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Abstract—In this paper, the Hydro Bison’s RoboSub 2018 

competition AUV is discussed. An overview of the vehicle and its 

software is presented. The planned strategy of the AUV is given 

for each task and for the overall competition. 

I. INTRODUCTION 

The Hydro Bison team participating in this year’s 
RoboSub Competition is comprised of students from 
North Dakota State University (NDSU). This marks 
the first year of participation in RoboSub for all team 
members and advisors. The design process alone has 
been a great learning experience for the team and we 
are excited to participate in this year’s competition. 

Our team is primarily software oriented, with over 
half the team being computer science majors. As 
such, our focus has been on simulations and 
developing the task specific software for the 
competition. With this being our first year competing, 
it has been a particularly challenging experience as 
well as an excellent learning opportunity. 

On the mechanical side, our focus has been less on 
design optimization, and more on fulfilling mission 
requirements. This has led to a more modular design, 
with more flexibility in regards to potential 
component arrangements and configurations. 

II. VEHICLE OVERVIEW 

Our AUV has a frame that consists of both 
aluminum and HDPE. The HDPE has the benefit of 
being near neutrally buoyant [1], while the aluminum 
provides additional strength and its slight negative 

buoyancy helps offset the positive buoyancy of the 
acrylic enclosures.  

The vehicle has an eight-thruster setup, with four 
for vertical movement and four for horizontal 
movement. The utilized setup is also known as 
‘vectored 6dof’ and is supported by the Pixhawk 
ArduSub firmware. 

 

Fig. 1. Electrical Diagram 

The Pixhawk acts as the motor controller for the 
eight thrusters, as shown in Fig. 1, and is controlled 
via the Nvidia TK1 (using a raspberry pi 3 as an 
intermediary). The TK1 is used in order to process the 
point cloud data from the ZED camera, which is the 
primary sensor on the AUV. 

III. SOFTWARE OVERVIEW 

The software architecture for our AUV, depicted 
in Fig. 2, consists of original Python code, ROS, 
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OpenCV and the ZED SDK. ROS is currently only 
used for localization, although further usage of it may 
be added in the future (for subsequent competitions), 
particularly when ROS 2 becomes available. 
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Fig. 2. Software Overview Diagram 

In the following subsections, an overview of each 
of the main software modules is presented. 

A. Localization 

For localization, the data from the IMU on the 
pixhawk and the visual odometry from the Zed 
camera are published to ROS. Then, the 
‘robot_pose_ekf’ ROS node fuses the data and uses it 
in an extended Kalman filter to estimate the current 
position of the vehicle. Hydroacoustic positioning 
would be an additional valuable positioning utility 
and may be added in the future. 

B. Mapping 

The Nvidia TK1 utilizes the ZED camera along 
with the ZED SDK to generate a point cloud in each 
frame such that each pixel has (x, y, z) spatial position 
values. The raw images from the ZED camera map 
one to one with the point cloud, allowing analysis and 
filtering in the image to be mapped to the 
corresponding point cloud position values. This 
allows features of interest in an image to be mapped 
to spatial locations. 

The detected features of interest and obstacles are 
first placed in a local map. Then, a position transform 

is applied to local map so that it can be merged to the 
global map. A separate global map is kept for features 
of interest and detected obstacles / arena boundaries. 
The global obstacle map is used for path generation 
and traversing, while the global feature map is used 
for goal determination and task related activities. 

C. Pathing 

Due to the relatively small amount of obstacles 
(compared to the amount of open space), our AUV’s 
path generation is done using A* and updated if a 
newly detected obstacle obstructs the current route. 
The grid used for the search is the global obstacle 
grid, with the goal position determined by a separate 
goal planning thread. Furthermore, instead of 
calculating the path in 3-dimensions, the horizontal 
plane is planned out first with A* using a Euclidean 
distance heuristic. This is because grid search 
methods can be computationally expensive when 
considering more than two dimensions [2]. Instead, 
the depth descent/ascent path is planned out after the 
horizontal route is calculated.  

The generated path is then given to the path 
tracking thread, which utilizes a modified pure 
pursuit path tracking algorithm. For certain precision-
oriented task activities, the tracking is changed to a 
set of predetermined motions that are specific for the 
current task. 

IV. COMPETITION STRATEGY 

In this section, the strategy for our AUV to 
accomplish each individual task is discussed. Then, 
our overall strategy for which tasks are prioritized 
over others is presented. 

A. Task Strategies 

1) “Enter Casino Gate” 
For the first task of passing through the validation 

gate, our strategy involves processing images from 
the zed stereo camera in order to detect the distinctive 
orange color of the vertical posts. Once located, the 
detections in the image can be mapped to the point 
cloud so that the position of the posts relative to the 
vehicle can be determined. The red and black 
horizontal posts are then color filtered for, such that 
they can be used to ensure that the AUV goes 
between the orange posts (in case of potential 
misdetection of one of the posts). In the case of an 
accurate reading of the locations of both orange 
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vertical posts and the distinction of the red side/black 
side of the horizontal post, the AUV passes through 
either the red side or black side (depending on 
predetermined input) and remembers which side was 
chosen. If the distinction of which side is red and 
which is black cannot be accurately determined, the 
AUV simply plots a course to pass through the gate. 

2) “Follow the Path” 
To follow the orange path leading to the ‘shoot 

craps’ and ‘play slots’ tasks, our AUV filters images 
for the orange color range and localizes those 
detected image portions (if any are detected). Due to 
the low positioning of the path markers, the AUV 
would reorient to face downward if it is currently at 
higher depths. Descending is an alternative option, 
although a higher vantage point angled downwards 
may provide a more advantageous field of view to 
find the path markers. Once located, the offset of the 
detected path from the AUV is determined by the 
corresponding point cloud data, which is placed in the 
global feature map. This allows our AUV to position 
itself over the path and traverse it. The heading at the 
end of the path is then followed in order to find the 
task the path leads to. 

In a scenario where the vehicle overshoots the path 
when searching for it, the position of the preceding 
task in the global feature map is used to mark which 
end of the path is the beginning (such that the AUV 
wouldn’t traverse the path backwards). 

3) “Shoot Craps” 
For this task, the AUV needs to touch the dice 

buoys - with preference to having the last two dice 
touched add up to seven or eleven. The four available 
dice for the task comprises one, two, five, and six dot 
variants. Adding the last two to eleven would mean 
touching the five and six last, while adding to seven 
yields the options of using five and two, or six and 
one.   

The strategy for our AUV to accomplish this task 
is as follows: First, image data is processed and light 
gray rectangles of a certain scale are identified. This 
is done using OpenCV to color filter for high 
luminosity values, and then applying contour 
detection to find objects of a certain scale. Second, 
these areas of interest are analyzed further by 
detecting dark circles or blobs in their interior. This 
is done using OpenCV blob detection. 

The next step has two cases. The first case 
involves the second step being successful in 
determining the dot count of each buoy. In this 
scenario, the AUV would plot a path to touch the five 
dot buoy and then the six dot buoy (or vice versa). In 
contrast, the second case is concerned with having 
detected buoys but not being able to determine their 
dot count. In this scenario, the AUV would attempt to 
reposition itself and attempt to repeat the process. If 
this is unsuccessful, then the AUV would plot a path 
to touch the two buoys with higher interior dark to 
light ratios, as this would correspond with five and 
six. This is assuming that the AUV is viewing the 
buoys from a head-on angle of one of the sides and 
not viewing the corner of the dice. 

4) “Buy Gold Chip” 
This task, while providing a high amount of points 

in and of itself, also has the potential to give 
additional points to subsequent tasks. To accomplish 
this task, our strategy is to use image feature 
matching to detect the distinctive ‘$’ icon on the push 
plate. Once detected, the corresponding point cloud 
data is used to map the offset from the vehicle and a 
course to the plate is generated. The gold golf ball is 
intended to be caught by a net which is extended and 
positioned such that it is aligned with the dispenser 
for the in-line version. The plate is pushed with the 
lower front bar of the AUV after the net is extended. 

5) “Play Slots” 
Our vehicle doesn’t currently have operational 

torpedoes and thus our strategy for this particular task 
will be limited to pulling the lever or skipping this 
task entirely. If we are able to add functional 
torpedoes (which meet the torpedo specifications), 
then our strategy for this task would involve detecting 
the outline of the rectangular slots with OpenCV 
color filtering and canny edge detection. Once 
identified, our AUV would align itself (more 
specifically, the torpedo pod) with the target and 
launch a torpedo. 

6) “Play Roulette” 
For this task, the AUV must find the roulette 

wheel and place chips into any of its six bins. Placing 
it into the bin of the called color or the green bin 
scores more points, although our strategy is focused 
on ensuring that the chip is successfully placed in a 
bin rather than risking an unsuccessful chip 
deployment. To this end, our AUV would position 
itself directly above the roulette wheel and release the 
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chip from its holder (controlled via a servo motor). 
Furthermore, determining when the vehicle is 
positioned directly above the roulette wheel is done 
through analyzing the visual offset of the detected 
portions of the wheel, and adjusting the vehicle’s 
position to centralize the image. This imagery is 
obtained from the AUV’s downward facing low light 
camera. 

Both this task and the next task (‘cash in’) involve 
dispensing chips. Thus, if both tasks are intended to 
be done in one run, the blue chips may be allocated 
such that one blue chip is used in roulette and the 
other used in the ‘cash in’ task. Each initial blue chip 
has a latch which is opened by a servo, so the two 
blue chips can be deployed independently. Rationing 
of the initial chips and any obtained chips is further 
discussed in the overall strategy section. 

7) “Cash in” 
For this task, there are four red and four green golf 

balls in bins on the bottom of the arena that need to 
be collected. The second portion of this task is to 
place chips into either the registers at the surface or 
into the registers two feet below the surface 
(subsurface registers). 

First, placing any collected gold chips into the 
subsurface gold register is a priority. This is because 
it would gain maximum points and have the same 
associated difficulty of placing chips into any other 
register. Furthermore, the net used to collect 
additional chips would at this point still have the gold 
chip (if successfully collected) and not doing this step 
first may introduce a risk of losing the collected gold 
chip when attempting to collect red/green chips. To 
place the gold chip in the register, our AUV would 
color filter for yellow/gold and select the point cloud 
data for the positional offset of the bin. Once in range, 
the AUV would turn the net upside-down over the 
register and let the golf ball sink into it.  

Next, the chips in the red bin on the bottom would 
be targeted, as the red chips have a subsurface register 
and the net of our AUV is less effective at the surface. 
Our strategy for collecting them is to use the net and 
have the vehicle move forward at a slight downward 
angle and then tilt upwards in order to perform a 
scooping motion. If successful, the chips would be 
placed in the red register using the same strategy as 
with the gold chips. 

B. Overall Strategy 

Our current overall strategy is pass through the 
gate, follow the first path, and do the ‘shoot craps’ 
task. Then, an attempt at acquiring the first gold chip 
would be made. If unsuccessful for a preset timeout 
period, or the gold chip is acquired, our AUV would 
move on and follow the second orange path. 
However, our AUV would not go to the ‘play slots’ 
task, pending the status of our torpedo development. 

The next stage would be to find the next task using 
visual feature matching. If both the ‘roulette wheel’ 
and the ‘cash in’ tasks are found, and adequate time 
is left, both would be attempted. Our blue chip 
rationing strategy is currently in favor of using them 
both for roulette, as the wheel is a larger target than 
the cash in registers. In the case that only one of them 
is found, both the blue chips would be used on that 
task. In either case, when the time is sufficiently low 
or if neither of the latter two tasks are found, our 
AUV would plot a course to the breaching area and 
surface there, ending that run. 

V. DESIGN CREATIVITY 

Throughout the design process, our team has had 
to find creative solutions to problems/tasks that all 
felt very new – with this being our first year 
competing. Our decision to use a stereo camera 
(ZED) was based on our successful experience using 
it for ground vehicles and researching their usability 
for underwater robotic applications. The design of the 
vehicle was influenced by this as it made it necessary 
to use a larger enclosure in order to fit the camera and 
the accompanying TK1. In this regard, utilizing the 
ZED with a TK1 and Python proved challenging in 
and of itself because the 32bit TK1 wasn’t compatible 
with the opensource python-wrapper that Stereolabs 
provided. Thus, an older version of the ZED SDK 
was used with C++ and bridged with Python by 
making a custom Cython bridge. 

With the majority of the team being software 
oriented, the bulk of the customization was on the 
programming side. The code consists primarily of 
custom Python code, with a particular focus on 
developing it to be loosely coupled such that changes 
could easily be made throughout our development 
process. On the hardware side, the focus was on 
achieving the buoyancy and mobility requirements 
and less so on novelties. Due to this being our first 
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year competing, this scheme may completely reverse 
next year with the software largely being reusable and 
the mechanical side being the primary customization 
element. 

VI. EXPERIMENTAL RESULTS 

A. Simulations 

For testing our AUV, we designed a simulator that 
takes preset scenario inputs and runs them through 
the main program. The simulator also generates (and 
updates) a visualization of the current global obstacle 
and feature maps. In addition, the current path the 
vehicle intends to traverse is also added and updated 
on the visualization.  

Furthermore, the ZED SDK can record and save 
data in SVO format, which contains not only the RGB 
video but also 3D point clouds for each frame and the 
camera’s position relative to the starting point for 
movement tracking. These SVO files were recorded 
during trial runs of the vehicle in a pool, allowing the 
feature matching and other image processing 
techniques to be refined and tested without needing 
the vehicle to be constantly in a pool (which could 
introduce some logistical issues).  

The location information in each frame of the 
SVO file allowed us to simulate the path taken by the 
robot on any recorded trial. This also aided in further 
refining the image processing as it provided feedback 
on how the obstacle and feature maps would be 
populated based on the image selection. 

B. Vehicle Testing 

The vehicle was tested in a pool using both manual 
drive testing and autonomous feature testing. In 
particular, the pool testing provided the means to 
adjust the buoyancy and mobility of the vehicle as 
even refined paper calculations aren’t always 
accurate in determining these attributes.  

Certain task components and props were 
assembled and used for testing the AUV’s ability to 
accomplish them. Some of the more difficult and 
complicated task assemblies (roulette wheel/slots) 
are still being evaluated for a means to physically 
represent them. These will likely be far more 
simplistic versions of the real task assemblies and 
will consist of only the portions of the task that the 
vehicle would need to be tested for. 
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APPENDIX A: COMPONENT SPECIFICATIONS 

Component Vendor Model/Type Specs Cost 

Buoyancy Control Blue Robotics Static Ballast/Buoyancy Foam - ~$50 

Frame - HDPE/Aluminum - ~$200 

Waterproof Housing Blue Robotics 8” and 4” Acrylic Enclosures  1/2” thick $580 

Waterproof Connectors Blue Robotics Cable Penetrators 6mm and 8mm ~$50 

Thrusters Blue Robotics T200 Quantity: 8 $1300 

Motor Control ArduPilot Pixhawk 2.4.8 ArduSub $60 

Actuators Power HD LW-20MG Digital Servo Quantity: 5 $150 

Propellers Blue Robotics T200 Propellers 4 CW, 4 CCW - 

Battery Venom 3s Li-Po 5000mAH $50 

Converter eboot LM2596 DC-DC 12v to 5v $5 

CPU Nvidia TK1 192 Cuda Cores $220 

Compass - Pixhawk (internal) LSM303D - 

IMU - Pixhawk (internal) MPU6000 - 

Camera 1 Stereolabs ZED Stereo Camera $450 

Camera 2 Blue Robotics Low Light HD USB Camera (2MP, 1080p) $90 

Programming Language 1 - Python (2.7) - - 

Programming Language 2 - C++ - - 

Open source software 1 - ROS EKF, tf2 - 

Open source software 2 - OpenCV - - 

Team size - 6 - - 

HW/SW expertise ratio - HW: 2, SW: 4 - - 

Testing time: simulation - ~50 hours - - 

Testing time: in-water - ~20 hours - - 

 


