

MONTANA STATE UNIVERSITY

Department of Electrical and Computer Engineering

EELE 488R CAPSTONE: ELECTRICAL ENGINEERING DESIGN I

And

EMEC 489R CAPSTONE: MECHANICAL ENGINEERING DESIGN I

AUVSI ROBOSUB

By

Team Members:

Matthew Danczyk (ME)
Sam Hogue (EE)

David Mantha (ME)
Jonathan McGee (CpE)

Wilson Tucker Platt (CpE)
Alex Read (CpE)

Geoffrey Whitt (CpE)

For: Dr. Miller, Dr. Todd Kaiser and Sponsor Mike Kapus (NAVSEA-Keyport)

Prepared to Partially Fulfill the Requirements for ETME489/EMEC489/EELE488

Department of Electrical and Computer Engineering Montana State University
Bozeman, MT 59717

April 27, 2013

AUVSI Competition Submarine

2

Table of Contents

● Acknowledgements…………………………………………………………….… 03

● Executive Summary…………………………………………………………….... 03
● Introduction……………………………………………………………………….... 03
● Problem Statement………………………………………………………………... 04
● Mechanical Design………………………………………………………………… 07

○ External Pneumatic System…………………………………………….. 07
○ End Cap Design……………………………………………………....... 09
○ Frame Design…………………………………………………………….. 10
○ Camera Placement……………………………………………………….. 11
○ Torpedo Launcher Placement………………………………………… 11
○ Failure Mode Effects Analysis (FMEA)…………………………………14

● Electrical hardware design………………………………………………………. 17
○ The Electrical Block Diagram…………………………………………... 18
○ Internal Electrical Wiring With Component Pictures…………….... 19
○ Individual Components Currently Installed on the Sanka Sub…. 20
○ Experimental Power Draw………………………………………..…….. 27
○ Experimental Temperature Test………………………………………... 27
○ Sanka Quick Reference Component List………………………………. 28
○ Sanka Electrical Purchased Components……………………………. 29
○ Sanka Electrical Budget………………………………..……………….. 30
○ Blue November Budget………………………………..………………... 30

● Electrical Software Design…………………………………………………...….. 31
○ Software Introduction……………………………………………………. 31

○ Getting Started using the RoboSub Software……………………….. 32
○ Software Block Diagram…………………………………………………. 34
○ Looking at the C# Software up close………………………………….. 35
○ What works and what does not………………………………………… 36
○ C# project files in more detail…………………………………………... 36

● Conclusion…………………………………………………………………………. 38
○ Looking ahead……………………………………………………………. 38

● Appendices…………………………………………………………………….…… 39
○ Appendix A: Troubleshooting Documentation……………………… 39
○ Appendix B: Mechanical Part Drawings……………………………… 43
○ Appendix C: Pre-Water Checklist……………………………………… 82
○ Appendix D: Electronic Component Data Sheets………………….. 84
○ Appendix E: Mechanical Calculations……………………………….. 125
○ Appendix F: Project Schedule…………………………………………. 132
○ Appendix G: Changes Made During Construction.........…………... 134
○ Appendix H: Getting Started Guide…………………………………….145

3

Acknowledgements

It is with great appreciation that we acknowledge the involvement of Mike Kapus who has been

our sponsor and interface with NAVSEA-Keyport and who has offered suggestions, spied on the
competition, and provided us the funding without which this project would cease to be. We would also like
to express thanks to our advisors Dr. David Miller and Dr. Todd Kaiser for keeping us on track, honest,
and holding us to our goals.

Executive Summary

The newest manifestation of Montana State University’s Autonomous Underwater Vehicle team is

Blue November, the second rendition of Sanka, a fully autonomous submarine built to take part in the 17th
annual AUVSI/ONR RoboSub Competition held in July 2013 at Point Loma Naval Base in San Diego,
California. Although many of the same design theories have survived since last year because they
worked, the most recent rendition of the sub will feature an enhanced frame, electronics tube, new
electronics rack, new pneumatics set-up, new torpedo set up, new camera location, and modified end cap
design. Much time has also been spent creating a new software logic that is more accurate, more robust,
will be easier to adapt to future models, and well documented. Focus was maintained on modularity and
previous modularity was enhanced in the new design which will allow for future upgrades and the
replacement of failed parts. This ideal can also be seen in the easy, flexible build process requiring very
little tooling which allows assembly without the need for much more than a hex key. Although most of the
mechanical and electrical components were largely developed by their respective undergraduate
students, it was crucial to have crossover members who could integrate into both fields to stimulate and
foster communication between teams, ensuring neither side was surprised by the other at the end of the
semester and that the final product would come together smoothly. This was done by advisor Dr. Todd
Kaiser, through proper team communication, and through good inter-team relations.

Introduction

Every year since 1997 the Association for Unmanned Vehicles International (AUVSI) and the U.S.

Office of Naval Research (ONR) have partnered together to host an international RoboSub competition in
San Diego. This July, as it has in the three years previous, MSU will again partake in this competition
with funding coming from the Naval Sea Systems Command (NAVSEA) – Keyport out of Washington.
Last year over 30 teams participated originating from all over the world. Students from places like
Florida, Utah, Virginia, France, Canada, China, and India all converged on SPAWAR System Center –
Pacific’s TRANDEC research pool at the Naval Base Point Loma to prove that they could build a fully
autonomous submarine that could correctly navigate an obstacle course, racking up the highest number
of points by completing as many tasks as possible within the 20 minute time limit. While the competition
is the same for every team, each school has a different amount of funding and sponsorship involvement.
MSU is fortunate enough to build on a budget of $20,000, which has historically been quite sufficient to
prepare for many of the tasks that are to be faced. The difference in funding also spawns a variety in
approaches from cheaply ingenious to richly sophisticated technologies.

4

According to AUVSI and ONR, the goal of this competition is to “advance the development of
Autonomous Underwater Vehicles (AUV’s) by challenging a new generation of engineers to perform
realistic missions in an underwater environment.” There is also hope that young engineers will develop
interest in and ties with organizations that develop these AUV technologies. While every team is eager to
secure one of the four cash prizes for top contenders, the competition itself finds many of the mariners
talking candidly about their designs, accepting critiques, offering suggestions, and, in the worst-case
scenarios, trading parts and tools.

Project Needs

The purpose of this project was to come up with a renovated design of the current Autonomous

Underwater Vehicle (AUV) as well as upgrade the existing design so that both designs will be capable of
competing in the Association for Unmanned Vehicle Systems International (AUVSI) competition held July,
2013.

Problem Definition

The primary objective of the AUV design project was to complete a series of tasks completely
autonomously through the use of a variety of sensors, with no interaction or communication with any
persons or external computers. During the execution of mission objectives, the AUV must be able to
recover from any navigation and computing errors that may occur. The design of the AUV must prevent
sensitive electrical components from contacting the water and have an easily accessible kill switch for use
in the event of an uncontrollable error. Systems that include power, computer processing, sensors, and
propulsion must be safely incorporated into the AUV and calibrated to maximize AUV efficiency and task
completion. All parts of the submarine must submerge and remain submerged for the duration of the
competition run.

Project Requirements
The following Level 1 requirements of rendition were derived from the rules provided for the previous

year’s competition in addition to the priorities voiced by the project sponsor, Mike Kapus and the project
advisor, Dr. Todd Kaiser:

● The vessel must comply with all size, weight, buoyancy, and safety requirements of the
competition.

● The entire vessel must be modular for future expandability and relatively lightweight while being
able to protect the fragile components within

● The Vessel must be able to go to a depth and maintain that depth
● The Vessel must be able to recognize a color and track a line
● The vessel must be able to navigate through the competition start gate and complete at least one

competition task
● The vessel must have proper reference documents and other documentation for easy repairs and

troubleshooting
·

AUVSI RoboSub Iterations

This is currently the fourth year of designing, building, and competing in the NAVSEA AUVSI
Competition. Each successive design has been built on the previous year’s design by prioritizing the
areas with the largest room for improvement. This has led to a steady improvement in the design and

5

sub functionality from year to year with an end goal of having a fully functional sub which is actively
competing at the international competition each year. As the sub currently being designed is based on the
previous ones built; proper documentation of mechanical designs, electrical architecture and software
development of past subs has been crucial. However the past years have not made these documents
easily accessible. A portion of the current team’s work has been compiling past documentation and
condensing them into easily accessible folders. The following figures show the improvement made year
to year and added complexity of the RoboSub designs.

Figure 1: The first design created by a MSU competition team in 2010.

Figure 2: The second iteration design completed in 2011.

6

Figure 3: The design completed in 2012 codenamed SANKA.

The major areas of improvement in the 2013-2014 RoboSub, codenamed BLUE NOVEMBER,

have been improved frame, end cap, heat dissipation, and camera placement as well as a simplified
pneumatic system and computer/electrical architecture. The 2012-2013 RoboSub, SANKA, will from a
low mechanical level, be very similar to the Blue November sub design while housing identical electrical
hardware. This allows us to have two mechanically functioning subs giving us the flexibility to
troubleshoot both potential future mechanical problems and future electrical issues simultaneously. If
only one sub was available and a leak is discovered with Blue November, it will have to be taken out of
the pool which would halt testing of programs being written for the tasks. Instead, the mechanical issues
can be solved and Sanka can then be used to continue testing the modified task programming.

7

Mechanical Design

Figure 4: The full assembly design of this year’s team codenamed BLUE NOVEMBER.

Sanka, the submarine from the previous year, had a very solid mechanical design. This year’s

team decided very early in the design process to not change the overall design in a major way. The Blue
November design team has selected several areas of Sanka which require the most improvement but will
not affect the mechanical soundness. Sanka’s pneumatic system, end cap design, frame design, and
placement of the front camera and torpedo launchers were designated as the redesign areas. The design
process and the final selected assemblies of each of these are discussed in detail below. Each individual
component which will be used in the final assembly has an individual part drawing which can be found in
Appendix B and enforced with calculations found in Appendix E.

External Pneumatic System

A functioning pneumatic system is critical for several of the competition tasks. To complete these
tasks there are two mechanical systems which require pressurized CO2 to operate. To save weight only
one CO2 tank is used with T-junctions and solenoid valves to control the pressure burst and direct the
CO2 to the two systems. Sanka’s design team housed the pneumatic system internally in the main
chassis tube with unneeded tubing between each junction. This extra tubing and internally housed
system, shown in fig. 5, complicated accessing the electronics rack, required extra holes drilled into the
main chassis tube, and further filled an already packed tube.

8

Figure 5: Sanka's pneumatic system laid out to demonstrate extra tubing.

With these problems in mind a new pneumatic system was designed. First the system was

decided to be kept externally which would free space and allow for less holes to be drilled into the end
cap, lessening the chance of leaking which will damage the critical and expensive electronic boards. It
was also decided to house the system in its own pressure vessel to offset the weight of the pneumatic
system as well keep the system dry for operation. Finally the T-Junctions were simplified and compacted
to cut the extra tubing that was used in the previous design.

Figure 6: An exploded view of the newly designed pneumatic system.

The new design, in fig. 6 above, requires one CO2 tank which connects to a check valve which

regulates the pressure to 100 psi and can handle pressures up to 3000 psi. The check valve feeds the
pressure into a four-junction system with four exits. Each exit is controlled by an in-line solenoid valve
which will allow flow to the two torpedoes and the two droppers. Each solenoid valve operates on a 12 V
input. The pneumatic system will be housed in PVC piping with a solid end cap on one end and a
threaded cap on the other.

9

End Cap Design

 Two parts of the end cap have been changed from the previous year’s design. The seal between
the end cap and the flange attached to the main chassis tube, the thickness and shape of the end cap,
and the clamping device for the rear end cap have been redesigned for Blue November. These changes
are discussed in detail below.

Heat Fins & Gasket

The Sanka team had used a flat and solid aluminum, 2 inch thick plate, and O-rings between the
end cap and chassis tube to seal the main chassis tube. During initial testing of Sanka it was noticed that
the internal temperature of the sub was climbing dangerously close to the 50 degrees Celsius mark which
is the maximum temperature the voltage controller board can operate at. A thermal analysis of the sub
was also completed and showed that 52.5 degrees Celsius was the point when the internal temperature
would reach equilibrium with a pool environment at a temperature of 32 degrees Celsius. To combat this,
two design changes were completed. First, the chassis tube was lengthened and pneumatic system
removed to allow for a larger volume of air that needs to be heated. Second, heat fins will be added on
the front end cap to increase heat dissipation as well as a larger internal CPU fan to keep the air well
mixed.

Figure 7: An exploded view showing the newly designed heat fins and gasket seal.

As well as changing the end cap the O-rings are being replaced. During first semester testing of

Sanka, the O-rings which were used to seal the tube often popped out and were difficult to deal with.
This discouraged the group from removing the end cap which is required to access the electronics rack.
The sub also had small amounts of leaking which was attributed to the O-rings not being placed perfectly
in their grooves. To simplify the design a gasket has been chosen to replace the O-rings.

10

Toggle Clamp

One end cap needs to be removed so that the electronic boards can be removed and worked on.
The Sanka design had 8 screws on the outer diameter of the end cap which were required to be
unscrewed, then screwed back in each time the electronics needed to be checked or worked on. This
required time and effort, which in a competition setting, could prove to be costly. The Blue November
design is to use four toggle clamps shown in fig. 8 below. This design was chosen for ease of use factor
as well as quick access to the electronics.

Figure 8: A part model of the toggle clamps which will be used to secure the end cap.

Frame Design

The frame on Sanka did not have any easy places which allowed for the sub to be picked up and

moved around outside of the pool. It also had two large steel rings which allowed for the chassis tube to
be attached to the frame. Blue November has changed both of these. First the frame has been extended
to mid-level of the submarine to allow for easy picking up by hand to move it to and from the pool.
Second the chassis tube will be attached to the frame by four PVC mounts with a strong plastic to plastic
adhesive. These PVC mounts will then be bolted on to the frame. This will cut the weight that was
previously created by the large steel rings. An analysis of the strength required for the mounts if the sub
was dropped from four feet has been done and is shown in the calculations appendix.

11

Figure 9: An assembly drawing showing the raised frame design and the PVC mounts.

Camera Placement & Torpedo Launcher Placement

The camera and torpedo launchers were placed on the top part of the submarine in the Sanka

design. This could cause problems when trying to hit required targets because it is not in-line with the
center of the submarine. Blue November has camera and torpedo launchers placed in-line with the
center of the sub.

Figure 10: A close up view of the inline mounted cameras and torpedo launchers.

Electronic Rack

The electronics rack needs to hold 8 controller boards, 2 sensor boards, a full computer and

various switches and power strips. All of these components have pins and connections which need to be
periodically adjusted, checked for loose connections, or re-wired. The Sanka electronics rack was bolted
together and each board was bolted the chassis rack. Four pins which were parallel along the length of

12

the rack were used to keep the spacing. To work on individual boards all four pins needed to be
unscrewed and the entire assembly needed to be taken apart. The electronics were not easily accessed
and the connection pins could not be checked. For ease of access a new rack, termed a “Clamshell”
design, was created. This design will be capable of being flipped open by having a hinged side which
allows quick checking of electrical components.

Figure 11: An open view of the Clamshell electronic rack which will be used in Blue November.

13

Mechanical Block Diagram

Failure Mode and Effect Analysis

FAILURE	
 EFFECT	
 ON
COMPONENT FUNCTION FAILURE	
 MODE FAILURE	

CAUSE ASSEMBLY SYSTEM
FAILURE	

DETECTION	

METHOD

CRITICAL	

FAILURE	

SCORE

END	
 CAP
SEALING	

PRESSURE	

VESSAL

FAILS	
 TO	

SEAL/LEAKING

POOR	

LATCHING	

OR	
 BAD	

GASKET	
 SEAL

ELECTRONICS	

SLED

MAIN	

ELECTRONIC	

SYSTEM

SIGHT/HUMIDITY	

SENSOR 5

14

RAIL	

MOUNTS

CHASIS	
 TO	

FRAME	

INTERFACE

TENSILE	

YEILDING/SHEAR	

FRACTURE
POOR	

HANDLING
CHASSIS	

TUBE

TOP	
 LEVEL	

ASSEMBLY

VISIBLE	
 STRAIN	

OR	
 FRACTURE 5

THRUSTER MOVEMENT NO	
 PROP	

MOVEMENT

BAD	
 WIRING	

OR	
 DIRECT	

SHOCK	
 TO	

THRUSTER	

BODY

NONE MISSION	

PROGRAMING TESTING 4

FEET SYSTEM	

PROTECTION

TENSILE	

YEILDING/SHEAR	

FRACTURE
POOR	

HANDLING
COMPONENT	

ASSEMBLIES

PNUEMATICS	

SYSTEM

VISIBLE	
 STRAIN	

OR	
 FRACTURE 2

CAMERA VISION LOSS	
 OF	
 VISION

POOR	

WIRING,	

LEAKING,	

SHOCK	

IMPULSE

NONE MISSION	

PROGRAMING

LOSS	
 OF	
 VISUAL	

FEED 4

ELECTRONIC	

SLED	
 HINGE	

AND	
 LOCK

LOCKS	
 SLED BENDING	
 /	

SHEAR	
 FAILURE

POOR	

HANDLING NONE NONE STANDARD	
 USE 1

DROPPER	

TUBE

HOLDS	

DROPPPER

BRITTLE	

FRACTURE

POOR	

HANDLING NONE MISSION	

PROGRAMING
VISUAL	

FRACTURE 3

PNUEMATIC	

ACTUATORS

RELEASES	

DROPPERS

LOSS	
 OF	
 AIR	

PRESSURE

FAILURE	

PNUEMATIC	

LINE
PNUEMATIC	

SYSTEM

MISSION	

PROGRAMING TESTING 3

SOLENIOD	

VALVES

FIRES	

TORPEDOES	

AND	

RELEASES	

DROPPERS

NO	
 RELEASE	
 OF	

CO2	
 FOR	

PNUEMATIC	

FUNCTIONS

ELECTRICAL	

POWER	
 LOSS	

OR	
 BAD	

VALVE

PNEUMATIC	

VALVE	
 RACK

PNUEMATICS	

SYSTEM TESTING 3

BATTERY POWER	

SUPPLY

DISCONNECTION	

OF	
 BATTERY

POOR	

MOUNTING ALL TOP	
 LEVEL	

ASSEMBLY
LOSS	
 OF	
 VISUAL	

DISPLAY 4

INTERNAL	

FAN

FORCE	

CONVECTION	

COOLING

FAILS	
 TO	

CIRCULATE	
 AIR

POOR	

ELECTRICAL	

CONNECTION

CHASSIS	

TUBE

MAIN	

ELECTRONIC	

SYSTEM

TEMPERATURE	

SENSOR 4

Bill of Materials

Item No Description Supplier Unit Cost Units Total Cost

 PRESSURE VESSEL

8585K48 8” OD PC Tube McMaster-Carr $40.51 2 $81.02

15

9246K64 12”x36”x1/2” Al Sheet McMaster-Carr $105.57 1 $105.57

9246K83 12”x12”x1 ½” Al Sheet McMaster-Carr $114.58 2 $229.16

8740K39 1 ½”x2”x12” Type I PVC McMaster-Carr $26.51 2 $53.02

5135A33 500lb U-Bolt Right Angle
Toggle Clamps

McMaster-Carr $35.97 8 $287.76

47065T147 1” Double Al T-Slot
Fastener (pc 4)

McMaster-Carr $4.29 1 $4.29

 Sub-
Total

$760.82

 BATTERY CHASSIS

4880K76 2” Un-threaded PVC
Coupler

McMaster-Carr $1.07 4 $4.28

4880K847 2” Un-threaded PVC Plug McMaster-Carr $1.93 4 $7.72

48925K96 2”x5’ PVC Pipe McMaster-Carr $9.42 1 $9.42

47065T142 1” Single Al T-Slot
Fastener (pc 4)

McMaster-Carr $2.30 1 $2.30

 Sub-
Total

$23.72

 FRAME

47065T101 1”x48” Extruded Al T-Slot McMaster-Carr $14.20 6 $85.20

47065T186 6” 90deg Al Brace McMaster-Carr $15.67 2 $31.34

98015K18 12”x12”x⅛” Al Sheet McMaster-Carr $28.34 1 $28.34

47065T147 1” Double Al T-Slot
Fastener (pc 4)

McMaster-Carr $4.29 3 $12.87

8733K65 1 ½”x1”x24” Nylon McMaster-Carr $9.85 2 $19.70

47065T142 1” Single Al T-Slot
Fastener (pc 4)

McMaster-Carr $2.30 11 $25.30

47065T223 90deg Extruded Al T-Slot
Bracket

McMaster-Carr $3.98 40 $159.20

 Sub-
Total

$361.95

 EE CHASSIS

89015K28 12”x24”x1/8” Al Sheet McMaster-Carr $48.17 2 $96.34

16

87025K125 12”x24”x1/2” Type II PVC McMaster-Carr $59.72 1 $59.72

9542K322 ½”x3/4”x36” UHMW McMaster-Carr $9.24 6 $55.44

1658A17 1 ¼”x12” Stainless Piano
Hinge

McMaster-Carr $8.59 1 $8.59

1889A34 300 Series Stainless Latch McMaster-Carr $4.89 2 $9.78

92185A542 ¼”-20x1 ” Stainless Cap
Screw (pc 10)

McMaster-Carr $4.08 1 $4.08

90585A540 ¼”-20x¾ ” Stainless Flat
Head Cap Screw (pc 10)

McMaster-Carr $4.57 2 $9.14

90910A735 #6-32x½” Stainless Button
Head Torx Screw (pc25)

McMaster-Carr $8.76 1 $8.76

 Sub-
Total

$251.94

 PNEUMATIC CHASSIS

3811T11 Brass High-PSI Regulator McMaster-Carr $270.98 1 $270.98

7877K25 Pneumatic Solenoid Valve McMaster-Carr $30.07 4 $120.28

4464K483 ⅛” Stainless Union McMaster-Carr $13.57 4 $54.28

2684K14 ⅛” Male x ⅛” Female
90deg Elbow

McMaster-Carr $13.65 1 $13.65

50785K321 ⅛” Female x Male x
Female Brass-T

McMaster-Carr $3.34 3 $10.02

4830K111 ⅛”x¾” Threaded Pipe
Stainless

McMaster-Carr $1.32 7 $9.24

4880K58 4” PVC Cap Un-threaded McMaster-Carr $5.70 1 $5.70

48925K98 4”x5’ PVC Pipe McMaster-Carr $27.01 1 $27.01

4880K88 4” Unthreaded x NPT McMaster-Carr $5.18 1 $5.18

2389K81 4” NPT Plug McMaster-Carr $5.23 1 $5.23

1487T1 ⅛” PVC Tubing (25ft) McMaster-Carr $8.75 1 $8.75

5463K485 ⅛” Tube-to-⅛”Male 90deg
Elbow

McMaster-Carr $6.05 4 $24.20

 Sub-
Total

$555.22

 Total $1953.69

17

List of Tools

The following list is a summary of the tools that will be required to complete the majority of operations
required to build Blue November.

• T10 Torque Bit
• 5/32” Hex Bit
• Vertical Mill
• ½” End Mill
• ¼” End Mill
• Rotary Table
• Counter Sink Bit
• Counter Bore Bit
• ¼” Drill Bit
• Band Saw
• ¼”-20 Tap
• #6-32 Tap

Electrical Hardware Design

The electrical hardware of the old sub was quite sufficient. The electrical hardware was designed
based on the implementation of a full motherboard system. There are many reasons a full motherboard
system was chosen over a single microchip based implementation. The full motherboard allows for real
time monitoring of the system along with allowing software changes without having to upload and re-
upload code to a microchip. The motherboard also allows for greater modularity of parts as well as easy
upgrades and changes to the system. A few changes were made to the electrical hardware but on the
whole, the hardware was kept the same as the design that was done last year because the design
worked and functioned well. There were still many modifications made to the current electronic layout, the
future electronic layout, and the documentation of the electronics all of which were absent in the Sanka
iteration of the sub. The following subsections will introduce the electrical systems in full and how they
work.

The Electrical Block Diagram

18

In understanding the electrical system of the sub, the first step is to gain a basic understanding of
how the general parts interface. The above block diagram does just that. It introduces all of the necessary
parts in generality and how they are interconnected. The block diagram is based on the current
implementations of the electronics in the Sanka sub which are known to function and work as intended.
This diagram is an overview of the general parts necessary to make the sub function. In the Blue
November implementation, this block diagram will hold, although the specific electrical components may
change.

Internal Electrical Wiring with Component Pictures

19

20

Figure 12: A wiring diagram for the current electronics in Sanka.

The above diagram is how the Sanka iteration is currently wired. All of the wires are shown and

where each one goes to on its specific component. The purpose of this document is to give knowledge of
the current wiring in case any wiring problems arise. With this document, a person should be able to hook
up the electrical components of the sub from scratch.

 Individual Components Currently Installed on the Sanka Sub

 The following sections discuss in detail each of the individual electronic components which will be
used to operate Blue November. The electronics will be replicated from the previous design so that the
programming can be refined for the current architecture.

Motherboard

The Motherboard is the main hub of the electronics, it is what runs all of the other electronics
except for the voltage controller board. The current motherboard aboard Sanka is the nc9b-hm67-mini-itx-
motherboard. The specific information needed on this motherboard is available in Appendix D. This
motherboard gives us the platform which allows us to use existing free software to develop multitasking
and multiple interfacing tools to run the sub. It sufficiently interfaces all of the components and does most
of the major computing necessary to run the sub and allow for autonomous operation.

21

Voltage Controller Board

The voltage controller board is what routes electrical power from the batteries to the entire

system. The data sheet can be found in appendix D. The current voltage controller board on Sanka is the
M4-ATX board. This board has outputs to a 5, 12, and battery level available. The tolerances and voltage
levels can be changed using the hardware monitor for the board. This board is included because it allows
specific voltage outputs that are necessary to power the other electrical components on the sub. It also
allows the sub to power on and off safely as well as acting as a surge protector for the rest of the
electrical components. It effectively controls and monitors power input from the batteries and properly
distributes it to the rest of the electrical components. One useful thing that was noticed but never seen in
the data sheet was the blinking LED in the middle of the board when power is applied. The following chart
shows the functions of the led light.

Table 1: A guide for interpreting the meaning of the led lights in the submarine.

LED Status

Light is blinking slowly not enough power is being applied to the board

light is blinking rapidly proper power level is applied to the board, board
is booting up

solid green light board is on and functioning properly

Microcontroller Board

22

The microcontroller interfaces the pneumatics and the pressure sensor to the motherboard. It
allows the motherboard to communicate and control the pneumatics and the pressure sensor. The
microcontroller in Sanka is the arduino mega 2560 and the full data sheet can be found in appendix D.
The microcontroller allows for external control and part modularity because it runs its own program and
interface that can be changed to adapt to specific parts. It currently overlooks and controls the
pneumatics and pressure sensor and then reports back to the motherboard.

Power Capacitor

The power capacitor allows for stable power delivery from the batteries to the voltage controller
board. If there is a sudden power drop from the batteries, the capacitor can provide power for a short time
while the batteries stabilize their power output. The capacitor also allows for proper shutdown of the
system. When the batteries are shut off, the voltage controller realizes it but still needs power for a short
time in order to properly shut down the motherboard and components. The capacitor gives the power
necessary to do this. However, this is a substantial amount of power which is why the capacitor is so
large (10000 micro farads in Sanka).

Pressure Sensor

23

The pressure sensor in Sanka is a p51 media sensor pressure sensor and allows the sub to know

what depth it is at. It interfaces with the arduino microcontroller which takes the raw data and turns it into
a useful depth reading. It is molded into the end cap so that it is in direct contact with the surrounding
water. Without the pressure sensor, the sub would not be able to control or maintain a depth.

Inertial Measurement Unit

The IMU is an electrical component which allows the sub to know its location in three dimensional
space. It records acceleration and orientation in three dimensional space. Currently, Sanka employs a
digital compass GEDC-6 IMU unit. The unit is not currently used in the software design but when
integrated, it will allow the sub to realize itself in three dimensional space and react accordingly. The IMU
gives the sub the information it needs to follow a heading without visual help.

Internal Pressure and Temperature Sensor

24

The spark fun weatherboard V2 is a pressure and temperature sensor that interfaces with the

motherboard through an usb cable. This board allows Sanka to monitor its internal temperature and
pressure. The purpose of this board is to give the sub another sensor for its own awareness so that it can
react if the temperature is too hot. However, it was found that the voltage controller board also has a
temperature sensor and an auto shutoff that can be controlled by the hardware monitor on in the
operating system, so this component was removed from Sanka.

Hard Drive

The crucial 128g solid state hard drive stores all of the programs that the computer uses. Without
this, the motherboard and CPU would have nowhere to store programs and other necessary information
for running and operating the sub.

25

Motor Controller

The motor controller is the interface between the motherboard and the motor thrusters that move
the sub. There are six motor controllers, one for each engine that are connected to an usb hub and then
to the motherboard. The motor controllers are also connected directly to the 12 volt power strip. The CPU
and motherboard then interface with the motor controllers which then turn the motor thrusters on and off
to control the subs movement. The motor controllers are pololu-jrk-12V motor controllers and the data
sheets can be found in the appendix D.

Motor Thrusters

Sanka is controlled by six SeaBotix-BTD-150 motor thrusters. These motor thrusters allow Sanka

to control itself and move around in three dimensions in the water. Two of the thrusters are pointed

26

horizontally side to side, two vertically and two from front to back. These thrusters are essential to the
function of the sub and are connected to the motor controllers which control when they turn on and off.

Home Made Logic Board

The homemade logic board allows the arduino to power the pneumatics. This board interfaces
with the pneumatics and the arduino and serves as a switching board to each of the four pneumatic
valves using relays. The data sheet for each of the relays can be found in appendix D.

Cameras

The Sanka uses two external cameras that connect to the motherboard using the USB 3.0 ports.

The top camera is a Flea3 that is housed in a waterproof case. The bottom camera is a Microsoft HD life
cam studio camera. These cameras allow the sub to control itself based on its surroundings using a
visual interface. The cameras can be used to find colors and accurately shoot torpedoes. These cameras
allow Sanka to find and complete missions, and are essential to the sub.

27

All of these components interface with each other to make Sanka functional and able to carry out

its purpose. These components must be able to interface flawlessly with each other in order for the sub to
properly function. Without the electrical components, the sub would just be a useless chassis.

Wet Connects

The above picture shows the wet connects that will be used in the Blue November version of the
submarine. The existing wet connects in Sanka have been having some problems with leaking during the
pool tests. This has been due to their design which requires both sides of the connector to be screwed
down tightly to keep the water out of the electronics vessel. The problem is that when unplugging the
external connectors, their external seals must be unscrewed causing the actual wet connects in the end
cap to loosen. This is also a consequence of the connectors plugging in perpendicular to the end cap.
 The new wet connects will correct these issues by having the connectors plug in parallel to the
end cap, and having no external sheath to screw down. This will make new connections faster and
eliminate the torqueing that loosened the older wet connects and keep water from ever leaking onto the
electronics.

Experimental Power Draw

An experimental max power draw test was executed and it was found that the sub could draw a
maximum of 6.2 amps at 14.4 volts which meant that it could draw a continuous 89.28 watts of power.
This meant that at maximum power draw, the batteries were guaranteed to last at least an hour. This was
considered sufficient as the sub only needed to last about a half hour for its run at the competition.

Experimental Temperature Test

In order to accurately model how hot the internals the sub would get under the worst possible
conditions, we performed a worst case scenario test in the Sanka sub. This test involved running the CPU
at maximum load and turning on all the engines, while having the sub sealed as if it were to be

28

submerged. This setup allows us to find the maximum temperature the sub could ever reach. This
temperature would never be reached realistically for a few reasons. First is that when the sub is
submerged, the contact with the water will remove some of the heat away from the sub. Second is that
the sub will never actually be run at this kind of load, since the operating load is never this high. We will
design our new sub around these constraints to make sure we will never run into a thermal issue.

Sanka Quick Reference Component List

29

Sanka Electrical Purchased Components

30

Sanka Electrical Budget

Blue November Budget

31

 Electrical Software Design

Software Introduction

 This section introduces the software that is used to develop and run the current version of the
RoboSub. This foundation of software will be built upon and improved for the next iteration of the
submarine.
 The RoboSub uses the Microsoft Robotics Development Studio (MRDS). The main motivation for
choosing this was to help provide structure and organization to the complex software required for an
autonomous robot. It is built on the C# language and programmed best with Visual Studio. It helps to skim
the first four chapters of the book “Professional Microsoft Robotics Developer Studio” which can be found
in hard copy in the senior design lab, or in PDF form in the Capstone 2012-2013\Electrical :
Software\Books folder.

This studio handles all of the necessary multi-threading so that as a programmer you can
concentrate on writing the subroutines, and not have to worry about how everything is going to be able to
run simultaneously. The portion of MRDS that handles this is called the Concurrency Coordination
Runtime (CCR)
 MRDS is built on top of the .NET framework, and uses the C# language. Each "class" file as it is
called in Java is referred to as a "service" in MRDS. All code is written and compiled using Visual Studio,
but to organize how the services interact, a utility which is part of MRDS called the DSS Manifest Editor is
used.
 DSS stands for Distributed Software Services, and is the second major portion of MRDS. This
allows the processing to occur on multiple cores, or even multiple computers across a network! This multi-
processor feature is not necessary for our application, but it is an inseparable part of MRDS.
 Notice that there are XML comments within each service. These are necessary, as the DSS
Manifest Editor is actually just a way to edit the XML manifests that tell the services how to interact.
 A key part of the interactions between the different services is the C# concept of "Subscribing."
One object will publish an event, which other objects subscribe to. This way, an object only needs to pay
attention to its own concerns, and will respond appropriately only when certain events happen. See
chapter 11 in the Head First C# book for a more detailed explanation. This book can be found in PDF
format in the Capstone 2012-2013\Electrical : Software\Books folder.

Along with the C# code, two additional pieces of software that the RoboSub relies upon for
operation are RoboRealm and Arduino code.

The Arduino microprocessor acts as a way for the computer’s USB interface to communicate with
the depth pressure sensor and the pneumatic valves. The arduino code is comprised of only one file
which can be viewed and edited in the Arduino environment, which is open-source.

The RoboRealm program is the final piece of the necessary software, and it’s used as to
processes raw images sent from the camera via USB 3.0. After processing the image to identify the
location and shape of objects, this information is sent to the C# code via a TCP socket.
 RoboRealm is the only third-party program in the RoboSub which must be purchased (Other than
VisualStudio which is free to students.) We will keep using RoboRealm as it provides solid visual
processing for us.

32

Getting Started using the RoboSub Software

 This section will guide the first-time user through everything they need to know to operate the
RoboSub with its current programming.
 We begin assuming that the hardware is correctly connected and the batteries are fully charged.
First, power on the RoboSub by flipping up the two switches on the end cap to turn on the machine.
There will be a delay of around 10 seconds as the power system charges up, then the sub should
respond by turning on the blue and gold LED lights.

Manual control:
 In order to control the RoboSub, you will be connecting an Ethernet cable to the RoboSub. This
cable is attached to a spool that is connected to a wireless router. Power on the router. Power up the
laptop and start Windows 8 using the following password, taking note of the zero and the exclamation
point.

Password: R0bosub!
Click on the Remote Desktop button in the taskbar to access the RoboSub's computer, using the

same password as for the laptop.
 Once the RoboSub desktop appears, start the RoboRealm program by clicking on the icon of a
checkerboard in the taskbar. In the RoboRealm program, click the “Camera” button near the bottom of the
window. You can turn off image processing by unclicking the "Run" button near the top of the window,
which will allow you to view the raw images from the camera.

Now double click the "Start RoboSub" shortcut on the desktop. You will have four windows open:
RoboRealm, the dashboard, console window, and depth chart.
 Locate the depth control on the dashboard.
 With the RoboSub floating on the surface of the water, click the calibrate button to calibrate the
depth sensor.

 You may now play around with the various manual controls, using the RoboRealm preview
window of the front camera to see where you are going.
 If you want to use the keyboard for movement control, click the "Enable" button. The up, down,
left, and right arrow keys control forward, backward, turn left, and turn right respectively. The comma and
period keys, respectively, are strafe left and right. Keyboard control will revert to dashboard control after a
couple minutes. Simply click the “Enable” button again to resume.

Autonomous mode:

 By selecting the "Wait and then Start" mission from the mission planner on the RoboSub
dashboard, you will have 60s to disconnect the Ethernet cable and place the sub in the water.
Unfortunately, all this currently does is cause the sub to dive to 4ft and swim forward for a few seconds
and then stop.
 The other missions in the mission planner drop-down menu are unfinished, and are the focus of
future development and testing.

33

RoboRealm vision program:

 This program allows us to obtain and filter data from the two cameras. The various filters being
applied to the current camera are listed in the box below the video. They are listed in the order they are
being applied, which can be critically important, as a blob filter should be applied after a color filter when
looking for items of a single color.
 Additional filters that may be applied are listed in the box to the left of the preview, and may be
added to the current camera by clicking the “Add” button at the bottom of the window. Any of the filters
applied to the camera may have their parameters changed by clicking on the filter name, then clicking the
“Edit” button.
 In order to view the unfiltered visuals from the camera, unclick the "Run" button near the top of
the RoboRealm window. This will stop all filters from running and show the raw camera data.
 To switch between the forward and down cameras, click the "Options" button near the "Run"
button. Then select between the cameras using the drop down box.

NDS-1 IMU GUI program:

 This program, accessed by clicking on the button that looks like an aircraft gauge in the taskbar,
will give a convenient display of all the current IMU data. It will also output the data stream to a CSV file, if
desired.
 Do not leave this program running while running the RoboSub service, otherwise the RoboSub
console with display an error in connecting to the IMU.
 If any problems connecting to the IMU are encountered, refer to Appendix A for troubleshooting
help.

Hardware Monitor:

 There is also a hardware monitoring program, which can be opened via its desktop shortcut. This
will allow you to see the current temperatures inside the CPU chip, as well as the temperature on the
board. This is useful for design and troubleshooting, but is not necessary for the proper control of the
RoboSub.

Browser interface:

 Since MRDS is set to use TCP socket number 50000 to communicate within the computer, it is
possible to access information about the services while they are running via a web browser.

Open Chrome and type “localhost:50000” into the URL bar. You will now see several menus that
can be used to access each of the RoboSub's services and peripherals.

Using the bench power supply:

 You may also use one of the battery-charging cables with banana plugs to power the sub from a
14V DC bench power supply. Only one cable is needed, as the second battery is simply used to extend
the working life of the RoboSub.

34

Software Block Diagram

35

The software block diagram is shown on the previous page.
This solid lines and boxes in the diagram display how the various project files are arranged within

the DSS Manifest Editor, showing the relationship between each block of programming.
For instance, the Mission Planner project directly relies on both the Vision and Movement

projects, and the Movement relies on the Pressure Sensor and IMU, while the Dashboard controls access
the Mission Planner, Movement, and Pressure Sensor projects.

Dashed lines and blocks show where the software communicates with other programs (such as
RoboRealm) or with the hardware.

Looking at the C# Software up close

Viewing the code:

 Start Microsoft Visual Studio Professional 2012 and open the solution file by going to:

 File > Recent Projects and Solutions > Main.sln

 If no recent solutions exist, then you can find the file in

 C:\Users\robocorp\Microsoft Robotics Dev Studio 4\Projects\RDSrobosub\Main

 Be aware that there are two separate Visual Studio solutions for the RoboSub. The first is
Main.sln, and the second is Dashboard.sln. The Dashboard solution will be in the Dashboard folder
instead of the Main folder.
 All of the files should be visible in the Solution Explorer window to the right.
 After changing any of the code, you can test it by pressing F6, or clicking on Build > Build
Solution. The RoboSub service must not be running while you build the project, but may be run as soon
as the build is complete. There may be small compiler errors the first time you try to build which should go
away simply by building the solution again.

Arduino code:

 The Arduino microcontroller is used to communicate with the depth pressure sensor and the
pneumatic valves that fire the torpedoes and release the droppers.
 The code for the Arduino simply translates communications with the C# code via USB into the
actions necessary for activating the pneumatic valves or reading the pressure sensor.
 The .ino file can be opened with the Arduino API and can be found in:

C:\Users\robocorp\Microsoft Robotics Dev Studio 4
\Projects\RDSrobosub\Arduino\RoboSub_Sensors

RoboRealm API:

 The RoboRealm API guide may be found, along with tutorials and example code at:

 http://www.roborealm.com/help/API.php

36

 Under the Vision project, there is a C# file RR_API.cs that is already set up to simplify
communication with RoboRealm.

Backing up the files:

 The simplest way to back up the code completely, without missing any of the compiled files, is to
copy the entire "Microsoft Robotics Dev Studio 4" folder. This includes the Arduino code.

What Works and What Does Not

There are thousands of lines of code already written for the sub, much of which is not functioning.
Our attention will be focused on getting the specific missions under the Mission Planner project to work.

Currently, manual control via the dashboard GUI works well. This means that the Movement,
Main, Dashboard, and Pressure Sensor projects are the ones that are working. The exception to this
being the depth control, which does not send the sub to the exact target depth. For example: Entering “4”
as the target depth will send the submarine down to around 9ft below the surface. This can be adjusted
and re-calibrated by changing the PSI_PER_FOOT constant in the PressureSensor.cs file.

The IMU project does not work because this portion of the program is freezing when trying to
retrieve data from the IMU. It appears that the IMU heading was central to the way that the sub was to
understand motion, as it tries to lock onto a compass heading from 0-359 and then move forward holding
that heading. The heading could then be adjusted, based on visual information, to make a turn.
 The Vision project may be working well enough to leave unaltered, though without further testing,
it is hard to tell. We have had some limited success in the lab with having the sub recognize a colored line
and begin to track it.
 As a reminder, pay attention to what is being displayed in the console window while the RoboSub
service is running. This is where error messages, along with messages displaying the current operations
the RoboSub is attempting are shown.

C# project files in more detail

C# is an object-oriented programming language that

More information on the basics of programming with C# can be found in the Head First

This next section will briefly describe the contents and what is done in each of the C# project files.

Note that there are multiple C# files for each project, and multiple projects in the Main solution, but only
one project in the Dashboard solution.
 Every project has a C# file titled ProjectNameTypes.cs, where the italics are replaced with the
actual project's name. This file is essential and allows modification of the basic operations on that project
object, such as Get or Subscribe. The enums are also fully defined in these files, which is where the
complete list of method commands for the corresponding file may be found.
 There are additional C# files in the MissionPlanner and Movement projects that are located in a
sub-folder. This is where much of the code for the specific missions and motor drivers is hiding.

 NOTICE: there is potential for confusion, as there are also two IMU.cs files, one is under the
IMU project, and one under the Movement project. They are completely different!

37

Dashboard.sln

Dashboard:
 The dashboard is the custom Graphical User Interface (GUI) for controlling the RoboSub.
Keyboard, Mission planner, pneumatics all have manual controls. Depth, vision and heading all allow their
PID values to be changed.
 DashboardForm.cs contains the graphical design with the button layout.

Main.sln

Main:
 The primary purpose of this project is to calibrate and then continuously poll the pressure sensor
in the main loop. No known problems here.

IMU:
 This opens the communications with the IMU board and is intended to continuously retrieve raw
data from the IMU and process it into usable information.

Experimentally, every time we have run the sub, this project has frozen when trying to read the
IMU data.

Mission Planner:
 This project is where the behavior for each specific mission would be specified. Currently, the
WaitThenStart mission appears to be the only one that functions. This mission sends the sub down to a
depth of 4ft, then moves it straight forward on a timer in order to get it through the starting gate. It is then
supposed to identify the buoy.
 The specific missions, such as Line, Parking, and Buoy can all be found in the sub-folder under
the MissionPlanner project. Current development is concerned with getting the Line mission to implement
a search pattern, notice a black line on the bottom of the pool, and follow that line to the other end of the
pool.

Movement:
 This large project allows all of the RoboSub's movements to be controlled with simple commands.
The possible commands include moving forward, strafing left or right, and turning. For each command,
there are two parameters, one for the power level of the motor, and one for the duration, in milliseconds,
that the thruster is to be on. It is possible to leave the motors on indefinitely by setting the duration to 0.

It communicates to the 6 motor driver boards via USB.
 The IMU C# file here acts as a sort of wrapper to ease the importing of data from the IMU for the
purpose of maintaining a heading when moving. The idea seems to be that when a non-rotational
movement is being made, the IMU heading will keep the sub positioned.

PressureSensor:
 This project handles all of the interactions with the Arduino, which include the pressure sensor,
torpedo launcher, and marker dropper. No problems are apparent here.

38

Vision:
 This project contains code for interacting with the RoboRealm program, as well as four methods
that are intended to provide vision-related operations.
 These four prototype methods are for Gate, Line, Buoy, and Parking tasks. As of yet, I don't know
that any of these work, though they need specific testing.
 The RR_API file contains a variety of testing routines for exploring the connection with
RoboRealm.
 Notice that the manifest flowchart shows that only the Mission Planner is using the Vision project
directly.

 Conclusion

 Our project is to produce an autonomous submarine capable of completing multiple visual and
spatial tasks. In order to do so, the submarine consists of a water-tight vessel protecting the electronics
from the pool environment, batteries providing electrical power, and a complement of torpedoes and
marker droppers.
 The purpose of our submarine is to compete in the annual international AUVSI competition in San
Diego. There it will dive to a depth of approximately 5ft, pass through the entry gate, and proceed along
the line at the bottom of the pool to the first task. Depending on the actual arrangement in the competition
pool, the submarine will bump into the correctly-colored buoy, hover over the designated parking space,
fire torpedoes through the appropriate targets, and drop weighted markers into the designated bin, all
completely of its own accord.
 To compete well, we have examined the design of the previous year’s submarine and found the
overall mechanical design to be functional, but containing several areas that could be improved. Likewise,
the electrical hardware does not require a complete re-design, but rather some adjustments to how the
components are connected, and how they are physically arranged. The general software has a lot of
potential, but was severely under-developed.
 A new frame has been designed, as well as a new pressure vessel to house the pneumatics.
 Our mission this year is to build our improved version, called Blue November, and focus on
developing the current software so that the Artificial Intelligence (AI) of the submarine is capable of
handling the competition tasks.

Looking Ahead

This year we have focused on researching the previous year’s submarine (Sanka) design, and
documenting its features for future development. We are also building a revised model of the submarine,
which we will implement with continual improvements of the existing software.

Ideally, with the subsequent year’s version, they will be able to focus more on improving the
software, as opposed to documenting and organizing the existing version.
 In two years time, the next group to approach this competition will have found a series of
improvements that they may want to implement and build their own sub once again.

39

Appendix A: Troubleshooting Documentation

40

Troubleshooting: IMU (GEDC-6 and its board from digital compass)

So the IMU quit working. Here is a simple bullet point list that should help fix your problems.
1. If you are using usb, make sure that the RS232 jumper pin on the board is not connected.
The jumper is J3-2, J3-3 and should be labeled as RS232
2. Plug in all of your components. Then go into the computer control panelèhardware and
soundèdevices and printers
3. This shows you all of your connected devices, by right clicking on a device, you can go into
the properties. In the properties, go to the hardware tab and click properties, then click change
settings. This allows you to view and change the settings of each connected component
depending on the component you first right clicked on.
4. Using the above method, change the IMU to one of the first 16 serial communication ports
that is not being used, if they are all full, move one device to a higher port and then move the
IMU to the port that was just freed up.
NOTE: If you do not know the name of the IMU device, simply disconnect it and reconnect it. It
will disappear from the devices and then reappear and you will know which one it is.
5. Try connecting to the device using the software from digital compass. If this does not work,
continue
6. Next, disconnect the board from any support it is on by unscrewing the four screws at each
corner of the board. Retry the software connection. If this does not work, continue.
7. After you have done all the previous steps, and with the board unscrewed from its
supporting material (supporting material is usually a plastic board that it is screwed to), then
short the outside pin of the DTR jumper to the ground in the corner of the board by the mini usb
connection.

 NOTE: The outside pin of the DTR jumper is connected to hardwire reset of the actual IMU,
temporarily shorting it while there is power to the board will effectively reset the board and the
IMU. This is a temporary connection, just touch a wire to the DTR pin and ground and then
remove the wire and it should be reset. When the board is reset, it is good to note that the baud
rate will return to 115200 with one stop bit and no parity. You may have to match the com port
settings to these using step 3.
NOTE: Also note that during a reset, all the information on the IMU will be lost, but the program
should be saved and implemented by the user from the computer on the digital compass
software so this should not be a problem.

8. Now retry the connection using the software and it should work properly
9. If this does not work, delete the IMU drivers and reinstall them. The drivers can be found in
the properties menu which is described in section 3. To do this, delete the drivers, then unplug
and re plug in the IMU and the drivers should automatically reinstall
10. If this does not work, unplug all of your devices except the IMU and repeat steps 1-9
If none of the above solves your problem, lay the IMU on the table and smash it with a hammer.
Then take the IMU home and place it in an oven preheated to 400 degrees F for a period of 2
hours and 15 minutes. Finally call the Digital Compass and tell them what happened and ask
why it quit working and how they can help

41

Troubleshooting: Arduino (specifically the pressure sensor)

So now the pressure sensor isn’t working. Good work champ. Here is what you want to do.

NOTE: first you must realize that the Arduino is like a little high maintenance. It can react poorly
based on what order the usb’s are plugged in, or on how the program is run. But hopefully this
document will be like candy to a crying baby.
1. Connect all of your devices to the motherboard. In the control panel, go to hardware and
soundèdevices and printers. This should show a list of all the connected devices. On this list,
you can right click on a device to change its properties. Change the Arduino so that it is on a
lower com port. Preferably 1-6. Make sure that it is the only device on that com port. For a more
detailed description go to IMU troubleshooting part 3.
2. After changing the com port, unplug all of the devices except the Arduino device. Open the
Arduino software and in the options, make sure the proper port is showing. Then try uploading
the code and running it. This should work, if it does not, then the problem is most likely with the
com port communicating with the Arduino software. This is assuming that your code is working
properly. You may have to switch the com port and try again.
3. After you have got the Arduino working on its own, continue on but read the following note
carefully.
NOTE: The Arduino is prejudice against the order of which it is connected to the motherboard
and how the software is run. What this means is that if the Arduino is plugged in first and then
all of the other components are plugged in, it may have some interfacing problems in the usb
hub with the other components. Because of this, except for the cameras, it is better to hook the
Arduino in as the last component. The software also is in a partial “same state” operation. This
means that if you plug in the Arduino while the Arduino software is open, it most likely will not
recognize it and will not run properly. This is because you started the Arduino program without
the Arduino plugged in so it is stuck in that state. The simple fix is to exit the program and
restart it.
4. After considering the above note, play with starting and restarting the Arduino software and
see if you can get it to work.
5. If this does not work, combine step 4 with unplugging and plugging in the usb components
in different orders until it works.
6. If this still does not work, one more thing must be considered. The Arduino may also be
cranky about what usb device it shares the usb hub with. It may prefer sharing with one
component over another. This is ok because there are two hubs on the mother board, simply try
rearranging the devices until the Arduino is happy.
7. If none of the above steps works, then the error is either in the programming code or in the
device which is hooked up to the Arduino. Check both of these and then retry the above steps.

42

Software References:

● The book “Professional Microsoft Robotics Developer Studio” which can be found in
hard copy in the senior design lab, or in PDF form in the Capstone 2012-2013\Electrical :
Software\Books folder.

● The book “Head First C#” which can be found in the same folder in PDF format.
● RoboRealm Tutorials and API website: http://www.roborealm.com/help

43

Appendix B: Mechanical Part Drawings

44

SUBASSEMBLY CODES
F- FRAME
PN- PNEUMATIC
D- DYNAMIC
MPV- MAIN PRESSURE VESSEL
CAM- CAMERA
T- TORPEDO
DR- DROPPER
EEC- ELECTRICAL CHASSIS

SUB-ASSEMBLIES
FRAME
F-000 FRAME
F-001 ANGLE BAR
F-002 T-SLOT BAR
F-003 FOOT
F-004 PNEUMATIC MOUNT

PNEUMATICS
PN-000 EXPLODED VIEW PNEUMATIC SYSTEM
PN-001 PVC END CAP
PN-002 PVC PIPE
PN-003 MALE/FEMALE ELBOW
PN-004 MALE/FEMALE T-JOINT
PN-005-007 UNIONS
PN-008 NPT THREADED PIPE
PN-009 SOLENOID VALVE
PN-010 MALE/TUBE ELBOW
PN-011 ALUMINUM PLATE
PN-012-13 PRESSURE REGULATOR
PN-014 NPT PLUG
PN-015 BRACE
PN-016 NPT TO 4” PVC PIPE

DYNAMIC
D-001 DYNAMICS

MAIN PRESSURE VESSEL
MPV-000 PRESSURE VESSEL EXPLODED VIEW
MPV-001 FINNED CAP
MPV-002 TUBE
MPV-003 GASKET
MPV-004 END CAP
MPV-005 SUPPORT

45

MPV-006 FLANGE

CAMERA
CAM-001 FRONT CAMERA
CAM-002 BRACKET

TORPEDO
T-000 CAMERA/TORPEDO BRACKET
T-001 TORPEDO TUBE
T-002 TORPEDO

DROPPER
DR-001 DROPPER TUBE

EE CHASSIS
EEC-000 EE CHASSIS

BATTERY
B-001 BATTERY SOCKET
B-000 BATTERY

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Appendix C: Pre-Water Checklist

83

This checklist is intended to mitigate the common errors that may occur when performing a
water test of the submarine, and identify everything that is necessary for using the submarine.

First make sure you have the 4 major components:

● The RoboSub
● Ethernet cable spool with wireless router
● Laptop
● Batteries, battery cables, and charging station

Next, before dropping the RoboSub into the nearest pool, it is helpful to be sure that it is ready
to go, so before sealing each end cap check:

● Are both batteries fully charged?
● Are both O-rings greased and seated in their grooves?
● Is every pass-through connection on the end cap tightened down or otherwise sealed?
● Are all electronics functional? Check:

○ Both cameras
○ All six motors
○ IMU
○ Pressure sensor

84

Appendix D: Electronic Component Data Sheets

85

86

Type 381LX / 383LX 105 °C High Ripple, Snap-In
Aluminum High Ripple, Long Life, 2, 4 and 5 pin styles
available

Adding longer-life and more ripple capability to the excellent value of Type 380L/LX capacitors, the
381L/LX readily handles tough switching power supply input and output circuits and motor-drive bus
capacitor applications where the high surface area of multiple units in parallel equals the ripple capability
of our Type 520C inverter-grade capacitor. Type 381LX delivers more capacitance per can size while
Type 381L gives lower ESR for the same capacitance rating. Type 383L/LX has 4 or 5 leads for stable,
reverse-proof mounting. Highlights - Top performance in power supplies and motor drives - 4 times the
life of Type 380L/LX - 2, 4 and 5 leads available Specifications

- Big selection of 42 case sizes

Temperature Range –40 °C to + 105 °C ≤ 315 Vdc –25 °C to + 105 °C ≥ 350 Vdc Rated Voltage Range 10 Vdc to
450 Vdc

Capacitance Range 33 µF to 150,000 µF

Capacitance Tolerance ± 20%

Leakage Current ≤3 √CV µA, 4 mA max, 5 minutes

Ripple Current Multipliers Ambient Temperature

45 °C 60 °C 70 °C 85 °C 105°C 381L 383L 2.70 2.60 2.50 2.10 1.00 381LX, 383 LX 2.35 2.20 2.00 1.70
1.00 Frequency

50 Hz 60 Hz 120 Hz 500 Hz 1 kHz

Low Temperature Characteristics Impedance ratio: Z

–200C

5 kHz & up

10-100 Vdc 0.93 0.95 1.00 1.05 1.08 1.15

160-450 Vdc 0.75 0.80 1.00 1.20 1.25 1.40

≤ 10 (10 Vdc)

⁄ Z

+250C

≤ 8 (16–50 Vdc) ≤ 4 (63–100 Vdc) ≤ 3 (150–450 Vdc)

Endurance Life Test 3000 h at full load at 105 °C

∆ Capacitance ±20% ESR 200% of limit DCL 100% of limit

Shelf Life Test 1000 h at 105 °C

∆ Capacitance ±20% ESR 200% of limit DCL 100% of limit

Vibration 10 to 55 Hz, 0.06” and 10 g max, 2 h each plane

RoHS Compliant

CDM Cornell Dubilier • 140 Technology Place • Liberty, SC 29657 • Phone: (864)843-2277 • Fax:
(864)843-3800

87

88

89

Part# EV-3M-12 http://www.clippard.com/part/EV-3M-12

Home / Products / Electronic Valves / EV Mouse Valves / EV Mouse Valves / EV-3M-12

90

1 of 2 10/23/2013 7:25 PM

More Views

Get CAD files:

Details

3-Way Elec. Valve, N-C, Manifold Mount, Wire Leads, 12 VDC

See Catalog: Page 179

Additional Information

Connector Wire Leads

Air Flow 0.6 scfm @ 100 PSI

Max PSI 0 - 105 PSI

Medium Air, Gas

Mount Manifold Mount

Ports Manifold

Power Consumption .67 Watts

Response Time 5-10 Milliseconds @105 PSI

Temperature Range 30 - 180 F

Voltage 12 VDC

Orifice 0.025"

Wire Size 26 Gauge

Accessories 2020 2021 EVB-2 EVB-3

Air Flow 0.6 scfm @ 100 psig (17 L/min @ 7 bar)

Body Material Nickel Plated Brass

Connection Type 18" Wire Leads Side (Radial)

Life Cycles Over 1 Billion

Manifolds /products/electronic-valve-ev-manifolds

Poppet Travel 0.007"

Port Size #10-32

Power Consumption 0.67 Watts

Pressure Range 28" Hg Vac. to 105 psig

EV-3M-12

Response Time 5 to 10 milliseconds (nominal)

Seals Nitrile

Series Standard

Temperature Range 32 to 180°F (0 to 82°C)

Valve Porting 3-Way Normally-Closed loading

91

SSI TECHNOLOGIES, INC. Controls Division 2643 W. Court Street Janesville, WI 53548-5011 Phone:

(608)758-1500 Fax: (608) 758-2491 www.ssitechnologies.com

92

SSI Technologies – Application Note PS-AN2

MediaSensorTM Absolute, Sealed, Gage
Pressure Sensors

Family Product Overview

Product Description

The MediaSensorTM (P51) family of bulk micro-machined, absolute, sealed and gage pressure sensors
are for both harsh and benign media with superior accuracy over an operating temperature of -40°C to
105°C. These compact, robust sensors measure pressures from 3 PSI to 5,000 PSI and are well suited
for a variety of automotive, industrial and commercial applications.

Product Features

▪ Superb Accuracy:

o +/- 0.5% Full Scale for 75 PSI to 5000 PSI

o +/- 1% Full Scale for 15 PSI to 60 PSI

o +/- 2% Full Scale for 3 PSI to 10 PSI

▪ Pressure Ranges: 3 PSI to 5,000 PSI

▪ Electronics:

o 0.5 – 4.5 Volt output (with 5V input) o 0.5 – 4.5 Volt output with overvoltage protection

(with 5V input) o 1-5 Volt output (with 8 - 30V input) o 4 – 20 mA output (with 8 - 30V input)

▪ Temperature Range: -40°C to 105°C

▪ Maximum Flexibility: Custom ASIC provides signal conditioning for calibration and temperature
compensation.

▪ Standard and custom options available for OEM quantities

▪ Excellent price/performance ratio

MediaSensorTM Family of Pressure Sensors with integrated signal conditioning

▪ Compact, Robust Package: All laser-welded stainless steel design for optimal media isolation in
compact size

▪ Chemical Compatibilities: Any gas or liquid compatible with 304L & 316L Stainless Steel. For example,
Motor Oil, Diesel, Hydraulic fluid, brake fluid, water, waste water, Hydrogen, Nitrogen, and Air.

▪ Typical Applications: Refrigeration; Fuel Cells; Pumps; Hydraulics; Process Control; Spraying Systems;
Pneumatics; Compressors; Flow; Robotics; Agriculture; Hydrogen Storage

Call us at 1- 888 - 477- 4320 or visit our Website: http://ssitechnologies.com

mily Product Overview

Standard Full Scale Pressure Ranges

93

▪ Gage: 3, 5,10, 15, 25, 30, 50, 60, 75, 100, 120, 130, 200, 225, 250 and 300 PSIG

▪ Sealed: 50, 100, 150, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000 and 5000 PSIS

▪ Absolute: 15, 30, 50, 65, 75, 100, 150, 200, 250, 300, 500, 750, 1000, 1500, 2000, and 3000 PSIA

Measurement Technology

In general, pressure measurement technology translates force from an induced pressure into an electrical
quantity. The MediaSensorTM family of pressure transducers and transmitters use piezoresistive
technology for its sensor signal processing to measure pressure.

A micro-machined stainless steel convoluted diaphragm with a silicon crystal semiconductor is used.
Strain gauges (resistive elements) in the silicon crystal are used in a Wheatstone Bridge circuit. When
pressure is applied, the resistivity of the strain gauges changes proportional to the pressure applied.
Since a single silicon crystal is used it has a low mechanical hysteresis with good linearity.

One leg of the bridge measures the input pressures port. The other leg of the bridge is connected to the
reference port the input pressure port is compared to. The connection to this reference port determines
the pressure sensing convention used.

The MediaSensorTM family comes in a choice of three pressure sensing type conventions: absolute,
gauge (vented or sealed).

Absolute MediaSensorsTM measure pressure relative to perfect Vacuum pressure (0 PSI) which remains
unchanged regardless of temperature, location or other ambient conditions such as weather. Absolute
MediaSensorsTM are calibrated to have 0.5 Vdc, 1 Vdc, or 4 mA respectively at 0 PSIA.

There are two different gauge pressure conventions – Vented Gauge and Sealed Gauge. Gauge
MediaSensorsTM measure pressure relative to ambient room pressure through a port that is vented
(open) to the atmosphere. Gauge MediaSensorsTM are calibrated to have 0.5 Vdc, 1 Vdc, or 4 mA
respectively at 0 PSIG.

Sealed MediaSensorsTM measure pressure relative to a port that is connected to a sealed perfect
vacuum chamber. Sealed MediaSensorsTM are calibrated to 14.5 PSI absolute. Sealed MediaSensorsTM
are calibrated to have 0.5Vdc, 1 Vdc, or 4 mA respectively at 14.5 PSIA.

The MediaSensorTM takes the two voltage output ports of the Wheatstone bridge and amplifies the
signal. Piezoresistive pressure sensors are sensitive to changes in temperature. The MediaSensorTM
uses signal conditioning to compensate for temperature and calibration. The output signal is then
converted into one of four forms:

1) 0.5 – 4.5 Volt ratiometric output (transducer)

2) 0.5 – 4.5 V ratiometric output with Overvoltage

protection (transducer)

3) 1 – 5 volt output (transducer)

4) 4 – 20 mA output (transmitters)

94

Pressure Sensors

Family Product Overview

Ratiometric outputs vary as a ratio of the supply voltage.

Transmitters are very suitable in applications that use long cables. There is virtually no error from voltage
drop introduced from the wire resistance when sending the signal as a current. They are also less
sensitive to electromagnetic interference.

Some piezoresistive pressure transducers use only an unprotected silicon sensing element. Silicon is a
brittle crystalline material, which can sometimes crack under severe cold transient environments. The
MediaSensorTM pressure transducer uses an additional 316L stainless steel convoluted diaphragm with
a protective non-silicone oil to protect the sensitive silicon sensing element from the harsh media and
environmental conditions. The 316L stainless steel diaphragm not only provides for optimal water and
chemical media isolation for the silicon crystal sensing element but can handle cold temperature
transients without sustaining damage.

Under cold transient conditions and within our operating temperature range, the oil does not gel and acts
as a buffer for the silicon sensing element from the extreme temperature transients found in certain
applications such as refrigeration.

MediaSensorTM Compensations Features

All the compensation circuitry is internal to the MediaSensorTM pressure transducer. No external
compensation modules are needed.

1) Zero balancing (Null Offset) Calibration

During manufacturing the Wheatstone Bridge resistive elements are closely matched and compensated,
however an offset voltage (due to resistance differences) may still exist. SSI MediaSensorTM
compensates for this offset over operating temperature range (refer to Table 1).

2) Span Calibration

The resistance of silicon gauges is temperature dependent. The span will shift with temperature to a final
stabilized value as it warms up. SSI MediaSensorTM compensates for this span variation over operating
temperature range.

95

Adaptive Sensor Fusion Algorithms

96

Product Data Sheet GEDC-6 Gyro Enhanced Attitude & Heading

97

Product Data Sheet GEDC-6

98

USB Weather Board V3 2011.6.15

99

USB Weather Board V3 2011.6.15

100

USB Weather Board V3 2011.6.15

101

USB Weather Board V3 2011.6.15

102

CT120M500SSD1 - 120GB, 2.5-inch Solid State Drive , from Crucial.com

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Appendix E: Mechanical Calculations

126

Figure 13: The center of buoyancy is a little less than 2 inches above the center of mass which will create a

dynamically stable submarine. The calculations were completed using SolidWorks and showed that 3 lbs of force is
available.

127

128

129

130

131

Figure 14: FEA done using Ansys software preformed for end cap at depth.

Figure 15: FEA done on the directional deformation experienced at maximum depth during competition.

132

Appendix E: Project Schedule

133

Project Schedule

Mechanical

Weeks 1 - 8: The mechanical side will have ordered some parts required for construction before
the Christmas break, will order the rest upon arrival and will build the sub in the first six weeks of
the semester.

Weeks 9-16: Troubleshoot all mechanical problems with Blue November by ample testing in the
pool.

Electrical

Weeks 1 - 4: Order all electronic parts and begin assembly of the new electronic system along
with interfacing with IMU team.

Weeks 5-16: Get mission software programmed and begin integration with the mechanical
team. Test mission software with ample pool testing.

**Potentially start a MSU RoboSub Club and involve underclassmen in the testing, small
designs, and projects. This will be to generate more interest in AUVSI at Montana State
University so that the competition will be won be one day.

134

Appendix G: Changes Made During Construction

135

Electrical Changes
 There were a couple of important changes made to the design that was created first semester. These
changes affected the final fabrication and outcome of the Sub. The biggest change was the electrical wet
connects. The original plan was to go with SeaCon wet connects but the company was taking too long to
get back to us and it would have taken too long to get the wet connects and implement them. Another
thing that was different from the original design were the desktop computer boards in the sub. The reason
that these were not the same was because further research revealed better options. Another change
were the arduino pin-outs that were used, but this was a simple change and can be found within the
arduino programming. These, and a general overview of the sub and its components, will be discussed
below.

 The new sub has many things that should be noted that are different than the old sub and although
they may be in the first semester design, their implementation is still helpful to describe. One of these
things is the two separate electrical circuits that were implemented in the new design. The first circuit is
powered by one of the batteries and powers all of the “brain” electronics in the sub. It basically powers the
computer and all of the data boards. The second circuit is hooked up to four batteries and then is run
through the motor controllers and to the batteries. These circuits are each on a separate kill switch. This
allows for separate manual power control of the electronics and the engines. The other benefit to this is
that if there is a power issue, which we experienced with the old sub, the problem can be further isolated
to either the electronics or the motors. It should be noted that because there are two separate circuits, the
one that goes to the motor controllers and then to the engines has a 12V voltage regulator on it because
the batteries have an 18.5 nominal voltage but the motor controllers only run properly at twelve volts. The
voltage regulator solves this issue.

Another implementation on the new sub was the end cap plugs for easy separation of the end
cap from the rest of the sub. For these plugs we used M4-ATX extension cables. These are 24 pin plugs
that connect all the throughputs on the end cap to their respective wiring to the internal electronics board.
This allows the end cap to be easily disconnected from the electronics board. It should be mentioned that
sometimes the wires fall out of the plug and need to be reinserted. This can cause issues with power and
functioning of the sub but when they are pushed in so that the metal finger catches, they usually don’t fall
out again.

The clamshell design that was used was superbly successful. It allowed for the wiring to run
through the middle of the electronics board so that all of the circuit boards are visible and easy to
manage. It also allowed for easy troubleshooting of the electronics and most of the wiring. The wire to
wire connections were also done differently than the previous sub. Instead of using crimping or crimp
connectors, the connections were twisted together, soldered and then electrically taped. This is not
necessarily aesthetically pleasing but it is dependable, works well and allows for fewer wiring issues.

The batteries that power the sub are now contained within the electrical tube. This allows for
fewer internal to external connections and seems to work well. The downside of this design is that the
electrical tube needs to be opened each time the batteries need to be charged or changed, however, the
sub has a one hour plus run time which is sufficient for testing and working on the sub so this is not a big
issue.

In order to turn the sub electronics on, there is a specific process that is described in the
“Meaning of the LED Lights” document. In this document the LED indicator lights on the sub are also
explained. There is also a parts list in this section that is useful to note because knowing the components
in the sub is very important. Another thing to be noted is the engine wet connects; these have a restricted
polarity through a key in the connection but this can be cut off with a knife to allow easy engine direction
manipulation. This is useful because it is easier to switch a plug than it is to go into the programming and
change the engine direction. This is most of the useful information about the new sub that was not
elaborated on in the design document from the previous semester. The rest of the information can be
found in the deliverables and troubleshooting documents added on in this appendix.

136

Meaning of the LED Lights
There are several lights on the electronics board that are not well labeled within the company

documentation. These will be discussed here.

The first lights to be discussed are those that appear on each of the motor controllers. There are
two LED lights on each motor controller. They need not be labeled as their colors give them away. The
first light is a green light. This will be on and solid green when the USB is plugged both into the motor
controller and into the motherboard. When the light is a solid green, there is a good data connection
between the motor controller and the motherboard. Then the light will momentarily flicker when data is
sent to it i.e. an input from the computer. The second LED light on the motor controller is is either yellow
or red. This light is red when there is not sufficient power going to the motor controller and solid yellow
when there is sufficient power. This light will also blink yellow if there is another power issue, such as too
much power is being supplied to the motor controller.

The second lights that will be discussed are the motherboard RAM memory lights. These can be
customized to desired colors. When the lights are on, it means the motherboard has power, is on, and is
accessing the RAM. When the computer is using more RAM, the lights will go through their sequence
faster.

The third lights that will be discussed are on the M4 ATX power supply. There is one green LED
located by J6 on the power board. This light has many different states. If the light is blinking slowly, or not
at all, this means that there is insufficient power to the board. If the light is in a sequence of rapid beats,
pause, rapid beats, pause etc, then the board is powering up and has sufficient power. A solid green light
means the board has completed the power on sequence and is now on with sufficient power being output.
These are the most important lights on the electronics board, the rest are pretty self-explanatory.

137

Electrical Purchases

Table 2: Electrical parts list for purchased parts during the second semester.

Name Technical Name

Batteries Tenergy Li-ion 18.5V 1100mAh
Rechargeable Battery Pack

Voltage Controller
Board M4-ATX 6V-30V DC-DC Converter

Motherboard ASRock B85M-ITX

Memory Crucial Ballistix Tactical Tracer 8 GB
1600MHZ

Fan Noctua NH-L9I
Hard Drive crucial 2.5 inch solid state drive 128 Gb

CPU Intel Core I3 4130T
External Pressure

Sensor
SENSOR 50PSI 5/8" 7/16-20 UNF 5V

Capacitor 3 type 381 LX Capacitors 3300 micro farad
each

7 port usb hub 2 plugable usb 2.0 4 port plugs
Micro controller board Arduino Mega 2560

Motor Controllers pololu jrk 12v12 usb motor controller
Motors and Thruster Seabotix thrusters BTD150

Top Camera Go Pro Hero 3 HD Camera

IMU + IMU board
GEDC-6 Starter Kit Plus

(include GEDC-6 AHRS, NDS-1 Dev Kit
&RM-1 Adapter Kit)

138

Figure 16: The above is a wiring diagram for the electrical board of the submarine.

139

Software Development

The three goals for this year's software development were to document the existing code, show
status updates to the user, and to provide visual navigation. The existing code provided some basic
manual control, but no autonomous behavior from the RoboSub. This functionality required thousands of
lines of code that had been haphazardly commented with no diagrams or documentation explaining the
design approach.

The major accomplishment for the previous year's team with their software was to have the
RoboSub dive to a desired depth, maintain that depth consistently, and to then navigate forward in a
straight line. The depth control is handled by a pressure sensor that sends data to the Arduino. The
Arduino code then sends the data to the C# code. This information is then processed and the depth is
maintained in a control loop that is independent of all other thruster control. This is a wonderfully elegant
approach to navigation, as further navigation programming can concentrate upon movement in the
horizontal plane, as long as the correct depth is being maintained.

The straight-forward navigation was accomplished using an Inertial Measurement Unit (IMU). A
desired compass heading in degrees was chosen, from 0 - 359, and the RoboSub would move forward
toward that heading. Unfortunately, due to the complexity of interfacing with the IMU, all IMU functions for
the RoboSub were abandoned and a separate Capstone team was formed to develop IMU navigation
software.

This year, after reviewing and commenting the existing code, we decided to base navigation on
being able to track a brightly colored object in the water using the front camera. Any of the navigation
code that would reference the IMU and interfere with the camera-based navigation was commented out,
and left in the C# file for future integration.

In order for the camera to receive accurate coordinates of the location of the object on screen, we
continued to use the third-party program RoboRealm. This program provides a host of visual filters that
will reduce the incoming video stream from the cameras to single colored blobs, and then to a set of
coordinates that are the location of the center of the principle blob on screen. The size of the blob, in
pixels, is also sent to the C# code.

Once the coordinates have been passed into the C# code through the RoboRealm API, they were
then used to decide whether the RoboSub needs to move left, right, up or down to center the coordinates
in the middle of the field of view. Once relatively centered, the RoboSub moves forward, and the process
begins again.

We conducted several successful tests of vision tracking with the Sanka RoboSub, adjusting the
power and duration of the motors' thrust. As a result of these tests, we ended up deciding to make small,
short movements, and let the inertia of the RoboSub carry it through the full movement. The processing
then waits for one second, and corrects course again.

This approach leads to the RoboSub having a "lunging" behavior, as it will seek to aim itself
directly at the object, then move forward in bursts to bump it. Upon reaching the object, it will fill the field
of vision of the forward camera. The C# code then has the RoboSub back up, turn slightly, and move
forward past the object in order to seek out the next task.

The navigation subroutine for the front camera object tracking was also copied and modified to be
used with the bottom camera for line tracking. This functions well, but will require further modification in
order to make the transition from tracking a line with the bottom camera to seeking the next task with the
forward camera. Due to hardware issues with implementing two simultaneous WiFi connected cameras,
this is not yet possible.

We were even able to change the color of the object being tracked on the fly during our tests in
the pool by editing the color filter settings and taking a sample pixel from the screen in RoboRealm.
Current software development is attempting to use the color data from RoboRealm to let the C# code
know which color is being seen at each location on the screen. Being able to differentiate between colors
will allow us to complete the buoy task with greater accuracy, rather than relying on a single color filter.

Continual status updates for the user are now shown in the console window, which is a significant
improvement. Each action that the RoboSub is attempting is shown, along with the file that is attempting

140

that action. Error messages are now standardized to be color-coded red as well as indicate the file that is
generating the error.

Mechanical Assembly

Epoxies
During machining and assembly of Blue November there were several epoxy types used to seal,

connect and reinforce the sub. To seal the main chassis tube to the front end cap and the flange a
casting urethane was used. The urethane was purchased from McMaster-Carr and was general purpose
Medium Hard (60A) urethane. A small amount was poured into the front end cap and spread around the
lip of the front end cap. The chassis tube was press fit into the front cap and more urethane was poured
so that it would fill any cracks. To attach the flange to the main chassis tube a very similar process was
used. The urethane was spread around the chassis tube and the flange was press fit around the
tube. As a second check on the water tight seal a marine epoxy purchased at Ace Hardware was used
as well. It was smoothed on the between the front cap and flange and can be seen as the white caulk on
the edges.

The end cap with the wet connections….well. For the wet connects we used a combination of 1”
PVC piping and more urethane. We cut three holes of just slightly over 1 inch and lathed down the
outside diameter of the PVC piping until it was close to a pressure fit to put them through the three
holes. We fit all the wet connections we were going to use through the piping and used more of the
marine epoxy on the outside face. Once the marine epoxy had been smashed into the piping we poured
a whole bunch of urethane to cover it all. DON’T DO THIS. A major design change for the next team to
consider would be coming up with different wet connections. SeaCon should be approached. Reference
the wet connections in the appendix. It would be really awesome if the wet connections could be sealed
using nuts and small gaskets so that they could be put under compressive force to fight against the water
pressure. During all sealing silicon is a nice way to double check the seal. Spreading a small amount of
silicon on both the outside face and inside face should be used on all connections.

Steel Reinforcement Ring
 The mechanical side decided to make an extremely thin back end cap. This was done to save weight
and allow for easier heat dissipation through the cap. Analysis was done to calculate how thin the end
cap could be and not deform dramatically under the water pressure. The bolting force on the end cap
was not considered though. It was noticed after bolting and unbolting several times that the end cap was
undergoing plastic deformation. To combat this, a stainless steel reinforcement ring was plasma cut and
bolt holes drilled. This steel ring served two purposes. First, to stop the deformation of the end cap and
second to distribute the pressure applied from the bolts evenly over the whole surface. This allowed for
the flat end cap to put the flat gasket under good even pressure and create a nice water tight seal. The
stainless steel was purchased from Pacific Steel.

Rotary Table

 To machine the two end caps and the flange the largest rotary table was used. Due to the fact that the
center of each part needed to be milled, it was necessary to keep the part mounted onto the rotary table
until all processes of machining were completed. To mount the part, the rotary table was first mounted
onto the mill with the largest amount of movement on the x- and y- axis. Next, a dead center was chucked
into the mill and the x- and y- axis adjusted till the Dead center was directly centered over the center hole
of the rotary table. Once this was accomplished, the DRO’s where zeroed. This allowed all cuts to be
based on polar and Cartesian coordinates. Once the first cut was made, the part was left clamped as
much as possible. If a clamp needed to be relocated, a new clamp was placed before the old one was
removed. When cutting the circular patterns, the feed speed is increased as the bit move closer to the
axis of rotation.

141

Gaskets
 Several gasket types were tried to create a seal. A range of durometers (a measure of the materials
“squishiness”) were tested. The final selection was purchased from McMaster-Carr and was a gum
gasket. It had a durometer rating of 40A. However stiffer gaskets can also be used. Both gasket sheets
and precut gaskets were purchased. To cut the sheet gasket to the appropriate shape and size scissors
were used. A knife scissor combination was used to cut the holes required. A small amount of gasket
grease was applied on both sides of the gaskets and occasionally reapplied as necessary.

Pneumatics

 Several changes were done to the external pneumatic assembly. 4” sewer PVC piping was used to
create another pressure vessel, external of the main pressure tube. The solid cap of the piping was
sealed using the same method as the end cap and flange on the main pressure vessel, while the
threaded end was sealed using pipe teflon tape. Five holes were drilled to allow for the pneumatic lines
and two holes were drilled for the electric connections. Through wall push-to-connects were used for
passing the pneumatic lines through the wall of the PVC. These were sealed using thread seal, epoxy
putty, and marine silicone. The same method of sealing the wet connects on the main pressure vessel
was used to pass the wiring through the PVC. A check valve was added to the pneumatics as well. It is a
one way check valve to allow for internal pressure build up to be released in case a leak occurred in one
of the pneumatic lines. This was to prevent a small bomb from forming on the bottom of our submarine.
Teflon tape was used on all connections between solenoid valves which are rated to 100 psi. DO NOT
pressurize system past 100 psi. Hard lines were used because originally it was feared that the pressure
was not going to be easily regulated. In a future redesign these hard line connections could be replaced
with pneumatic tubing to further cut down on weight. To paint the PVC piping a layer of RustFix primer
and one layer of matte black were applied.

For the dropper system the pneumatic actuators do not have a spring to reset them. Each time
the droppers are fired the pressure needs to be relieved so that they can be reset. To allow for this one
way valves were placed in line to the pneumatic actuators. They can be unscrewed to relieve the
pressure so that the dropper system can be reset.

Electronic Chassis

 The electronic chassis was built out of two aluminum plates and static resistant UHMW plastic was
used as supports and standoffs. Two hinges were used to allow for the chassis to open. The computer
boards were charted out on the aluminum and holes subsequently drilled to pass the wiring through. Two
small clamps were used on the opposite side of the hinges so that it could sealed shut.

Buoyancy and Balance

 The sub buoyancy and balance were heavily regulated during the entire design, construction and
assembly process. To keep within our weight limits reduction of material, wherever possible, should be
done. For example the brackets that were constructed had as many holes drilled into them as possible
without compromising structural integrity. The motor mounts were also drilled to remove as much
material as possible.

 In the end Blue November was two pounds positive buoyancy. To comply with competition rules of
0.5% we needed .3 lbs of positive buoyancy as Blue November weighs 61 lbs. To reach this objective
small iron weights were placed on the t-slot aluminum frame and moved around until the sub was well
balanced. To calculate total buoyancy of the sub a little trick was used. In SolidWorks all the material was
changed to water. This allowed us to calculate the weight that would be displaced by all of the pieces of
the sub. To find the center of buoyancy the center of mass was taken when all the parts were made of
water.

Cameras

 Two cameras were used, a front facing and down facing, for vision purposes on the sub. The front
facing camera was a GoPro and came with its own water proof casing. It interfaced to the brain of the sub

142

using wi-fi connection. As wi-fi signal in water is greatly reduced it was required to place the camera as
close as possible to the board. The signal was not strong enough to go through the aluminum end cap so
a monocle was constructed to allow it to rest right above the wi-fi receiver. It was originally planned to
use two GoPros both interacting via wi-fi. However it was discovered late in the semester that they
shared the same IP address so it was not possible to stream images from both. A cheap webcam was
purchased which needed to be hard wired into the sub was the replacement. To water seal the webcam
two different epoxies were used. First the webcam was completely covered in a liquid marine epoxy
purchased from Ace hardware. Once the first layer of epoxy had hardened a second coating was
applied. The second coating was a putty marine epoxy which was also used on the external seam of the
end cap and flange. Finally a small of amount of silicon was applied on the wire. Two bolts were placed
into the putty epoxy before it had hardened so that it could be attached to the frame.

Clamps

 In the original design we had planned to use clamps to seal the rear end cap to the flange. It was
planned to use JB weld to attach them to the flange. During testing however it was discovered that the
clamp system had several problems. First, with the clamps that had been purchased the correct
compressive force could not be applied. Instead a shear force was placed on the end cap. Second the
JB weld attachment system was too weak. During testing the JB weld failed and the end clamp was
broken off. In future redesign it would be very nice to have a functioning clamp system to attach the rear
end cap to the flange.

Pressure Sensor
 A hole was drilled into the end cap which closely matched the outer diameter of the pressure
sensor. To seal it water tight a bolt and washer were used. A washer was placed on the outer face and
the bolt was tightened. A small amount of silicon was placed on both the inside and outside of the
pressure sensor connection to confirm seal.

Frame Assembly
 After all of the t-slot aluminum had been cut to appropriate geometry and size assembly could begin. It
is not easy. It is best to assembly this by not tightening any of the connections too much. Most likely a
little finagling will be required to get all of the pieces to match up and be flush. Once everything is lined
up then final tightening on all the connections can be done.

 It will also be noticed that the large horizontal supports in our frame have been cut in half. This was a
mistake. In our original design the frame pieces were going to anodized. Twenty6 has a size limit for the
parts which can be colored. We cut them in half to allow for this. The t-slot aluminum we purchased from
McMaster Carr was already anodized however so another coating could not be applied.

Anodization & Powder Coating

 As was mentioned above the t-slot aluminum which was purchased was already anodized. We wanted
the frame to be colored so to do so we had them powder coated. We brought all of our frame pieces to
MidWest Industries. They did a wonderful job and were able to apply the powder coating into all the
nooks and crannies. Twenty6 Products did all of the anodization for the submarine. Both of these
companies are local and are very supportive of the AUVSI program. Their company logos have been
placed on the sub to thank them for their work.

143

Appendix H: Getting Started Guide

144

Welcome to the MSU Blue November RoboSub!

Just the facts:

Password: R0bosub!

Power: 2 switches: The right switch is for the motors and flips up to power on the
 motors. The left switch is for the electronics, and is a bit fiddly to turn on. Flip the
 left switch up and look for the the blinking green LED on the power board. Flip
the switch off and quickly back on once the LED is flashing rapidly (several times per
 second). This on/off flipping may need to be done more than once. The power is
 successfully on when the CPU fan and RAM LEDs turn on.

Getting started:

Locate these 4 major components:

The Blue November RoboSub
Ethernet cable spool
Laptop
Batteries and charging station

Also helpful would be the buoy, tools for removing the endcap, GoPro camera for
documenting the pool test, multimeter,

Pre-Water Checklist:

 Before dropping the RoboSub into the nearest pool, it is helpful to be sure that it
is ready to go.

 So before sealing the end cap check:

 Can a Remote Desktop Connection be established? (is Ethernet working?)
 Is every wet-connect on the end cap tightened down with dielectric grease
inside?
 Are the batteries fully charged (At least 8 hours)?

 Then check:

Is the GoPro camera powered? This is done by pressing the forward facing
 button on the camera.

Is the GoPro WiFi on? This can be turned on by pressing the button facing down
 and checking that the GoPro display says "WiFi on"
 Are all 8 of the nuts tightened?

Is the gasket squishing out from the cap by 1/2 a centimeter?

145

Manual control:

 In order to control the RoboSub, you will be connecting an ethernet cable to the
RoboSub. This cable has a standard ethernet jack on one end, and a wet connect on
the other end. Start up the laptop, using the same password as for the RoboSub. Click
on the Remote Desktop button in the taskbar to access the Blue November's computer.

 On the RoboSub desktop, start the RoboRealm program by clicking on the icon
of a checkerboard in the taskbar. Now click the icon of a gear in the taskbar, which is a
shortcut that starts the RoboSub Program.

 You will now have four windows open: RoboRealm, the dashboard, console
window, and depth chart.

 Locate the depth control on the dashboard.

 With the RoboSub floating on the surface of the water, click the calibrate button
on the dashboard to calibrate the depth sensor.

 In the RoboRealm program, you can turn off image processing by unclicking the
"Run" button near the top of the window, this will allow you to view the raw images from
the camera.

 You may now play around with the various manual controls, using the
RoboRealm preview window of either camera to see where you are going.

 If you want to use the keyboard for movement control, click the "Enable" button.
The up, down, left, and right arrow keys control forward, backward, turn left, and turn
right respectively. The comma and period keys are strafe left and right, respectively.

Connecting the GoPro camera via WiFi:

 The GoPro requires two programs to stream video and appear as a webcam in
RoboRealm.
 First click the network icon in the lower right of the taskbar to check if the GoPro
WiFi is recognized.

If it fails, click "troubleshoot" and Try repairs as administrator

open VLC media player

click the Media -> Stream menu

click network tab

paste the following URL http://10.5.5.9:8080/live/amba.mp4

146

click stream

click next

change file to HTTP in the dropdown box

click Add

enter "/go.mjpg" in the path box, make sure port is 8080

click next

change the profile to MJPEG

click next

click stream

make sure the play button is flashing between play and pause; if not, click on the repeat
button.

open ManyCam

right-click on the main screen, click IP cameras -> gopro1

click the rotate button to turn the display right 90 degrees

Autonomous mode:

 By selecting the "Wait and then Start" mission from the mission planner on the
RoboSub dashboard, you will have 60s to disconnect the ethernet cable and place the
sub in the water. Unfortunately, all this currently does is cause the sub to dive to 4ft and
swim forward for a few seconds and then stop.
 Selecting the "Buoy" mission, the Blue November will dive to 2.5 ft and then
begin a spiral search pattern to find a bright red object. Once one is visible, the sub will
move toward the object until it has bumped it, then back up 1 ft, turn slightly to the side,
and then move forward beyond the buoy it bumped.

RoboRealm vision program:

 This program allows us to obtain and filter data from the two cameras. The
various filters being applied to the current camera are listed in the box below the video.
They are listed in the order they are being applied, which can be critically important, as
a blob filter should be applied after a color filter when looking for items of a single color.

147

 Click the "Camera" button to view what RoboRealm sees in the large "Preview"
window.

 In order to view the unfiltered visuals from the camera, unclick the "Run" button
near the top of the RoboRealm window. This will stop all filters from running and show
the raw camera data.

 To switch between the forward and down cameras, click the "Options" button
near the "Run" button. Then select between the cameras using the drop down box. The
"Webcam" is the down camera, "ManyCam" is the forward-facing GoPro.

Browser interface:

 Since MRDS uses TCP socket number 50000 to communicate within the
computer, it is possible to access information about the services while they are running
via a web browser.
 Open a browser and type "localhost:50000" into the URL bar. You will now see
menus accessing each of the RoboSub's services and peripherals.

General Tips and Troubleshooting

Hardware Tips and Trouble Shooting.

There are three steps to hardware trouble shooting. They are as follows.
1. Power Check: Check the voltage levels at the component in question. Are they at

theright level? If not, trace the lines back and see if there are any discontinuities.
Make sure the component is getting the right power level and is grounded.

2. Data Check: Check any analog input output lines with the DMM and make sure
that your signal is getting through. You should be able to see momentary voltage
flickers and things of that nature on data lines.

3. Final Check: Check that all lines are continuous and that there are no breaks in
the circuit anywhere, then check voltage levels on the actual board or component
to see if the board or component has gone bad. Also, bad outputs from a board
could mean a bad board or bad interface. Don’t forget to check the programming
output for abnormalities.

RoboSub Software Tips and Troubleshooting

 The code for the RoboSub has been developed using code left from the previous
year. Previously, all movement was based on setting IMU compass headings and then
moving the sub forward while maintaining that heading. Due to problems obtaining data
from the IMU, the IMU data analysis was spun off into a separate senior design team
this year.
 Thus, for this year's coding, references to the IMU heading system have been
commented out wherever they interfered with the operation of the RoboSub. Instead,

148

our priority has been to develop the vision system so that navigation can be done solely
with the cameras.
 From a hardware standpoint, the previous year's Sanka sub cameras were
woefully inadequate. Both housings developed persistent leaks that cause the lenses to
fog over in the water, and attempts to reseal the housings did not succeed. The GoPro
camera and its housing on the BlueNovember sub provides excellent clarity, especially
underwater.
 Unfortunately, due to IP address issues, only one GoPro can connect via WiFi at
a time, so the down camera is a cheap webcam that was sealed in waterproof epoxy.

---------------- Setting up a new RoboSub PC -----------------------

 To install the software onto a new RoboSub, first install Windows, the
motherboard drivers, ESPECIALLY the USB driver, then all of the Windows updates.
 Next, install Visual Studio, and Microsoft Robotics Developer Studio 4. These
programs are a available to students for free via Microsoft Dreamspark. Now copy the
entire "Microsoft Robotics Dev Studio 4" folder from an existing sub or backup. This will
ensure that the necessary binary assembly files are included. Notice that the Arduino
code and RoboRealm configuration files are included in the "Projects" subfolder.
 Once installed and functional, it is only necessary to copy the "Projects" folder
when backing up or transferring the RoboSub code.
 Do not try simply cloning an existing RoboSub hard drive. This approach is not
functional.

 The Arduino software will need to be downloaded and installed. Remember to
choose the appropriate board from the Board menu, otherwise the code will not upload
properly.

 RoboRealm will likely give you a free license to the software if you tell them that
you are on the MSU RoboSub team. After installing RoboRealm, it will need to be set to
act as a server to talk to the RoboSub code. Click "Options -> API Server" in
RoboRealm, then check "Activate RoboRealm API server" and make sure that the port
is 6060.

 The RoboSub software shortcut will need to be copied to the new sub. This
shortcut contains the TCP configuration parameters for running the C# software. You
may need to right click on it in order to change the directory information in both the
target and starting entries to match the names of directories on the new PC.

 In order to have the existing code interface with new motor controllers, the serial
numbers of the new motor controllers must be determined and inserted in the C# code.
To do this, use the Pololu Jrk Configuration Utility. This can be downloaded from the
manufacturer's website.
 Once the utility is open on a PC connected to the new motor controllers, click the
"Connected To" drop down box in the upper left corner of the window. This will show the

149

serial numbers of all connected motor controllers.
 Now open the "Movement.Config.xml" file in Visual studio. It can be found in the
"Projects/RDSrobosub/Main/Main/Config" folder.
 Lines 29-59 will contain the motor driver serial numbers. Replace these with the
new serial numbers.
 For reference, the BlueNovember sub's motor controller serial numbers are:
 #00071568
 #00071575
 #00071580
 #00071566
 #00071571
 #00071573

 Warning! Be sure to turn off the Windows Firewall on the new RoboSub PC,
otherwise there will be an HTTP or FTP listening error when trying to run the RoboSub
program. This error manifests by the program closing immediately after opening. The
firewall isn't really necessary on a standalone computer anyway.

 Warning! When using a version of Visual Studio earlier than the 2013 release,
there was a large error that causes all of the RoboSub code to be corrupted if clicking
Build -> Rebuild entire solution.

 Warning! If the motherboard drivers are not installed as soon as possible when
setting up a new PC, there may be connection errors later. This manifested for us when
plugging in the Arduino and USB hubs; they were showing up as "Unknown Device" is
the Windows printers and devices window. Our solution was to completely reinstall
Windows 7.

 A helpful link for addressing MRDS errors when getting started:

http://msdn.microsoft.com/en-us/library/dd939179.aspx

---------------------- Movement -----------------------

 The search pattern for both the line on the floor of the pool and locating buoys
with the forward camera is designed to be a spiral. By alternately moving forward and
turning slightly, the idea is to cover the immediate area quickly, and if nothing is found,
to spiral outward until a
target can be obtained.

 Left turns are accomplished by using the TurnRight() funciton with a negative
power value.

 The motor controllers will keep the motors moving at the last given power level,
even if the PC shuts down or freezes. Starting the RoboSub program will cause all of

150

the horizontal thrusters to stop moving. In order to stop the vertical thrusters, enter a
depth in the dashboard GUI and then click "Surface"

 When using vision to accomplish a task, the code includes timeouts to slow the
RoboSub to recalculate course corrections once per second. This was decided to be
fast enough and not allow too much over-correction.

---------------------- RoboRealm ------------------------

 The goal of the RoboRealm software is to take the incoming streaming video
images and reduce them to a set of X,Y coordinates that are sent to the C# code. To do
this, visual filters are applied, in a specific order, to only look for specific colors and then
find the largest blob of that color. The coordinates are the Center Of Gravity of the blob.

 If RoboRealm is generating any streaming errors, first check to be sure that the
program has the most recent updates. Certain Windows updates may cause problems if
RoboRealm is not also updated.

 RoboRealm uses specific configuration files to determine which camera and
filters to use when called upon by the C# code. These files can all be found in "Microsoft
Robotics Dev Studio 4/ Projects/RDSRoboSub/RoboRealm"
 Remember to save after changing any filter settings in RoboRealm, or they will
not take effect when called upon by the C# code.

 If Roborealm is hanging or freezing and not allowing the editing of filter settings,
this may be because the RoboSub software has been running. Quit both the RoboSub
and RoboRealm programs and restart RoboRealm.

 The cameras in the Sanka sub have a considerable amount of automatic image
adjustment that cause a large amount of flickering and make it difficult for RoboRealm
to lock onto a specific color. Setting the Color filter variation parameter in RoboRealm to
a larger value helps to address this issue. Also, turning off as many of the automatic
camera functions as possible in RoboRealm's "Options -> cameras" also helps.

 Of the filters in RoboRealm, the Color filter has been most useful for identifying a
specific color, and then setting a range around that color that will also be considered to
be the same color.

 Clicking on each filter while the "Run" button is depressed will allow you to see
the cumulative effect of all preceding filters. This helps a lot with tweaking the filters so
that a good set of Center Of Gravity coordinates are sent to the C# code.

------------------- The console window -------------------

 The console window will provide valuable feedback that lets the user know what
the RoboSub is trying to do. All comments appearing in the console window will be

151

preceded by the C# filename of the file that is generating that specific comment.

 Error messages are colored red and are preceded by the string "!!! ERROR !!!"
for maximum visibility.

--------------------- C# coding tips --------------------

 There is a physical copy of the Microsoft Robotics Development Studio manual in
the lab, along with 2 flash drives that should contain all of the work from the previous 2
years. There is a PDF of the Head First C# book in these files that may also be helpful.

 Also be sure to look at the software flowchart and watch the introduction video
that we have provided. This should make the interactions between the different files
more clear.

 One of the most useful tools in Visual studio is right-clicking on a method in the
code and clicking "go to definition". This will show you exactly where that variable or
method is defined and show what it is supposed to do.
 Another is simply using Ctrl-F to search, and then click "search entire solution" in
the drop-down box. This will allow you to search for every occurrence of a variable,
which is essential to understanding how that variable is instantiated and passed
between various files in the code.

 While each of the missions has their own separate C# file, the MissionPlanner.cs
file contains state machines that control what mission will be selected next after any
given mission is completed.

 Since water is a fluid medium, a short burst of movement will cause the RoboSub
to drift for quite a while. We've found that short bursts, update every second or so, allow
for decent movement control. This means that when "stopped" no motors may be
spinning, but due to inertia and currents in the pool the sub will never stay still!

 The common movement methods are:

movement.Stop stop = new movement.Stop(); // for stopping
_movementServicePort.Post(stop);

_movementServicePort.MoveForward(.15, 300); // moving forward at 15% power for
300ms

_movementServicePort.TurnRight(.5, 200); // turn right at 50% power for
200ms

_movementServicePort.TurnRight(-0.5, 200); // turn left at 50% power for
200ms

152

_movementServicePort.SetTargetDepth(5); // have sub hold depth at 5 ft. below
surface

 RoboRealm will send the coordinates of the Center of Gravity of a blob on the
screen to the C# code. COG is a common abbreviation for the Center Of Gravity, and
the COG is very useful, as this is how we determine where the object is relative to the
RoboSub.
 The following if statement checks to see if the first blob's COG Y coordinate is
greater than 330. Since we reduce the camera resolution to 640x480 in RoboRealm,
this will tell us if the object is at the top of the screen.

 if (Blobs[0].Y > 330)

 This can be modified to check other blobs (if more than one's data is sent to the
C# code) and to check the X coordinate as well.

 The latest
challenge is to include multiple colors and multiple blobs, and send the COG
coordinates and color of all blobs on

