmable action. This method
is used to trigger the shut-down of the microcontroller or the
start of various mission scripts. The RFID sensor provides a
unique and flexible way of communicating with our submarine
when untethered.

E. Machine Learning

We began to implement Machine Learning into the subma-
rine to better seek out competition challenges and improve
object detection beyond mere color recognition. We manu-
ally collected and labelled images from previous competition
videos available online to train the model to detect the gate.
Using the NVIDIA Digits software, we were able to create a
deep neural network for the purpose of object detection using
the DetectNet framework and a KITTI dataset. From there,
we used our completed model to pretrain another model, and
increase the accuracy of our predictions.

1) Labels: Our team created a custom labelling software
in C# using Windows Presentation Foundation to manually
label our collected images. Several versions of this program
were created, with features added to ensure that the several
parameters to use the Digits software, namely uniformity in
the image sizes and meeting the minimum bounding box
requirement of 60 x 60 pixels. The program collected the
relevant data points on the selected region, and transcribed the
information into a separate label document. We collected such
information as X, Y, and Z. We then distributed the images
into two separate data sets, the training and the validation
set. Approximately ten percent of our collected data, and
their corresponding labels, were placed into our validation set,
which were chosen to represent a diverse range of angles and
situations, rather than selected randomly.

2) Models: The Digits software then trains a model through
500 epochs using our given training set and the corresponding
labels, and tests for the accuracy, precision, mAP, and the loss
of each value against the validation set. A graph is then created
for each value before the next epoch begins. The network then
continues testing the weights randomly until the end of the 500
epochs.

A pretrained model is created using the last most successful
model at the epoch of the highest reported mAP value, and is
then trained with the assigned weights for another 500 epochs,
allowing the neural network to refine its assigned weights. The
process is only repeated twice to avoid overfitting the network
to the data set.

III. EXPERIMENTAL RESULTS

Early in the year, we created a small robotic car that works
off of the same Nvidia Jetson and motor controllers as the sub,
as a platform for testing and debugging the computer vision
system without the logistical burden of a pool test. Using this
platform, we were able to integrate the computer vision system
with the heading control system, allowing for pool tests to
focus on integration rather than debugging. We saved many
man hours of prep, transport, and waiting, and the car serves
as a more engaging demonstration for prospective students
than the sub could.

On the mechanical side, testing proved that the original
10”x10”x12” box was not only too big, but also required an
absurd amount of ballast. We switched to a smaller model
of the same box, and tests showed that it is secure down to
18 feet, without the reinforcing electronics tray. We learned
that the acrylic used in the electronics tray is brittle and will
crack under repeated stresses, so techniques to minimize stress
concentration factors were used. Ideally, the material would
be switched to polycarbonate for its decreased brittleness,
unfortunately it is not able to be laser cut. We also modified
the design of the side panels to minimize interference with
the y-axis thrusters and allow for maximum flexibility with
mounting components for balance and drag reduction.

ACKNOWLEDGMENTS

We’d like to thank Patrick Nowacki for 4 years of being our
club advisor, hearing our crazy ideas, and pointing us towards

something that will actually work instead. We are grateful to
Dr. Timothy Fitzgerald for taking on this role moving forward,
and we’re excited for his guidance. Huge thanks to Dr. Brian
and Donna Jones for allowing us to take over their home for
a week during competition and for giving us food on top of
that. Thanks to all the young students on the team, whose
energy and passion to know more and do more drives this
team, we're excited to see what you do with the club. Thanks
to the students of the other Robosub teams for your knowledge,
camaraderie, and freely given help and advice.

APPENDIX A: SCORING EXPECTATIONS

@
M) 2019 RoboSub 13 May 2019

Appendix A: Expectations

Below is the scoring table showing the points associated with each task. Enter the points you expect to score with
the vehicle(s) that you have designed and engineered. At the end of the competition, enter the points you actually
scored in the last column.

Subjective Measures

Expected Points
Maximum Points Points Scored
Utility of team website 50 99
Technical Merit (from journal paper) 150 100
Written Style (from journal paper) 50 4_0
Capability for Autonomous Behavior (static judging) 100 50
Creativity in System Design (static judging) 100 60
Team Uniform (static judging) 10 9
Team Video 50 35
Pre-Qualifying Video 100 0
Discretionary points (static]udging] 40 20
Total 650 349
Performance Measures
Maximum Points

Weight See Table 1/ Vehicle Y8.0
Marker/Torpedo over weight or size by <10% minus 500 / marker -0
Gate: Pass thrquh 100 100
Gate: Maintain fixed heading 150 150
Gate: Coin Flip 300 300
Gate: Pass thrquh 60% section 200 0
Gate: Pass through 40% section 400 400
Gate: Style +100 (8x max) 100
Collect Pickup: Crucifix, Garlic 400 / object
Follow the “Path” (2 total) 100 / segment 100
Slay Vampires: Any, Called 300, 600 300
Drop Garlic: Open, Closed 700, 1000 / marker (2 + pickup) o
Drop Garlic: Move Arm 400
Stake throEEh Heart: Open Oval, Cover Oval, Sm Heart 800, 1000, 1200 / torpedo (max 2)
Stake throEEh Heart: Move lever 400
Stake through Heart: Bonus - Cover Oval, Sm Heart 500
Expose to Sunlight: Surface in Area 1000
Expose to Sunlight: Surface with object 400 / object
Expose to Sunlight: Open coffin 400
Expose to Sunlight: Drop Pickup 200 / object (Crucifix only)
Random Pinger first task 500
Random Pinger second task 1500
Inter-vehicle Communication 1000
Finish the mission with T minutes (whole + factional) Tx100

1897.5

Fig. 9. expected point values

APPENDIX B:COMPONENT LIST

Component

Buyancy Control

Frame

Waterproof housing
Thrusters

Motor Control

High Level Control
Actuators

Propellers

Battery

Converter

Regulator

CPU

Internal Comm Network
External Comm Network
Programming Language 1
Programming Language 2
Programming Language 3
Compass

Inertial Measurment Unit
Doppler Velocity Log
Camera

Hydrophones
Manipulator

Algorithms: Vision
Algorthms: Acustics

B C D
Vendor Model/Type Specs
N/A

8020 1x1in. T slot 20 feet, cut to length

Polycase YQ-100806 10x8x%8 inches
Blue Robotics T200
Texas Instruments TM4C123GHEPM
Nvidia Jetson
N/A

Blue Robotics Propellor Set

Turnigy 431P 14 .8V 20C Hardcase Pack
Nvidia Jetson

Java

Ct++

Python

Texas Instruments MPU9150 (SensorHub BoosterPack)

Texas Instruments MPU9150 (SensorHub BoosterPack)
N/A
ELP
N/A
NIA
Open-Source
N/A

ELP-USB500W02M-L36 3.6mm fixed lens

OpenCV

Algorithm: Localization and mapping N/A

Algorithms: Autonomy
Open Soure Software
Team Size

HW/SW Expertise Ratio
Testing Time: Simulation
Testing Time: In Water

Texas Instruments TivaWare
OpenCV
24
11:13
30 hours

5x 3 hour days

Fig. 10. Component List

E

Cost (if new)
$60
$69

$169x6
$16

$5
$32.80x6

$400

$40
$40

§62

Free

