
Vasa: An Autonomous Underwater Vehicle
Carl Ahlberg, Lars Asplund, Gabriel Campeanu,
Fredrik Ekstrand, Mikael Ekström, Juraj Feljan,

Andreas Gustavsson, Luka Lednicki, Ivan Švogor

Abstract—Vasa is a custom made autonomous

underwater vehicle developed at M

¨

alardalen Uni-

versity, Sweden. It is built in a modular fashion,

including its mechanics, electronics and software.

After participation at the RoboSub competition in

2012 and 2013, this year we are building on the

gained experience and investing our effort into two

aspects that we deemed crucial: developing a more

robust vision system and performing more pool tests

compared to the past years. In this paper we give

an overview of how Vasa is built, both from the

hardware and software points of view.

I. INTRODUCTION

In the last decade, a lot of research has
focused on developing vehicles which oper-
ate without direct control by a human agent.
Autonomous underwater vehicles (AUVs) are
a representative example. They offer various
functional possibilities in different practical
fields, such as naval exploration and mapping,
search and rescue missions, waste recovery,
navigation etc. Vasa [1], depicted in Figure 1,
is an AUV developed at Mälardalen Univer-
sity, Västerås, Sweden. The robot was initially
developed as part of a project course in 2011
and started to compete in the RoboSub compe-
tition [2] in 2012, where it won the prize for
best craftsmanship. For the competition in 2013
most of the team changed and the focus was put
mostly on the software of the robot. This year,
a largely unchanged team is building on the
experience from last year and, having learned
from the mistakes made, we are investing most
of our efforts into what we consider we lacked
the most: making the vision system more robust
and performing more testing (increasing the
pool time drastically). Currently it is software
that gives the most potential for improving on

our previous results at the competition, which is
why most of our efforts this year were focused
there. Regarding the hardware, compared to
last year we changed the inertial measurement
unit and did miscellaneous minor tweaks, while
more substantial changes are planned for the
future.

There are nine team members working on
the development of Vasa (seven PhD students
and two seniors). We have a software and a
hardware sub-team, with several team members
working on both parts, and thus acting as a
bridge between the sub-teams. The hardware
sub-team is in charge of the mechanics and
electronics of the robot, while the software
sub-team develops the low-level software in
charge of the robot movement and the high-
level software that encompasses the decision
center (the “brains” of the robot) and the vision
system.

The rest of the paper is structured as fol-
lows. In Section II we describe the hardware

Fig. 1: A render of Vasa

Mälardalen University, Sweden 1



Part Description

A Front hull
B Rear hull
C Battery
D Power board
E Backbone
F High level CPU
G Thruster
H Camera
I Markers and bottom camera
J Gripper
K Torpedoes
L Connector

A B

C

DE

F

G
H

IJK

L

Fig. 2: Parts of Vasa

of the robot (the mechanic, electronics and
sensors and actuators). Section III presents a
general view of the software architecture, with
its higher and lower software layers. Section IV
presents our development strategy and the cur-
rent status of the development. Finally, Sec-
tion V discusses the future development of the
robot.

II. HARDWARE

In this section we describe the mechanics,
the electronics and the sensors and actuators
of the robot, in their respective subsections.
The robot was designed to be modular, since
a modular design simplifies and optimizes the
construction process as parallel development
is possible. Furthermore, when removing and
adding parts with ease, upgrading and servicing
becomes simpler. The main defining feature
of the robot is the outer frame which allows
changing the placement of components in order
to optimize the weight-distribution of the robot,
even with last-minute additions and changes.
The separation of the power and the system
electronics into two glass hulls also simplifies
the handling.

A. Mechanics

The mechanical design of Vasa (Figure 2)
was performed with modularity and flexibility
in mind. Two easily removable hulls are at-
tached to the oval frame defining the robot. The
hulls contain the bulk of the electronics, which
are mounted using a support system allowing
easy maintenance and upgrades. Thrusters and
equipment are directly mounted to the frame
(Figure 3).

Frame: The frame is cut using waterjet from
10mm EN-AW 5754 aluminium. It defines the
outer edge of the robot and acts as the mounting
structure for all parts of the robot. The frame
is perforated for easy mounting of equipment
using custom CNC-milled mounts.

Main hulls: The two main hulls contain
most of the electronics and each one consists
of five major parts; two flanges, two lids and
one plastic tube (Figure 4). The flanges and
lids are made of EN-AW 5754 aluminium and
are initially cut with waterjet and then CNC-
machined. Both flanges are attached to the
ends of the acrylic glass tube using an ms-
polymer based adhesive (Tekton MSPolymer)
that ensures a waterproof connection while still
being flexible. Since aluminium and plastic

Mälardalen University, Sweden 2



react differently to changes in pressure and
temperature, a 1mm separation between the
flanges and the tube allows the connection to
flex. The flanges are connected to the lids with
screws and bolts on one side and compression
spring latches on the other side. NBR o-rings
are used as seal between the lids and flanges.

Electronics support system: The electronics
support system (ESS) (Figure 5) is CNC-milled
from polyoxymethylene (POM-H), also known
as Delrin. One ESS is mounted to the inner
lid of each hull, and is responsible for keeping
all the electronics and inner components in
place. The ESS consists of two circular plates
separated by rods. The rods are mounted to
grooves in the circular plates and act both as
a supporting structure and as mounting points.
The grooves in the circular plates span over
83% of the face of the plates which allows a
lot of flexibility as the rods can be shifted along
the grooves for optimal positioning. Smaller
aluminium mounting plates are mounted on
top of the rods, enabling the mounted com-
ponents to be moved in a direction perpen-
dicular to the rods. Additional rods can be
added easily should more mounting points or
additional components be required. Two tabs
on the outside of the ESS mate with the outer
lids, keeping the ESS in place during operation.
At the outer side of each ESS, a cooling fan

Fig. 3: Frame

Fig. 4: Hull assembly

supplies the electronics with cooled air from
the cooling fins on the inside of the lids. The
fans are permanently mounted to the ESS.

Fig. 5: Electronics support system

Markers: Vasa has two markers (Figure 6)
for dropping into specific bins during the com-
petition. The markers are made of plastic and
have four fins to keep them stable. Weights
have been added to the front part of the markers
to keep them negatively buoyant and to make
them sink straight down. The release of the
markers is controlled by solenoids and the
markers are mounted inside acrylic glass tubes
close to the downward facing camera for ease
in aiming.

Grippers: The purpose of the grippers (Fig-
ure 7) is to grab objects in the competition.

Mälardalen University, Sweden 3



There are two identical gripper mechanisms,
each controlled by a solenoid. The solenoids
are single-action and recover their normal open
state by spring power.

Camera housings: The camera housings
(Figure 8) are designed around the Point Grey
Dragonfly2 [3] board-level camera with op-
tics. The housing consists of three CNC-milled
parts. The front and back parts are made of
EN-AW5754 aluminium, and the lens is made
of 3mm acrylic glass with extra fine thickness
tolerance. To waterproof the camera housing,
two standard dimension NBR o-rings are used.
There is also enough space to fit the camera
board mounting with spacers, so that the cam-
era angle can be adjusted. The front camera
housing is mounted directly on the frame in
front of the forward hull, and the downward
facing camera is mounted between the two
hulls.

Connectors: The external sensors and actua-
tors require communication links into the hulls.
For reliability and ease of service, removable
interconnects with fixed hull connectors were
chosen. All external connectors are made by
Seacon[4] and the cables are spliced together
with solder, heat shrink tube, silicon and vul-
canizing tape. The number of connectors is
larger than the current needs to enable future
expansion.

B. Electronics

The design concept of the electronics is to
be modular with a minimum of cable inter-

Fig. 6: Marker

Fig. 7: Gripper

connects. The electronics are divided into a
number of circuit boards each dedicated to
handling specific tasks. These circuit boards are
connected to a Mini-ITX computer which runs
the bulk of the robots software (see Section III).
The Mini-ITX computer and the circuit boards
communicate via CAN messages.

Batteries: The system is powered by a 18,5V
(19-21V operational) Lithium polymer battery.
The basic configuration is to use one 5S1P 8Ah
battery pack, but a 5S2P 16Ah pack may be
used to double the run time.

Backbone: The backbone PCB doubles as a
communications bus as well as a power sup-
ply. Its slot-based (header) design provides a
modular system without the use of cables. The
board supplies each slot with 3.3V, 5V, -5V, and
unregulated battery power (19-21V), together
with a CAN (Controller Area Network) bus
interface.

Router board: The router board is designed
to translate between the CAN bus and the
USB interface. The board is equipped with

Fig. 8: Camera housings

Mälardalen University, Sweden 4



an AT90CAN microcontroller by Atmel. The
USB serial communication is handled by an
FTDI232R chip which transforms serial signals
into UART, which is in turn passed to the
microcontroller. On the CAN side of the board,
a TJA 1040 transceiver serves as a bridge
between the microcontroller and the CAN bus.

GPIO board: The GPIO board is designed
for high amount of input/output functionality.
The board is mainly used for connecting ex-
ternal sensors with the AT90CAN. Currently,
an inertial measurement unit (IMU) is con-
nected to the board providing the robot with
heading and inclination data necessary for the
PD controller functionality. Additionally, it is
fitted with an Omni Instruments Series 2600
Submersible Depth Sensor for depth readings
to a maximum depth of 15 meters.

Solenoid board: The solenoids are con-
trolled by a dedicated board capable of con-
trolling six solenoids. The AT90CAN micro-
controller connects through the CAN bus and
the solenoid drivers are of model DRV104 by
Texas Instruments.

Power board: The power board’s purpose
is to regulate the power and to protect the
electronics from overcurrent and transient volt-
ages. It is fitted with an AT90CAN controller
connected to an LCD screen providing user
feedback. The board is equipped with relays
designed to cut the power to the motors or to
the rest of the system in the event of power
failure or kill switch activation.

Motor controller board: The thrusters are
controlled by six Pololu VNH5019 H-bridges.
They are connected to an AT90CAN for logical
processing and CAN bus access. In order to
maximize heat dissipation, the H-bridges are
mounted to an aluminium plate and fitted with
cooling heat sinks (Figure 9).

Sonar and hydrophone board: In order to
localize the pinger and detect the range to
objects, a special active sonar and hydrophone
board was constructed. The board monitors
three passive omnidirectional hydrophones. It
amplifies and filters their signals in order
to filter out noise and non-pinger generated

Fig. 9: Motor controller with cooling plate and
heat sinks

sounds. The pinger heading calculations and
the CAN bus communication is handled by
an AT90CAN microcontroller. The board also
connects the microcontroller to an active sonar,
which outputs an analogue value directly pro-
portional to the distance of any object in front
of the sonar.

C. Sensors and actuators

Vasa is equipped with an IMU, a pressure
(depth) sensor, two cameras and a sonar (active,
as well as a passive one). Its actuators consist of
two grippers, torpedo and marker release mech-
anisms (described above) and six thrusters.

IMU: The robot is fitted with a VectorNav
VN-100 Rugged IMU. The sensor contains a
three axis gyroscope, a three axis accelerome-
ter, and a three axis magnetometer. The IMU
connects to the sensor card through a UART
interface.

Pressure Sensor: The robot utilizes a pres-
sure sensor, Series 2600 submersible depth
sensor, from Omni Instruments. As it is sub-
mersible, it requires no additional casing, so
the analog feedback signal goes straight from
the sensor into the front hull.

Cameras: Vasa is equipped with two Drag-
onfly 2 CCD cameras by Point Gray[3]. These
are board-level cameras using the IEEE 1394
(Firewire) communication standard.

Mälardalen University, Sweden 5



Sonar: The active sensor module is a Senix
TSPC-30S1-232. This sensor has configurable
outputs between analog signal and RS-232 se-
rial communication. The passive sonar system
uses H2c hydrophones from Aquarian audio
products. These are designed to pick up signals
from 20Hz to 100Khz.

Thrusters: Six off-the-shelf Seabotix
BTD150 [5] brushed DC thrusters (Figure 10)
are used for propulsion. The thruster positions
enable motion with six degrees of freedom.
The three linear motions are:

• Heave — Vertical (up/down) motion
• Sway — Lateral (side-to-side) motion
• Surge — Longitudinal (font/back) motion
The three rotational motions are:
• Yaw — Rotation around vertical

(up/down) axis
• Pitch — Rotation around lateral (side-to-

side) axis
• Roll — Rotation around longitudinal

(font/back) axis
With this configuration, the robot has the

ability to move in the most advantageous way
to its target, irrespective of its current position.
The thruster configuration (Figure 10) chosen is
a variation of the cubic formation that enables
the robot to maintain its modular design to-
gether with the two main hull configuration and
optimal sensor, gripper and marker positions.
All the thruster pairs have one single intersec-
tion point which is positioned slightly in front
of the center of the frame. This enables fitting
the downward facing camera and grippers in
their near-optimal positions.

III. SOFTWARE

The underlying platform of the software of
Vasa is the Debian Wheezy 7.0 operating sys-
tem [6] running on the Mini-ITX computer
mentioned in Section II. The main character-
istic of the robot’s software architecture are
two component-oriented layers. The bottom
layer, i.e. the lower layer software, provides
the API for communication with the sensors
and actuators. The upper layer software uses

Fig. 10: Thruster configuration

Upper layer SW

Lower layer SW

Movement

Low-level API

CAN controler Sensor controller
Actuator 
controller

CAN bus

Vision

Front vision

Bottom vision

Decision center

Frame dispatcher

Fig. 11: Vasa’s software architecture

the API provided from the lower layer and de-
fines the software components necessary for the
complex tasks, such as object detection, object
recognition, navigation and mission execution.
The architecture is depicted in Figure 11 and is
described in detail in the following subsections.

A. Lower-layer software

As stated in Section II-B, the electronics of
the robot are composed from both of-the-shelf

Mälardalen University, Sweden 6



components (Mini-ITX board, sensors, actua-
tors) and custom developed electronic boards.
The communication between the heterogeneous
electronic boards is handled through the CAN
bus. It is suitable for linking different types of
hardware due to its broadcast characteristics
— every component connected to the CAN
bus can directly communicate with all other
components. The orange part of Figure 11
shows the low-level software. This part of the
architecture enables communication with the
hardware, i.e. reading from the sensors and
controlling the actuators. It is composed from
three controller components and an API com-
ponent.

The CAN controller component handles
messaging through the common bus. This in-
volves message sending, receiving, prioritiza-
tion, synchronization etc. The sensor controller
is used to handle the data sent from the sensors.
It handles the sampling frequency and data
interpretation (e.g. binary operations).

The actuator controller and sensor controller
work in a fairly similar fashion, however
with opposite communication flows. The con-
trollers handle data coding into a format un-
derstandable to the hardware. The low-level
API component provides access to sensor data
and the actuator commands to the high-level
software, in the form of function calls (e.g.
get_depth(depth), move_fwd(speed)).

The entire lower layer software is imple-
mented in Ada [7], a programming language
developed for the purpose of systems program-
ming, concurrent and real-time system devel-
opment. Ada was chosen because of its I/O
standard libraries which simplified the CAN
controller development (it also provides a fail
safe system with a watchdog algorithm). Fur-
thermore, it has a fairly simple way of interfac-
ing with other languages, which is a benefit for
this implementation since the upper layer soft-
ware is partly written in C++. When starting
the robot, the operating system first starts the
lower layer software, which then hands over
the control to the upper layer software. At run

time the layers communicate frequently, as the
upper layer handles the intelligence, while the
lower layer handles system support.

B. Upper-layer software
The blue, upper part of Figure 11 shows

the architecture of the high-level software. It
consists of three main software components:
decision center, vision and movement.

Decision center: The decision center is the
main high-level component, it corresponds to
the brains of the robot. It receives information
from the vision component about objects be-
ing detected, makes high-level decisions about
which actions the robot should perform, and
controls the movement of the robot accordingly
(through the movement component). It runs
as a hierarchical state machine - there is a
state machine describing the actions for each
mission the robot has to perform, and there is
a state machine that takes care of switching
between the missions. The decision center is
implemented in Ada.

Vision: The vision component consists of
three sub-components: frame dispatcher, bot-
tom vision and forward vision. Each compo-
nent runs as a separate program and is imple-
mented in C++.

The main reason for using three separate pro-
grams to implement the vision is that the two
cameras can only be accessed from within one
and the same program, the frame dispatcher,
due to underlying architectural limitations. The
frame dispatcher uses the FlyCapture SDK [8]
to obtain frames from both cameras and then
forwards the appropriate frames to the bottom
and forward vision components. Already here
initial frame manipulation is done by choosing
the desired brightness, resolution etc.

Image frames are transferred from the frame
dispatcher to the front and bottom vision pro-
grams via shared memory to achieve high per-
formance. The front and bottom vision pro-
grams analyze the images to detect objects of
interest and sends the resulting information to
the decision center. The communication be-
tween the vision components and the decision

Mälardalen University, Sweden 7



center (in both directions) is done via UDP
sockets.

Some positive effects from running the vi-
sion as three separate programs are that a
clear distinction between different components
is achieved, the available parallelism in the ITX
processor is highly utilized, and the amount
of necessary changes to the software once we
introduce our custom camera boards (see Sec-
tion V) is minimized; the required changes will
be to remove the frame dispatcher program and
within the front and bottom vision programs
instead read the images from the location in
memory where they are put by the FPGA
component on our custom boards.

For object detection and recognition we use
OpenCV [9]. It is an open source library de-
veloped by Intel, mainly aimed at real-time
computer vision. Some of the main features of
OpenCV used for Vasa are color space con-
version, morphological transformations, Hough
transformations, Canny edge detection, etc. For
more information on our vision algorithms, see
Section IV.

Movement: The movement component is
implemented in Ada and provides movement
primitives and complex navigational functions.
However, these movement primitives are dif-
ferent from the ones in the lower layer,
since they provide a more convenient usage
(e.g. move_fwd(speed) from the lower layer
becomes MoveForward(distance, speed) in
the upper layer). An example of a more com-
plex behavior is object alignment, where the
movement component uses a data stream from
the vision component with position information
about the detected object and uses this data to
change its position accordingly.

IV. STRATEGY AND CURRENT STATUS

In this section we briefly discuss our work
strategy chosen for this year and report on the
current status of the robot.

As we are now in the second year in a
row of participation in RoboSub with a largely
unchanged team and stable hardware, we have
a much better understanding of what to expect

at the competition. We can build on our expe-
rience from last year to tailor our development
strategy. What this mostly means is that we can
correct the mistakes we made in preparing for
RoboSub 2013. There are two major aspects
we lacked and which this year’s strategy builds
upon: more testing and a more robust vision
system.

Testing
The only pool we had available for testing

during 2013 was a city owned pool (Figure 12),
where the first in-water test took place on April
1st. The issue with this pool is that we would
typically only get short time slots. This meant
the overhead of moving our gear to the pool
and back was considerable and we could not
always test when we wanted to. To tackle
this problem, we purchased a 5 meter wide
garden pool (Figure 13) which we placed at
our campus. This means we now have more
or less constant pool access and that the time
necessary to move the gear from our lab to the
pool is down to a couple of minutes. Of course,
due to the size of the garden pool, we can only
use it for limited kinds of tests (for instance
basic movements and object recognition), and
still have to use the city pool for running full
missions.

Fig. 12: Testing Vasa in the large indoor pool

To further increase testing time and increase
cohesion within the team, we decided to spend
one week away from our campus. Since all
team members have obligations outside of
RoboSub, working off-campus meant getting
away from said obligations and being able to

Mälardalen University, Sweden 8



Fig. 13: Testing Vasa in the small garden pool

invest all of our time on developing the robot.
During this week we made considerable contri-
butions to the software including improving the
vision algorithms and improving the high-level
movement algorithms (aligning to an object of
interest).

Vision
The other main aspect of our strategy is to

develop a more robust vision system compared
to the one we had last year. Last year’s vision
algorithms started the image filtering chains
with filtering out objects based on their color,
and the interval defining a particular color had
to be manually calibrated based on the current
lighting conditions. This manual calibration
was tedious and time consuming.

This year the image filtering chains start with
filtering out objects based on their contours,
and later when color is taken into account, it
does not rely on manually defined intervals.
Furthermore, at the same time we have sev-
eral recognition algorithms active, so for every
detected object there is a confidence parameter.

Finally, we take into account the history of
object movement, meaning that the confidence
parameter increases if the object has been de-
tected in a similar place in consecutive frames.
All this together contributes to the vision sys-
tem being much less prone to noise than last
year.

Other improvements
Last year the robot was damaged in transport

to San Diego, which meant we had to invest

the first two days of the competition on repair-
ing it rather than doing further testing. This
year we obtained better containers to minimize
the risk of this repeating. They showed to be
another good investment, as the transport to
and from the aforementioned testing camp went
flawlessly.

We also made miscellaneous hardware im-
provements including making it possible for the
robot to be able to run in the pool on AC power,
thus removing the need for often occurring bat-
tery changes. The most considerable hardware
change was getting a better quality IMU, as the
previous one was affected by the vibrations of
the thrusters, which caused the robot to drift
unpredictably. Pool tests showed that with the
new IMU this is no longer an issue.

Current status

With roughly one month left until the com-
petition, the vision algorithms are more or
less finished. These will probably see further
improvements, but now our focus shifts to
the movement center and the decision center.
The former is more or less straightforward, we
simply need to finish the implementation, while
the latter is more challenging and requires
more high-level design decisions (for instance,
we need to decide on a strategy if the robot
gets lost, then if the robot temporarily looses
sight to an object it is aligning to and so on).
Compared to the same time period last year we
improved considerably, but lots of work remain
to be done.

V. FUTURE WORK

Being constructed in a modular system, Vasa
is continuously maintained and enhanced. In
this section we present what we envision to
have in place for next year’s competition.

The most significant change planned is to en-
hance the vision system by introducing stereo
vision, and to replace the current ITX com-
puter that currently runs the software. Both
changes are covered by a custom electronics

Mälardalen University, Sweden 9



board called GIMME2 (General Image Multi-
view Manipulation Engine). GIMME2 (Fig-
ure 14) is a stand-alone mobile processing
platform developed at Mälardalen University. It
has two OmniVision OV10810 10-Megapixel
image sensors capable of delivering 30 fps
(4320x2432) or 60 fps@1080p. It combines
FPGA and a dual core ARM Cortex-A9 on
a single chip, making it a platform powerful
enough to run the complete software of the
robot. It also gives us the flexibility of choosing
the optimal software deployment onto the pro-
cessing units (CPU and FPGA). The plan is to
have one GIMME2 board for the front camera
system, another board for the bottom camera
system and finally a third board which can be
used for the decision center.

Fig. 14: GIMME2 platform

The current structure of the software makes
the planned hardware changes possible with
minimal required changes to the software.
Also, due to the fact that the vision algorithms
are both more robust and generally perform
better than last year, we expect that any changes
to the software will be of an evolutionary nature
and less drastic than this year’s.

ACKNOWLEDGMENTS

We would like to thank the following people
who were in various ways involved in the
development of Vasa: Jan Carlson, Federico
Ciccozzi, Séverine Sentilles, Emil Segerblad,
Micael Östberg, Rickard Linder, Anton Wide-
nius, Ammar Ismail, Johnny Holmström, Athar
Ahmed, Ejaz Ui Haq, Rafat Ghanim, Lars
Lagerholm, Peter Wåhlin, Mingli Wu, Mar-
tin Ekström, Giacomo Spampinato, Bengt Erik
Gustavsson, Henrik Lekryd, Göran Svensson.

We would also like to thank the following
companies for their support: ÅF, Würth Elek-
tronik, Stainless Steel Welding HB, Preciform
AB and Gullbergs Marina AB.

REFERENCES

[1] The Vasa Project, http://www.mrtc.mdh.se/projects/ralf3/
robosub/, [Accessed: 2014-06-01].

[2] The RoboSub Competition, http://www.auvsifoundation.
org/Competitions/RoboSub, [Accessed: 2014-06-01].

[3] Dragonfly2, http://ww2.ptgrey.com/firewire/dragonfly-2,
[Accessed: 2014-06-01].

[4] Seacon, http://seaconworldwide.com/, [Accessed: 2014-
06-01].

[5] Seabotics, http://www.seabotix.com/, [Accessed: 2014-06-
01].

[6] Debian, https://www.debian.org/releases/wheezy/
debian-installer/, [Accessed: 2014-06-01].

[7] Ada, http://www.adacore.com/adaanswers/about/ada/,
[Accessed: 2014-06-01].

[8] Point Grey Research, Inc., http://ww2.ptgrey.com/sdk/
flycap, [Accessed: 2014-06-19].

[9] OpenCV, http://opencv.org/, [Accessed: 2014-06-01].

Mälardalen University, Sweden 10

http://www.mrtc.mdh.se/projects/ralf3/robosub/
http://www.mrtc.mdh.se/projects/ralf3/robosub/
http://www.auvsifoundation.org/Competitions/RoboSub
http://www.auvsifoundation.org/Competitions/RoboSub
http://ww2.ptgrey.com/firewire/dragonfly-2
http://seaconworldwide.com/
http://www.seabotix.com/
https://www.debian.org/releases/wheezy/debian-installer/
https://www.debian.org/releases/wheezy/debian-installer/
http://www.adacore.com/adaanswers/about/ada/
http://ww2.ptgrey.com/sdk/flycap
http://ww2.ptgrey.com/sdk/flycap
http://opencv.org/

