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I. INTRODUCTION

The RoboSub club at Montana State University is a new
entity on campus. Previously the RoboSub team at MSU was
nothing more than a capstone project for seniors in mechanical
and electrical engineering. Last year we decided that the team
needed better integration of students studying other disciplines
as well as students other than graduating seniors so that the
knowledge learned during one year of the competition could
be applied to the next. Last year at the competition we were
fortunate enough to win the Pay it Forward award, which we
were able to put to use creating the club and recruiting students
to join.

Since then we have been able to recruit engineering students
of all experience levels, from freshman to grad students, and
the team has benefited greatly for it. Next year we hope to
recruit a business team to help seek out more sponsorship
opportunities.

Fig. 1: Montana State University’s 2016 Autonomous Subma-
rine

II. DESIGN STRATEGY

This year we set out to design and build an entirely new
autonomous submarine capable of undertaking every task at
the RoboSub competition. In previous years we built a sub that
was only capable of attempting a small subset of the tasks. We
knew that building a sub capable of attempting every task at
the competition in a single year would be a difficult challenge,
but we wanted to create a platform flexible enough to be reused
in subsequent years.

We also decided to pioneer a new approach for handling the
difficulty of accurate object detection at the competition. Our
approach makes use of recent advances in the field of machine
learning that allow for very powerful real-time object detection
using a neural network. However, although use of this tech-
nique potentially promises very good results, it comes at the
cost of additional complexity. Running the object detector in
real time requires dedicated hardware to do so. This hardware
comes in the form of a Graphics Processing Unit (GPU), which
is a piece of computer hardware designed to perform many
computations in parallel. The parallel processing capabilities
of a GPU are what enable the performance enhancements that
make this approach possible.

Deciding to include a GPU on our robot was a difficult
decision that came late in the design process. The GPU is our
largest single electrical component on the sub, and a custom
mounting for it had to be designed to hold it in place inside the
electronics capsule. The GPU also requires as much power as
the rest of the computer components combined, meaning that
it needs its own power supply. Despite all of these special
concessions necessary for it to work, we decided that the
potential power and reliability provided by this object detector
would be worth the effort. This approach is described in more
detail in the following design section.

III. MECHANICAL DESIGN

A. Frame
The best choice of frame design was dependent on a variety

of factors. To adjust for the possible changes in competition
requirements the frame must have flexible placements for
accessories such as the dropper, mechanical arm and batteries.
The frame can also enhance the subs stability by placing
the centroid at a desired location. It also supplies an area
for adjustable weights, or lighten the overall weight with the
proper materials. The frame must also be simple to assemble
as well as strong.

The best option was to build a frame around a waterproof
electronics capsule. The design includes a clear capsule which
holds the electronics, and an external cage-like frame which
holds the thrusters and battery cases. It consists of a series
of T-Slot extruded aluminum bars,with a simple connection
the attachments can be easily placed and moved. Advantages
of this design are its stability, usability and ease of assembly.
Disadvantages of this design are an unnecessary amount of
material, and weight.

To fix some of the original design problems, more thought
was placed in simplifying the frame and generalizing where
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Fig. 2: Sub features: 1) 6 thrusters, 2) Mechanical arm, 3)
Hydrophone array, 4) Waterproof battery capsule, 5) Water-
proof hydrophone case, 6) Torpedo launcher, 7) Pill dropper,
8) Pneumatic system, 9) Waterproof capsule, 10) Waterproof
camera casing

the components will be placed. Much of the unnecessary
material can be removed which will lessen the weight and cost.
This would also heighten the centroid without compromising
its stability. This is the best design choice through the decision
matrix. A new radial design is being considered which would
consist of a frame symmetrically around the center electronics
tube. This design would keep the centroid of the submarine
in the middle of the capsule, this would grant the submarine
more twisting maneuverability, but would cause instability in
turbulent water. Some advantages would be simple assembly,
light weight, and less materials needed than the original
design. It would also require a complete frame redesign and
new components to machine.

B. Capsule

The electronics capsule is made from CNCed aluminum
plates and arcylic plastic tubing and sheets. It is essential
that this capsule always be reliable as to not compromise the
onboard electronics which resemble a large investment. To do
this the front plate is sealed with 8 screws that hole an o-ring
between the arcylic and aluminum plates. A high grade epoxy
is used to create a seal between the arcylic tube and aluminum
plates. The end plate required a bit more design as the capsule
must be opened and closed frequently. A rubber gasket is
used to create a waterproof seal thats held in place with four
clamps. It is necessary that there are electrical pentrations that
go through the endcap to allow for access to and from the
onboard electronics. Wetconnects were found to be best suited
for this and were purchased through SeaCon.

C. Pneumatics

Previous Montana State teams created iterations of subsys-
tems to put on the submarine, but didnt incorporate them into

the final sub design. This years team improved and imple-
mented the designs for a marker dropper, torpedo launcher, and
a pneumatics system for control. One of the initial components
of pneumatic system is an air compressor, which will take
ambient air and compress to a required pressure. In our design,
we will simply use a refillable bottle of compressed CO2, as
opposed to an air compressor. The compressed CO2 source is
fed into a pressure regulator, where the pressure of CO2 can
easily be increased or decreased. The compressed CO2 is sent
to mechanical components using a solenoid. A solenoid is an
electromechanical device that is used to control the flow of
a fluid [3]. They are controlled by electrical current, which
energizes the coil. This causes a barrier between the two
conduits to move, allowing the fluid to flow to the opposite
side. Similarly, when the current is no longer sent to the
coil, the barrier will once again obstruct the flow between
the two channels. The electrical current is commonly sent
using a command from an Arduino microcontroller. After the
solenoid directs the compressed CO2, it finally reaches the
acting cylinder. This is where the CO2 is converted to linear
motion. The CO2 is sent into a small chamber and has such a
high pressure that it displaces the piston therefore increasing
the volume of CO2. Depending on which type of cylinder
is used, a spring or an additional CO2 inlet may be used
to reset the cylinder to its original position. A single acting
cylinder uses just one CO2 inlet and a spring to reset the
cylinder. This causes loss of energy, as the CO2 force has
to overcome the spring force in order to move. A double
acting cylinder uses an additional CO2 inlet on the opposite
side of the cylinder, which requires an additional solenoid
valve. The marker dropper utilizes steel cylinders with weak
magnets attached which were the payloads themselves. This
was placed in a bore connected to the pneumatics tube that
purges air into the bore, overcoming the magnetic force and
freeing the payload to fall to the bottom of the pool. The
torpedo launching system stores a torpedo inside of a tube.
To fire, a solenoid is opened and causes a back pressure and
propels the torpedo forward. Torpedoes are accurate for about
3 feet before floating to the surface, which makes them easy
to retrieve.

D. Arm

As previous years submarines did not incorporate a me-
chanical arm, this years team sought out to build one that
could complete general tasks possibly implemented in the
competition. For sake of simplicity and reliability, it was
designed with a single degree of freedom movement. This
allowed the arm to retrieve and release objects below the
submarine with confidence.

Utilizing simple geometry, anodized 6061 aluminum, and
stainless steel hardware, the arm has a jaw gap of 7.5 inches
(adjustable) and can lift up to a 35 pound load, out of the water.
The muscle in the system is a pneumatic linear actuator which
runs on 100 psi of pressure, regulated and controlled by the
pneumatics capsule.

This system was designed under the principle of simplicity,
whether it be manufacturing or controlling the arm. As the arm
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can fail in hardware or in control systems, it was critical to
maintain a straightforward, reliable design with as few moving
parts as possible. In addition, there was sparse real estate on
the sub. This forced the height of the arm to be very sleek,
but a wide jaw gap was important to successful retrievals. As
a result, the arm was build to be modular, allowing the overall
length to be widened or shortened and optimizing maximum
jaw gap.

Objects under the sub are first identified by the bottom
facing camera. Once it observes the object and begins to
track it, the sub aligns itself above the object. As it then
descends upon the object and reaches a specified height above
the object, air is released from the actuator, allowing the arm
to open. Last, the sub descends into the range of the object
and repressurizes the actuator to close the jaws upon it. As a
failsafe, the camera continues to track the object, ensuring it
does not move with respect to the sub as it is transported to
its destination.

IV. ELECTRICAL DESIGN

A. Hydrophones

Three Teledyne TC-4013 hydrophones are mounted on an
external hydrophone external case. These three hydrophones
will be used to calculate the direction and distance to the
acoustic pinger. The two front hydrophones are used to find
the direction of the pinger and when the two hydrophones H1
and H2 are in line with each other, which are orthogonal and
coplanar to the pinger, the signal received is in phase with a
zero reading. In this case the sub is facing the pinger as shown
in Figure 3. The third hydrophone, which is located in the
back, is used to calculate the distance between the submarine
and the pinger. A wave carrying an intensity of 162 dB hits
the hydrophones with a bare sine wave with a 2 mVpp.

Fig. 3: H1 and H2 are in line with each other which are
orthogonal and coplanar to the pinger

The distance between each hydrophone is equal to one
half wavelength. Let wavelength λ be the distance between
identical points in the sine wave of a waveform signal. Let the
frequency of a sine wave representing f , the wavelength be λ,
and the speed of sound in water be c. λ can be expressed as
λ = c

f . The distance between hydrophone one H1 and two H2
would be one half wavelength which is the maximum distance
to be in phase for a half cycle of a sine wave.

B. Pinger Locator
The design for the pinger locator system is comprised of

three parts: amplification, phase measurement and calibration.
The amplification stages were required to amplify the sig-

nals from the hydrophones into readable signals that could
register with logic level voltages. This stage was comprised
of two LF411s in a non-inverting configuration. The gain that
was required from this stage was 1000 V/V. This allowed the
small signals from the hydrophones to be amplified to the
5 V rails powering the operational amplifiers. Thus, the sine
waves were converted into square waves which helped filter
out residual noise which could get in the way of measuring
phase.

The next stage, a CD4046 was implemented to measure the
phase. This device outputs a square wave that has a duty cycle
directly proportional to the phase between the two signals.
From there it was a simple matter to obtain a DC voltage by
means of a low pass filter.

The last stage comprised of calibrating the hydrophone
array to the different distances and turn angles. This was
accomplished by measuring the voltage level on the output
of the circuit at different turn angles and distances. This data
was used to generate equations in terms of the DC voltages.

C. Computer
The motherboard is the ASRock B85M-ITX Mini Mother-

board which will provide different ports and slots so all the
on board components can be connected and installed. Once
powered on by the voltage controller, the motherboard will
provide power for other components such as cameras and
Arduino. The Arduino MEGA ATmega128 that we will be
using it for the submarine. They will be used for collecting
data from the pressure sensor and hydrophone system as
well as controlling the thrusters and pneumatic subsystems.
A GEDC-6E IMU was selected for localization of the sub.
It is able to directly communicate with motherboard through
a USB2.0 cable. All programs being run on the submarine
can directly communicate with this IMU through the serial
port. shows the two ELP wide angle cameras are the main
visual sensors on the submarine. There are two different
sets of cameras placed on the submarine to assist with the
object recognition program that will be running. The cameras
support 1080p video processing at 30 frames per second.
The field of view on the camera is also adjustable. Both
cameras interfacing with motherboard with USB cables. The
downward facing camera was placed in a separate housing
nearby the linear actuator hook, purpose for this camera is to
observe the operating environment for the machine arm. Front
facing camera is the eye for the sub, it constantly send visual
data back to motherboard for further image processing. A 3D
printed bracket was printed so the camera can be mounted on
to the submarine. Lastly the submarine houses an Nvidia GTX
1080 graphics card that provides additional computing power
for the object detector

V. SOFTWARE DESIGN

This year’s software was written to make use of Robot
Operating System (ROS) running on top of Ubuntu 14.0.4.
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Fig. 4: Electrical Design

ROS is a collection of tools to make developing software for
robotics applications simpler and faster. We made the decision
to switch from last year’s pure C++ custom made application
to python in order to make it easier for less experienced
computer science volunteers to contribute.

Fig. 5: Software Design

The sub’s mission planning module uses a hierarchical pri-
ority queue to perform tasks in the order in which they become
available. This way less important tasks are not prevented from
executing if a higher priority task is unavailable, such as when
the location of a near target is not known, but the location of
a far target is.

Modeling the state of the sub is performed via an extended
Kalman filter fusing data from the IMU, the depth sensor, and
the downward stereo cameras. The downward stereo cameras
provide odometry information using an library called libviso2,
which is able to construct a 3D point cloud of the bottom
of the pool using the disparity between the images. Tracking
the location of the competition objects relative to the sub
is performed via a ROS package that performs probabilistic
modeling with sensor fusion called hector object tracker[1].

A. Object Detection

Our object detector is an exciting innovation for our team,
and we believe it is a fresh approach to the problem of visually
identifying competition objects for the RoboSub competition

as a whole. Correctly identifying the location of a target
object in an image is a difficult task, especially in the context
of the RoboSub competition. The RoboSub competition is
held outdoors, and is therefore subject to constantly changing
weather and lighting conditions. As we found at last year’s
competition, this can drastically change the appearance of
the competition objects, and can easily confuse simplistic
object detection techniques, such as the color thresholding
and edge detection approach employed by many teams at
the competition. Steps can be taken to somewhat enhance
the robustness of this technique, such as use of an ensemble
of these detectors and careful parameter tuning, but it is
fundamentally limited by the fact that the exact color of the
target object at an arbitrary competition time must be known,
and that color must be easily separable from background
elements. This is especially difficult with competition objects
such as the green buoy, which is a very similar color to the
rest of the pool when the lighting conditions are right. Truly
robust object detection requires a more nuanced approach that
is capable of examining the geometric properties of objects,
as well as their color.

Our object detector makes use of a brand new algorithm
in machine learning known as Faster R-CNN [2]. Faster R-
CNN uses a convolutional neural network to draw accurate and
precise bounding boxes around target objects. A convolutional
neural network is a biologically inspired approach that mimics
the structure of the visual cortex in animals, and it has proven
to be a powerful technique for image classification. It is trained
by feeding it labeled images of the desired output, which in
this case is hand-labeled bounding boxes around competition
objects in images. It uses these training images to learn the
desired output, which it can then extrapolate to previously
unseen images. An example of the results produced by our
object detector is shown in Figure 6.

A neural network uses layers of simulated ”neurons” that
take input from the previous layer, runs a function on that
input, and outputs it to the next layer. The first layer in a
neural network is typically the input and the final layer of the
network is the output. In our case the input is an image, and
the output is the coordinates of a bounding box in the image,
and a label telling us which competition object is contained
in the bounding box. A neural network is a good choice for
this application because they primarily learn to identify the
geometric properties of a target object to be able to recognize
them. This should, in theory, make our object detector much
more resilient to the constantly changing conditions of the
competition pool.

Running large neural networks can be very computationally
taxing. Fortunately, Faster R-CNN is able to harness the
parallel computing power of a GPU, which enables it to run
in real time. In practice we are able to process ∼7 frames
per second, which is more than sufficient for a slow-moving
vehicle.

VI. EXPERIMENTAL RESULTS

A. Pneumatics
Both dry and pool testing was required for all systems. For

each of the marker droppers and torpedo the solenoids only
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Fig. 6: Object detection using Faster R-CNN. The number next
to the class label indicates a confidence score.

need to be opened once to fire. The pneumatic actuator was
a new addition to the system and for the first test, only the
actuator was used. The actuator required two solenoids, one
to force air into the cylinder to push the piston back, and
one to evacuate the chamber and allow the spring to assist
the piston to the open position. Once this test was proven to
be successful, it was tested on the frame using the full arm.
This test proved that the arm was able to pick up the object
used in the competition. The final test included integrating
the system into its final configuration, with the arm being
controlled and powered through the wet connect, into the
Arduino inside the computer capsule. This test was conducted
at a pool test and included testing the marker dropper and
torpedoes. All subsystems were found to work, but 20 seconds
were needed between each opening to re-pressurize the system.
The main recommendation for improvement would be refining
the pneumatics capsule to decrease unnecessary buoyancy and
weight.

B. Object Detection

As mentioned in the description of our object detector, we
must train our neural network in order for it to work. A neural
network is trained by feeding it input where the correct output
is known. The network uses the difference between its own
output and the correct output to correct itself, and by doing
so slowly learns the desired pattern. In order to get good

results with a neural network it must have many examples to
learn from, and it must review them many times. Practically
speaking, this means that we had to build a training dataset
by manually draw bounding boxes around competition objects
in hundreds of images. This labeling was done using a simple
custom built program.

For our proof-of-concept experimental approach we decided
to take pictures of just a buoy and a gate in the pool at the
gym at MSU. For the actual competition we will need to train
on images of each and every competition object, but in order
to test the feasibility of this approach we decided to just use
these two competition objects. In total we took 650 pictures,
of these 528 are of the buoy, and 122 are of the gate. We
ended up with more pictures of the buoy than the gate simply
because the gate is larger and more awkward to position to take
pictures. Having a disparity in the number of training images
for each object is actually a good thing for testing, since we
would like to manually label as few images as possible while
still getting good results. Comparing the performance of the
neural network on each object can give us a rough idea of the
minimum number of images required to get good performance.

Training on this dataset took approximately 14 hours. How-
ever, the results were well worth it. Our object detector was
able to draw bounding boxes whose area was 99% accurate in
the case of buoy detection, and 89% accurate in the case of
gate detection. This indicates that around 500 labeled images
per competition object is a good target to aim for in order to
achieve good performance.

The results we got were very encouraging, but it should
be noted that our work on our object detector will not be
complete until we get to the competition. The images taken
in our pool have a much different appearance than those from
the competition pool in San Diego, and our object detector
is unable to account for this difference without help. As a
result we will need to collect a new dataset of images of
competition objects once we arrive. We hope we will be
able to collect images manifesting all of the various lighting
conditions present at the competition, which will allow our
object detector to be as robust and well-prepared as possible
for anything the competition can throw at it.
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