
Development of SKUBA
Autonomous Underwater Vehicle:

Obsidian robot

Kanjanapan Sukvichai
Dept. of Electrical Engineering
Kasetsart University, Bangkok

Thailand 10900
Email: fengkpsc@ku.ac.th

Somphop Limsoonthrakul
Dept. of Computer Engineering
Kasetsart University, Bangkok

Thailand 10900
Email: paeyeng@gmail.com

Tachin Srisombat
Dept. of Computer Engineering
Kasetsart University, Bangkok

Thailand 10900
Email: jidrids@gmail.com

Abstract—Obsidian is an Autonomous Underwater Vehicle
(AUV) developed by SKUBA team at Kasetsart University. Our
team consists of graduated and undergraduate students from
several departments. In this paper, we present a design of
underwater robot which is carefully produced in order to make
sure that the robot can deliver a good performance in the
competition. We apply snap lock mechanism to in order to create
a waterproof area for the control unit. The frame is designed so
that it is flexible and adjustable for equipment mounting. The
robot is driven by eight thrusters which is attentively mounted at
positions so that it can achieve 6 degrees of freedom motion. Many
kinds of sensor are adopted to the robot, e.g. an IMU, a barometer,
and a side-scan SONAR. Information from sensor is used as
perception for the robot. Along with sensors and actuators, the
electrical system is design and developed in order to make sure
that the robot can operate reliably. We also implement a software
system in order to control the robot. Object detection, SLAM,
and planning techniques are integrated in the system so that our
AUV can perform the tasks and achieve the goal.

I. INTRODUCTION

Autonomous Underwater Vehicle (AUV) is an interesting
topic that challenges all researchers in both robot’s hardware
design and intelligent software development. SKUBA is the
autonomous robot team from Kasetsart University, Thailand.
Team is consist of students from Department of electrical,
computer and mechanic engineering. SKUBA team has the
main objective is to design, develop, research and build a
kind of an autonomous robot. SKUBA team had joined sev-
eral robot competitions such as small-size soccer robot and
@Home robot competition in RoboCup competitions [1]. This
year, team expand our interested to International RoboSub
competition which is held in San Diego, CA.

In this paper, we present a design of Obsidian which is
our AUV. Mechanical, electrical, and software designs are
described in each section to give an overview of our robot
hardware and control system.

II. ROBOT DESIGN

In this section, the mechanical design and electrical com-
ponents are explained. Design criteria is defined based on
RoboSub competition rules. The robot body is separated
into two major parts: hull and frame. Both of the parts are

Fig. 1. SolidWorks rendering of Obsidian min robot

made from aluminum 5083 grade which has a high corrosion
resistance property. This criteria is concerned when the robot
is submersed into the salt water. The concept design of the
robot is shown in Fig 1. Obsidian is our robot name.

A. Robot Frame

Robot frame is made from a 5 mm thick aluminum sheet.
The frame has holes in order to reduce robot weight and makes
the robot’s components, such as sensors and thrusters, remov-
able and relocatable. Two wide angle cameras are attached at
the bottom of frame in order to capture the floor images. These
images will be used to construct Stereo Vision Simultaneously
Localization And Mapping or SV-SLAM which will be used
in our navigation system. Two more cameras are attached in
side the hull in order to get from view images to do assigned
tasks. Sonar and water pressure sensor are also installed at
the frame for measuring the depth of the robot. Moreover, the
transportation is the big issue for our team, therefore, the frame
can be separated and easy to load into the airplane. Robot’s
frame is shown in Fig 2.

Fig. 2. Robot’s frame

Fig. 3. Front cover structure

B. Robot Hull

The most critical criteria when design an underwater robot
is the waterproof system. Robot’s hull must be waterproof and
passed the IP68 standard. Hull can be separated into three part
which are hull tube, electrical rack and back cover. Hull tube
is mode from aluminum sheet which is rolled into a cylindrical
shape. Front cover of the tube is a stack of waterproof structure
which is a stack of aluminum ring, rubber washer, transparent
acrylic, o-ring and aluminum base respectively. The cameras
will be installed on the back of this stack in order to get the
best front view image. Tube’s front cover is shown in Fig 3.

Electrical rack is installed inside the hull tube and attached
to the back cover. All electrical components such as thruster
drivers, power supply unit, batteries and main computer are
installed to the rack. The rack consists of 4 layers of aluminum
plate and stacked together by side supporters. Back cover is
also the critical part of the design because the leakage can
happen at this area because the hull tube is a removable part.
This back cover must be strong enough to hold the rack and
the electrical components. Therefore, aluminum sheet which
has 10 mm thickness is selected for the back cover plate. This
plate is CNC into specify shape in order to install a waterproof
stack and electrical rack.The back cover waterproof system is
designed by using the same concept as the front cover. By
stacking an o-ring, rubber washer, and aluminum back cover
plate respectively, the robot hull is waterproofs and removable.
The adjustable snap locks are installed around the tube and
back cover in order to make the tight lock between the tube
and back cover. Fig 4 shows the complete robot’s hull.

The waterproof and snap lock system is shown in Fig 5.

Fig. 4. Robot’s hull structure

Fig. 5. Back cover structure

After all the hull’s parts are manufactured, it is assembled
and tested in the pool as shown in Fig 6. All of the seals work
properly.

C. Manipulator

Basically, motor is selected as manipulator actuator, but
in RoboSub case, pneumatic system is more suitable for
an underwater scenario. Due to the fact that the pneumatic
system requires less complex waterproof technique, pneumatic
manipulator is easier to control the than a pneumatic motor.
This year, the gripper is designed instead of a full manipulator
due to limitation of the developing time. One pistol pneumatic
provides a gripping motion as shown in Fig 7. Gripper is
installed at the bottom side of the robot as shown in Fig 8.

Since the Ball-Bullet gun tank is hard to found, therefore,
CO2 tank will be used for our pneumatic system’s power
source.

D. Thrusters

The 600HF thrusters from CrustCrawler are selected to be
the robot’s thrusters as shown in Fig 9. the thruster is driven

Fig. 6. Waterproof test for robot’s hull

Fig. 7. Robot Gripper

Fig. 8. Mounting Position of the Robot Gripper

Fig. 9. CrustCrawler 600HF thruster

by powerful 600 Watts brushless DC motor with a 4.28:1 gear
ratio which can produce output power up to 140 watts. It can
generate maximum thrust of 6.79 kg when operated at 16 Volts
and 6 Amps . Seacon ”Wet Mate” male and female connectors
are used to connect between thrusters and robot’s hull. There
are 8 thrusters in the obsidian robot. Four thrusters are used
to control robot depth and its stability. Two thrusters are used
for forward and backward motion while the last two thrusters
are used to move a robot to the left and right.

Robot frame and hull are manufactured and assembled.
Thrusters are installed into robot’s frame. The total weight is
around 43 kg without electrical components. Robot is normally
float for safety purpose and required thrusters force in order
to drive the robto down into the water. Buoyancy force is
calculated in order to find the requirement torque by using
equation below. The requirement torque for each thruster is
4.5 kg.

thrusterforce = ρπ
D2

4
Lg −Robotweight (1)

where,
ρ = 1029kg/m3

Robot now is tested by adding weight around 10 kg into
the frame in order to simulate thrust forces and is dropped into
the pool. Fig 10 shows the real robot.

E. Sensors

In this section, robot sensors are explained. High definition
cameras are the main sensors and used in many parts in our
software such as navigation and object detection modules.
Two WideCam F100 wide angle cameras are placed inside
a waterproof container with specific length between two cam-
eras. The container is attached to the bottom of robot’s frame
and placed it face down in order to capture a bottom view
which is used in SV-SLAM algorithm and used to obtain
orientation of Guide Markers. Distance from the robot to
the bottom of the pool is calculated by using stereo vision
technique. Moreover, these cameras capture the features of

Fig. 10. Obsidian mini

Fig. 11. UM6 Inertia Measurement Unit (IMU)

the floor. Features are used to construct a map. A Logitech
C920 cameras are attached to the front of electrical rack
behind the transparent acrylic. Front view images are captured
and used in order to calculate distance between robot and
interested objects. Inertia Measurement Unit (IMU) from CH
Robotics is selected for robot motion sensor. This IMU consists
of three axes rate gyroscopic sensor, three axes acceleration
sensor, and magnetic sensor. Computer unit can communicate
to IMU by using RS-232 standard at maximum rate of 112500
baud/sec. Orientation of the robot can be estimated by fusing
all measured data using Extended Kalman Filter (EKF). Angle
estimates are available as ’Euler Angle’ or ’Quaternion Angle’
outputs. This sensor is placed at the middle of the robot in
order to obtain more precision data. Robot self-stabilizing
algorithm uses this estimated angle and rate of change in angle
in order to control the robot’s stability. UM6 IMU is displayed
in Fig 11.

Tritech Micron DST Scanning sonar is installed into the
top of robot’s frame as shown in Fig 12. It’s used for obstacle
avoidance and distance estimation. Sonar information is impor-
tance when robot operates in turbid water condition. In this bad
condition, images from front camera cannot provide accurate
distance to interested objects. The Micron scans 360 degrees

Fig. 12. Micron DST Scaning sonar is installed on top of the robot

Fig. 13. Micron DST Scaning sonar (left) and PA500 Altimeter (right)

with a frequency up to 750kHz. It can scan surrounding
environment up to 750 m. PA500 Precision Altimeter sonar
is also installed into the robot in order to measure depth of
the bottom floor related to the robot. This sensor data will be
combined with the stereo vision depth information in order
to produce high accurate measurement. Micro DST sonar and
PA500 are shown in Fig 13.

F. Main Computer

In order to process images,perform tasks and calculate
navigating algorithms, an on-board computer is concerned. It
has to have enough calculation power to process images in
real-time, and have suitable connection ports to communication
with variety of sensors and also consume less energy. Intel
based computer is selected for robot’s computer since it is
flexible and has a environment friendly for both Windows and
Linux OS. Next Unit of Computer kit (NUC) is the optimal
solution for the robot because it can be customized and has
enough connection ports. Dimension of NUC is 116.58 x
112.01 x 34.54 mm including its cover box . NUC in the
robot comes with Intel CPU Core i5, 8 GBytes of RAM, 64
GBytes of solid state hard drive, two USB 3.0, one USB 2.0,
one mini display port and one mini HDMI. It also has one
empty mini PCIe which can be used to add extra card when

Fig. 14. Next Unit of Computer kit (NUC)

Fig. 15. Waterproof IP68 standard plug

it’s required. NUC is shown in Fig 14. Ubuntu is selected as
our robot’s OS. Robot Operating System (ROS) is installed in
order to combine codes from different programing languages
easily. The ROS is a set of software libraries and tools that
help you build robot applications [2]. From drivers to state-of-
the-art algorithms, and with powerful developer tools, ROS is
a good solution for robotics project and it’s all open source.

G. System Diagram

Robot wiring diagram and waterproof connectors are ex-
plained in this topic. IP68 standard waterproof and dust proof
plugs are selected as connectors between the hull and outside
components such as thrusters and sensors. This connector is
made from plastic. It has a thread and o-ring seal to create air
tight between female and male connector’s head. Spiral rubber
band is installed at the end of male head in order to tighten
the cable. Fig. 15 shows waterproof plug.

All thrusters will be connected driver boards which are
controlled by the embedded controller board. The embedded
board will receive commands from NUC by RS485 standard
communication. Bottom view cameras are installed inside
waterproof chamber and connected directly to NUC via IP68
USB cable. Furthermore, the wireless USB adapter is installed
inside the waterproof chamber like the cameras and this
adapter is also connected to NUC via IP68 USB cable. Sonar
is connected to NUC directly via RS232 standard. Customized
waterproof CAT 5 LAN cable is also connected to NUC’s LAN
port. Inside the hull, the front cameras are connected to NUC
via USB port. The IMU is installed into the embedded board

HULL

IP68 Cable RS485

RS232

IP68 USB

Up-Down

Forward-Backward

Left-Right

LED lighting

In the water

Bottom view cameras

IP68

USB

Front view cameras

Embedded

NUC

IP68 USB

Wifi

IP68

Chamber Chamber

In the water

IP68 RS232

Sonar

Fig. 16. SKUBA Obsidian robot wiring diagram

Fig. 17. Robot connectors

and communicated via I2C protocol. All of the wiring diagram
is shown in Fig 16. Fig. 17 shows all the cables, connections
and the obsidian robot with installed cables following the
designed diagram.

After all connectors are installed into the robot, the robot is
tested in the acrylic pressured tank which has presure around
1.2 bar which is generated from external air pump as shown
in Fig 18.

Robot is submersed in the tank for 6 hours. No leakage is
found after the experiment. Then robot is tested and experi-
mented at the pool which has depth of 5 meters as shown in
Fig 19.

III. SYSTEM DESIGN

In this topic, information about robot’s software is ex-
plained.

Fig. 18. Robot is tested inside a pressured transparent tank

Fig. 19. Robot is tested at 5 meters below the water surface

A. Vision System

In order to perform the missions in the competition, Obi-
sidian mini needs to have abilities to detect and identify objects
placed in each mission state. Moreover, it also needs to be able
to locate itself so that it can navigate itself to the each state
and prevent itself from getting lost.

Obsidian mini is equipped with three USB cameras – one
for object detection, and two for visual odometry and visual
SLAM. The camera for object detection is mounted inside the
robot hull and is facing forward to capture the scene in front of
it. Other two cameras are mounted outside the hull. They are
at the belly of the robot and are facing downward to capture
images of underwater ground. The following sections describe
the mentioned techniques in detail.

1) Object Detection: Since the shape, size, and color of
objects in each task are already given in competition rules, we
simply detect and identify those objects in the image captured
from front view camera based on such features. The first
feature we use to classify pixels of our interest objects out of

the captured image is color. Our method uses the HSV color
space instead of RGB. The reason is that HSV separates the
color information from the image intensity. Considering our
situation, the vehicle operates outdoors and the light condition
is dynamically changed. In such the situation, RGB tends
to fail to represent the true color of the object because all
components (red, green, and blue) change according to the
light intensity. Unlike RGB, HSV still preserves the color
information in Hue component while the Saturation and Value
components vary due to the intensity.

We simply use thresholding technique based on both hue
and saturation components of HSV to classify interested
objects in images. From our experiment, using only hue
component is not enough. For extremely high intensity (white)
and very low intensity (black) pixels, hue is hard to determined
because the difference between maximum and minimum value
of color components in RGB tends to zero. Hence, we also use
saturation to scope the appropriate range of pixel intensity.

The preliminary experimental result of our color classi-
fication method is shown in Fig 20. We detect yellow, red,
and green objects in images. The threshold for each object
is defined by minimum and maximum values of hue and
saturation components. In this experiment, each threshold is
tuned manually so that it can cover most pixels of objects.

Since only color detection gives noisy result, we filter
out the outliers using shape recognition. The contours that
is returned from color detection is filtered by its shape. In
case of rectangle shape object, the convex contours which have
number of vertices between four and seven are considered to
be rectangle. For sphere shape object, the Hough transform
algorithm is used to detect circle contours.

We also apply Kalman filter to track the detected shape in
order to preserve the smoothness and robustness of the output.
The result of object detection and tracking is shown in Fig 21.

B. Visual Odometry

During navigation, the vehicle needs to known its move-
ment in order to predict its position and orientation. Hence, in
SLAM, we need to construct a motion model of the vehicle so
that we can predict the change of the system state. This can
be done by using odometer such as wheel encoders or GPS.
However, an underwater vehicle is hard to measure such the
movement since it moves in water which is unstationary and
GPS is unreachable. We propose a vision technique to predict
the odometry of an AUV using visual features detected on
underwater ground. We assume that the ground is flat and is
parallel to the earth surface. The change of features in two
image frames is tracked and by transforming image planes
to the ground plane, we can track the 3D movement of the
vehicle.

1) Optical Flow: The first problem is how to extract
features from the image capturing the underwater ground.
The good feature in images is the intensity of image pixels.
Thus, we would like to find sub-areas which highly change of
their intensity. Shi-Tomasi algorithm is the popular methods
to detect good features in images. It is based on the Harris
detector but the selection criteria are different. The Shi-Tomasi
detector considers the threshold on the smallest value of

Fig. 20. Three color detection with marked blobs

Fig. 21. Rectangular shape detection

two eigenvalues of the gradient matrix so that the feature
point with good textureness is guaranteed to be selected. [4]
The best feature for tracking have been chosen to satisfy
min(λ1, λ2) > t for some threshold t where λ1 and λ2 are
the eigenvalues of a Harris matrix A.

After finding good feature points in the images, Lucas-and-
Kanade [5] method is used to estimated the correspondences
of those feature points in two consecutive images so that we
can measure the flow of those feature points in the scenes.
The method is based on the assumption that the displacement
of the feature points between the two images is small. The
gradient matrix calculated from the second derivative of the
image intensity is used for local search of feature points. The
difference of image F (x) and image G(x) is matched by
minimising the sum square error function

e =
∑[

F (~x+ ~d)−G(~x)
]2

(2)

where ~d is the flow vector indicating the displacements
of tracked feature. By equating the first derivative of the error
function to zero and using the first order Taylor approximation
to yield spatial gradient

F (~x+ ~d) ≈ F (~x) + ~d

(
∂

∂~x
F (~x)>

)
, (3)

it leads to a linear system which can be solved for ~d.

2) Image Plane to Ground Plane Transformation: After we
get the motion estimated from optical flow, the next problem
is how to estimate the actual displacement of the vehicle based
on the given displacement of feature points in the image. In
this paper, we put an assumption that the underwater ground
is flat. Hence, the odometry data can be determined by using
invert projection of the flow in the images to the underwater
ground.

The camera is mounted at the bottom of the vehicle and
points downward. The captured image is a projection of the
ground plane (underwater ground) to the image plane. The
projection of one plane to another plane can be described by
a transformation matrix called Homography. Therfore, we can
reverse the observed motion of feature points in images to ac-
tual motion on the ground plane using inverse of Homography.

A Homography representing the projection of a point from
the ground plane to the image plane is derived from the pinhole
camera matrix which is described as

P = K[R | ~t] (4)

where R is 3×3 rotation matrix, ~t is 3×1 vector representing
translation of the world coordinate to image coordinate, and K
is the camera calibration matrix which represents the camera’s
intrinsic parameters : focal length (f), and the principle point
(px, py)T , as

K =

[
f px

f py
1

]
. (5)

To find the Homography transforming image plane to
ground plane, we need to find the inverse of camera matrix
P. However, the camera matrix is not invertible (it is not a
square matrix) so a constraint is added into the system and the
matrix P is modified.

The original camera matrix P describes a transformation of
a 3D point in real world to 2D point on image plane. Hence,
the information of depth is lost and the inverse transformation
is impossible. Nevertheless, if the depth information (h) is
known, the camera matrix P can be modified to Homography
H as follows:

Z

X
L R

h

d

xL xR

f

Fig. 22. Geometry for parallel cameras.

[
x
y
1

]
=

[
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

]XYh
1


=

[
p11 p12 p13h+ p14
p21 p22 p23h+ p24
p31 p32 p33h+ p34

][
X
Y
1

]

= H

[
X
Y
1

]
.

H is now a square matrix and we can find the invert
projection from image plane to ground plane by finding inverse
of H while the camera intrinsic parameters (K) is determined
beforehand, the world coordinate is set at the image center
(~t = [0 0 0]>), and the rotation matrix (R) and the distance
from the camera to the underwater ground (h) is calculated
online.

By assuming that the underwater ground is flat and is
always parallel to the world’s horizontal plane, the orientation
of the camera measured from an inertial measurement unit
(IMU) can be used to define R directly. However, to find h,
we use stereo vision technique to estimate the distance between
the camera and the ground.

With stereo vision, we can reconstruct the 3D position of a
point so we can obtain the relative depth of the object from the
camera. To make it simplest, two cameras with the same focal
length (f) are installed so that their optical axes are parallel.
We need to match the correspondences between two images
and then apply with the simple triangulation method to solve
for depth information (h). From the geometry of two camera
shown in Fig 22., xL and xR denote correspondences of the
projection of the 3D point on left camera L and right camera R
accordingly. Once the relative distance between two cameras
(d) is known, the depth can be determined from:

h =
d f

xL − xR
. (6)

dθ

dt

Fig. 23. Finding transformation scheme.

In our work, a feature point detected in pervious section that
is closest to the image center is selected to measure h.

C. RANSAC

From the set of correspondences in image pairs, we can
transform them to ground plane by using Homography as
described in previous section. The next step is to estimate the
motion model (translation and rotation) from those correspon-
dences on the ground plane. RANSAC (RANdom SAmple
Consensus) is used to predict the model and remove any
outliers in the correspondence set.

Before applying RANSAC to the correspondences, some
outliers can be eliminated by considering the direction of the
motion determined from the acceleration vector from IMU.
Thus, any features which do not move along the direction
of vehicle movement are considered to be outliers and are
removed from the correspondence set.

To find the motion model, two correspondences are selected
from coherent images. Then, the angle of the line that pass
through those two points are calculated. Moreover, a middle
point between those two points are calculated to represent the
position of points in each image. From those pre-calculated
data (the lines and the middle points), we can find the differ-
ence of vehicle’s heading (∆θ) from the difference of angle of
two lines in the first and second images. The translation (∆x
and ∆y) can be calculated from the difference of position of
two middle points in both images. Fig 23. shows the illustration
of the described scheme.

Now, we can apply the motion estimation cheme to
RANSAC to find the best motion model. The RANSAC
algorithm used in this special study is shown in Algorithm
1. The number of loop in RANSAC is dynamically chosen
in runtime to ensure that we samples the correspondences
without outliers at least one time. The method is based on
the probability that the chosen sample is inlier as shown in
[6]. After finish the RANSAC, we get a motion estimation
(odometry) which can be represented by a Gaussian density
with mean X̂ and covariance Σ;

D. Visual SLAM

1) System State: Based on EKF, the state of the vehicle and
all landmarks are defined by a probabilistic model. The state is
initialized and its uncertainty is assumed to be Gaussian. The
state is updated during vehicle motion by using the prediction
of the motion and the observation of the landmarks which are
also applied with a Gaussian noise assumption.

Algorithm 1 RANSAC
N=∞, count=0.
while N<count do

Randomly choose two correspondences from image1 and
image2.
Estimate the model (translation and rotation) as described.
Caluculate models’ error and the number of inliers and
outliers.
if outliers < threshold then

Add the model to model list.
Find the best model (X̂) which give the lowest error.

end if
Set ε = 1− numberofinlierts/totalpoints.
Set N = log (1− p)/ log (1− (1− ε)s) with p=0.9.
Increment count by 1.

end while
Calculate covariance (Σ) from model list.

The system state is represented by a state vector (~x) which
is composed of the estimates of the vehicle (~xv) and landmarks
(~yi). The uncertainty is assumed to be a normal distribution
with zero means and covariance matrix (P) as follows:

~x =


~xv
~y1
~y2
...

 ,P =


P~xv~xv

P~xv~y1
P~xv~y2

· · ·
P~y1~xv

P~y1~y1
P~y1~y2

· · ·
P~y2~xv

P~y2~y1
P~y2~y2

· · ·
...

...
...

 (7)

We define two coordinate frames in this system: a fixed
world frame W which is assumed to be flat and non-rotating,
and vehicle frame V which is set at the center of mass of the
vehicle and is rotated respect to the orientation of the vehicle.

The vehicle’s state vector (~xv) consists of a 3D position
vector (~sW), orientation defined by Euler angle vector (~rW),
translational velocity vector (~vW), and angular velocity vector
(ωV) respect to world frame W and vehicle frame V . The
ith landmark’s state vector is a 3D vector representing a
2D position of the ith visual landmark on the underwater
ground (the third element of the 3D vector is always 0). The
representation of system state in the SLAM is:

~xv =


~sW

~rW

~vW

ωV

 , ~yi =

[
y1,i
y2,i
0

]
. (8)

2) Visual Landmarks: Our SLAM is based on the features
detected on the underwater ground. The visual landmarks
should be identical and distinguish from the area around them.
We use Shi-Tomasi corner detector to relatively large pixel
patches (15×15). As it is shown in [7], large image patches are
more unique compared with small patches so they are better
to use as long-term landmarks. To store a landmark in the
map, we first transform an image patch to be top view image
patch by using current vehicle’s state to create plane-to-plane
transformation matrix from image plane to underwater ground
plane. This will resolve perspective distortion which can solve

the situation that the same landmark is observed from different
angle.

In measurement step of the EKF SLAM, feature matching
needs to be performed in order to match the saved landmarks
with the current detected features. The regions of interested in
the left and right images are generated base on the current state
of the vehicle and the uncertainty (covariance matrix) of the
saved landmarks. Any detected feature lying within the region
of interested will be compared and matched with the image
patch of the landmark. For those features which are not in any
region of interest will be considered as new landmarks.

As the vehicle navigate during the mission, more and more
landmarks will be added into the map and this will increase
the computation time. To prevent this problem, we need to cut
some landmarks out of the map. There are two criteria that
we use to eliminate landmarks. First, the newly introduced
landmark will be deleted if there is no more matched features
in two consecutive samples. This will guarantee that only
good landmarks will be kept and it decreases the number
of landmarks introduced to the map. Second, the number of
landmarks in the map is limited and if the number is exceeded,
the old landmarks in the map will be removed to make a space
for new landmarks. We define grids on the map and if the
number of landmarks in a grid is more than two, we select
one from the grid with highest uncertainty to eliminate. With
this method, we can maintain the sparseness of the landmarks.

3) Prediction Model: In our EKF approach, the prediction
of the system state is based on IMU and our proposed visual
odometry, While IMU gives the rate of change of vehicle’s
attitude, the visual odometry provides the rate of change of
vechile’s position. Hence, we can define prediction model of
the system at time k + 1 as:

~̂xv(k+1|k) = ~̂fv

(
~̂xv(k|k), ~uk

)
(9)

~̂yi(k+1|k) = ~̂yi(k|k),∀i (10)

P(k+1|k) =
∂ ~f

∂~x
P(k|k)

∂ ~f

∂~x

>

+ Qk, (11)

where ~fv is a function describing the motion model of
the vehicle, and ~u is control inputs. Qk is the process noise
determined from

Qk =
∂ ~f

∂~x
U
∂ ~f

∂~x

>

, (12)

where U is the diagonal covariance matrix of the control
input ~u.

E. Measurement Model

In this paper, the measurement model is not defined yet.
However, in general, the measurement model is defined as

~zk+1 = ~h(~̂x(k+1|k)) + ~vk+1. (13)

where ~vk is measurement noise with mean of ~0 and
variance defined by covariance matrix R which is often defined
as a diagonal matrix.

F. System Updating

Once we have defined all prediction and measurement
models, the Kalman gain W can be calculated as

Wk+1 = P(k+1|k)H
>
k+1

(
Hk+1P(k+1|k)H

>
k+1 + Rk+1

)−1
(14)

and the system state and its covariance matrix can be
updated as

~̂x(k+1|k+1) = ~̂x(k+1|k) + W
(
~zk+1 − ~h(~̂x(k+1|k))

)
(15)

P(k+1|k+1) = (I− Wk+1Hk+1)P(k+1|k) (16)

where Hk+1 = ∂~h
∂~x

∣∣∣
~̂x(k+1|k)

.

IV. CONTROL SOFTWARE DESIGN AND IMPLEMENTATION

In this section we describe the system architecture and the
implementation of a basic control system for Obsidian. We
are concerned about architectures quality attributes such as
extensibility, testability, and modifiability.

A. Software Architecture

The software system is designed base on modular architec-
ture so that the software team can separate each functionality
of the robot into independent modules. This gives us abilities to
concentrate on individual functionality and makes the software
easier to test. We use Robot Operating System (ROS) as a
framework and software tools in our implementation. ROS
allows us to build software modules (nodes) which can operate
with others using publish-subscribe messaging and service.
With these communication mechanisms, we can decrease de-
pendencies between modules to a bare minimum.

Fig 24 shows the software architecture of Obsidian’s con-
trol system. Each module is designed so that it serve only one
function and the software logic is encapsulated within itself.
Our software team can implement each module in parallel so
it can speed up our implementation time.

B. Control Design

Our design of Obsidian’s control system follows the con-
cept of sense-plan-act. We use ROS driver nodes and also
implement our own nodes to retrieve data from sensors. The
actuator module is a simple module which communicate with
on-board controller in order to actuate the thrusters. For
planning part, there are five modules working together: Object
Detection, SLAM, Planning, Robot Pose, and Control.

1) Object Detection: This module uses images from front
camera and side-scan SONAR to detect objects in the arena.
As describe in III-A1, color detection and shape recognition
techniques are done to estimate the position of objects. The
pose of objects is recursively evaluated using Kalman filter.
We use data from SONAR as measurement.

Sense

Plan

Act

ROS Core

Object Detection

Planning

ControlSLAM

/front_img

/found_obj

/imu_data

IMUCamera SONAR ThrusterCtrl

Barometer
Stereo

Cameras

/point_cloud /scan_obj

G
U

I

<<publish>>

/depth

<<subscribe>>

<<publish>> <<publish>> <<publish>> <<publish>>

<<publish>> <<subscribe>>

<<subscribe>>

<<subscribe>>

<<subscribe>>

Robot Pose

<<call>>

/set_pose /get_pose

<<call>> <<call>>

/velocity_cmd

<<publish>>

<<subscribe>>

/set_state

<<call>>

<<subscribe>>

/desire_pose

<<publish>>

<<subscribe>>

<<subscribe>>

Grippers

Torpedoes

/torpido_cmd

/gripper_cmd

<<subscribe>>
<<subscribe>>

<<publish>>

<<publish>>

Fig. 24. Obsidian Software Architecture.

2) SLAM: We use bottom-facing stereo cameras to track
feature points on the pool bottom in order to generate visual
odometry. The landmarks is generated from tracked feature
points and also the detected objects from object detection
module. We implement our SLAM base on EKF.

3) Planning: The system repeatedly updates the state of
competition tasks that have been reached and decided which to
pursue next. This module works as the director to synchronize
the state for other modules and also command actuators to
operate as specified in each task.

4) Robot Pose: This module is responsible for keeping the
robot’s position and orientation. The data is set by SLAM
module and is used by Planning and Control modules.

5) Control: In navigation, the control node transform the
desired trajectory from planning into translational and angular
velocity commands, and convert to thrusters’ speed command.
The control method is a simple PD control.

V. SIMULATION

A robot should be tested in the real environment but it is
difficult to build the whole competition site at the university.
Simulation is the best way to create the real environment
for robot. Navigation and other essential logic modules can
be deployed and conduced the experiments in the simulated
environment. We expand the UWSIM [3] simulator in order
to create an underwater environment. The simulator consists
of two major simulation modules; terrain simulation and robot
simulation modules. Terrain simulation handles the behavior of
designed environment, sensors, cameras, and physic behavior
of interested objects that floating on/in the water. Model of
the objects and testing environment must be provided to the
simulator. Robot simulation handles the physic behavior of the
robot such as thrusters force, mass, inertia, buoyancy force and
etc. In the simulator, two cameras are added to our robot model
which are the front and bottom cameras. By this features,
image processing can be simulated. The simulation is shown
in Fig 25.

Fig. 25. Simualation of Obsidian Robot

Fig. 26. Monitoring Robot Orientation using IMU

VI. MONITORING SYSTEM

It is difficult to see robot’s behavior when it operates
under the water. Monitoring system is developed in order to
obtain robot information such as odometry, heading, speed, and
depth. Information from sensors are measured by using sensor
module in the robot software. IMU data will displayed current
robot heading and orientation as shown in Fig 26. Underwater
monitoring cameras is also developed and shown in Fig 27
in order the obtain the over view image of the robot and
environment in real-time.This monitor system is necessary for
debugging the software since it is difficult to program robot
intelligent if the programmer cannot see the robot behavior in
real-time.

VII. EXPERIMENTS

In this section, all experiments are explained. The robot
body is fully assembled, all thrusters and sensors are installed.
The experiments are setup beside the swimming pool which
has maximum depth of 5 meters. At setup phase, robot hull
is remove and NUC is started. All necessary wireless/wired
communication between NUC and monitor notebook is setup

Fig. 27. Under water monitoring Camera

Fig. 28. Robot is setup and tested at the pool

and tested as shown in Fig 26. Hull is installed and the obsidian
robot is dropped into the water. Thrusters are controlled and all
of them work properly. The robot thrusters have enough power
to pull the robot down into the water. Left, right, forward, and
backward motion can be done by thrusters. Robot motion is
tested as shown in Fig 29. Experimental video is recorded
by Logitech webcam inside the hull via NUC. The captured
images are shown in Fig 30. Video is clear enough to be
processed in the image processing module.

Fig. 29. Robot moves under water

Fig. 30. Captured images from camera inside robot’s hull

Fig. 31. Sonar Image

Then, the competition environment is setup. The orange
rectangular bars are dropped into the pool bottom. These two
bar will represent guild line from the current state the next
state like in the competition. Image processing algorithm can
detect the rectangular shape as show in Fig 32.

Micro sonar from Tritech is test at the pool. First, the
sonar information is collected by Tritech software. Sonar is
communicated via RS-485 protocol. Data from sonar will be
fused with front camera information in order to predict the dis-

Fig. 32. Green and Red color detection experiment

Fig. 33. Comparison of objects at the normal environment and at the pool
bottom

tance between robot and objects. Data is also used in obstacle
avoidance module when front camera cannot capture enough
information when it is operated in a bad water condition.
Color detection algorithm is applied on the captured video
and the result is shown in Fig 32. Red and green kickboards
are detected easily when they are close to the surface. Color
of the objects are dramatically changed especially red color as
shown in Fig 33. This situation will create trouble for the color
detection module. The adaptive camera parameters adjustment
algorithm is developed in order to overcome this issue.

VIII. CONCLUSION

Autonomous Underwater Vehicle, the Obsidian, is designed
and developed in order to join the RoboSub 2014 competition.
The robot meet the required competition criteria in both size
and weight. Robot is tested for waterproof. ROS is deployed
into NUC and run on Ubuntu OS. Software is developed and
tested in both in simulator and in the real environment.

ACKNOWLEDGMENT

SKUBA team would like to thank PTTEP for technical
support and financial sponsorship.

REFERENCES

[1] http://www.auvsifoundation.org/foundation/competitions/robosub/
[2] http://www.ros.org/
[3] Prats, M.; Perez, J.; Fernandez, J.J.; Sanz, P.J., ”An open source tool for

simulation and supervision of underwater intervention missions”, 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2577-2582, 7-12 Oct. 2012

[4] Shi, J.; and Tomasi, C., ”Good features to track”, ”Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on”, 1993, 593–600

[5] Lucas, B.D.; Kanade, T., ”An iterative image registration technique
with an application to stereo vision”, ”International joint conference on
artificial intelligence”, 674–679, 1981

[6] Hartley, R.; Zisserman, A., ”Multiple view geometry”, 6, 2000, Cam-
bridge university press

[7] Davison, A.J.; Murray, D.W., Pattern Analysis and Machine Intelligence,
IEEE Transactions on, Simultaneous localization and map-building using
active vision, 2002, 24, 7, 865-880

