
NDSUB Hydro Bison 1

Design and Implementation of the Hydro Bison

Autonomous Underwater Vehicle
Andrew Jones

North Dakota State University

Fargo, ND, USA

andrew.jones.4@ndsu.edu

Daniel Anderson

North Dakota State University

Fargo, ND, USA

daniel.anderson.3@ndsu.edu

Isaac Burton

North Dakota State University

Fargo, ND, USA

isaac.burton@ndsu.edu

Nicholas Snell

North Dakota State University

Fargo, ND, USA

nicholas.snell@ndsu.edu

Jaron Pollman

North Dakota State University

Fargo, ND, USA

jaron.r.pollman.2@ndsu.edu

Benjamin Kading

North Dakota State University

Fargo, ND, USA

benjamin.kading@ndsu.edu

Dr. Jeremy Straub

North Dakota State University

Fargo, ND, USA

jeremy.straub@ndsu.edu

[Faculty Advisor]

Abstract—In this paper, the Hydro Bison’s RoboSub 2018

competition AUV is discussed. An overview of the vehicle and its

software is presented. The planned strategy of the AUV is given

for each task and for the overall competition.

I. INTRODUCTION

The Hydro Bison team participating in this year’s
RoboSub Competition is comprised of students from
North Dakota State University (NDSU). This marks
the first year of participation in RoboSub for all team
members and advisors. The design process alone has
been a great learning experience for the team and we
are excited to participate in this year’s competition.

Our team is primarily software oriented, with over
half the team being computer science majors. As
such, our focus has been on simulations and
developing the task specific software for the
competition. With this being our first year competing,
it has been a particularly challenging experience as
well as an excellent learning opportunity.

On the mechanical side, our focus has been less on
design optimization, and more on fulfilling mission
requirements. This has led to a more modular design,
with more flexibility in regards to potential
component arrangements and configurations.

II. VEHICLE OVERVIEW

Our AUV has a frame that consists of both
aluminum and HDPE. The HDPE has the benefit of
being near neutrally buoyant [1], while the aluminum
provides additional strength and its slight negative

buoyancy helps offset the positive buoyancy of the
acrylic enclosures.

The vehicle has an eight-thruster setup, with four
for vertical movement and four for horizontal
movement. The utilized setup is also known as
‘vectored 6dof’ and is supported by the Pixhawk
ArduSub firmware.

Fig. 1. Electrical Diagram

The Pixhawk acts as the motor controller for the
eight thrusters, as shown in Fig. 1, and is controlled
via the Nvidia TK1 (using a raspberry pi 3 as an
intermediary). The TK1 is used in order to process the
point cloud data from the ZED camera, which is the
primary sensor on the AUV.

III. SOFTWARE OVERVIEW

The software architecture for our AUV, depicted
in Fig. 2, consists of original Python code, ROS,

NDSUB Hydro Bison 2

OpenCV and the ZED SDK. ROS is currently only
used for localization, although further usage of it may
be added in the future (for subsequent competitions),
particularly when ROS 2 becomes available.

Global Position

Sensor
Detections

Path Planning

Global Feature
Map

Global Obstacle
Map

Local Map

Position
Transform

Goal Selection Path Tracking

IMU DataVisual Odometry
Acoustic

Underwater
Positioning

Fig. 2. Software Overview Diagram

In the following subsections, an overview of each
of the main software modules is presented.

A. Localization

For localization, the data from the IMU on the
pixhawk and the visual odometry from the Zed
camera are published to ROS. Then, the
‘robot_pose_ekf’ ROS node fuses the data and uses it
in an extended Kalman filter to estimate the current
position of the vehicle. Hydroacoustic positioning
would be an additional valuable positioning utility
and may be added in the future.

B. Mapping

The Nvidia TK1 utilizes the ZED camera along
with the ZED SDK to generate a point cloud in each
frame such that each pixel has (x, y, z) spatial position
values. The raw images from the ZED camera map
one to one with the point cloud, allowing analysis and
filtering in the image to be mapped to the
corresponding point cloud position values. This
allows features of interest in an image to be mapped
to spatial locations.

The detected features of interest and obstacles are
first placed in a local map. Then, a position transform

is applied to local map so that it can be merged to the
global map. A separate global map is kept for features
of interest and detected obstacles / arena boundaries.
The global obstacle map is used for path generation
and traversing, while the global feature map is used
for goal determination and task related activities.

C. Pathing

Due to the relatively small amount of obstacles
(compared to the amount of open space), our AUV’s
path generation is done using A* and updated if a
newly detected obstacle obstructs the current route.
The grid used for the search is the global obstacle
grid, with the goal position determined by a separate
goal planning thread. Furthermore, instead of
calculating the path in 3-dimensions, the horizontal
plane is planned out first with A* using a Euclidean
distance heuristic. This is because grid search
methods can be computationally expensive when
considering more than two dimensions [2]. Instead,
the depth descent/ascent path is planned out after the
horizontal route is calculated.

The generated path is then given to the path
tracking thread, which utilizes a modified pure
pursuit path tracking algorithm. For certain precision-
oriented task activities, the tracking is changed to a
set of predetermined motions that are specific for the
current task.

IV. COMPETITION STRATEGY

In this section, the strategy for our AUV to
accomplish each individual task is discussed. Then,
our overall strategy for which tasks are prioritized
over others is presented.

A. Task Strategies

1) “Enter Casino Gate”
For the first task of passing through the validation

gate, our strategy involves processing images from
the zed stereo camera in order to detect the distinctive
orange color of the vertical posts. Once located, the
detections in the image can be mapped to the point
cloud so that the position of the posts relative to the
vehicle can be determined. The red and black
horizontal posts are then color filtered for, such that
they can be used to ensure that the AUV goes
between the orange posts (in case of potential
misdetection of one of the posts). In the case of an
accurate reading of the locations of both orange

NDSUB Hydro Bison 3

vertical posts and the distinction of the red side/black
side of the horizontal post, the AUV passes through
either the red side or black side (depending on
predetermined input) and remembers which side was
chosen. If the distinction of which side is red and
which is black cannot be accurately determined, the
AUV simply plots a course to pass through the gate.

2) “Follow the Path”
To follow the orange path leading to the ‘shoot

craps’ and ‘play slots’ tasks, our AUV filters images
for the orange color range and localizes those
detected image portions (if any are detected). Due to
the low positioning of the path markers, the AUV
would reorient to face downward if it is currently at
higher depths. Descending is an alternative option,
although a higher vantage point angled downwards
may provide a more advantageous field of view to
find the path markers. Once located, the offset of the
detected path from the AUV is determined by the
corresponding point cloud data, which is placed in the
global feature map. This allows our AUV to position
itself over the path and traverse it. The heading at the
end of the path is then followed in order to find the
task the path leads to.

In a scenario where the vehicle overshoots the path
when searching for it, the position of the preceding
task in the global feature map is used to mark which
end of the path is the beginning (such that the AUV
wouldn’t traverse the path backwards).

3) “Shoot Craps”
For this task, the AUV needs to touch the dice

buoys - with preference to having the last two dice
touched add up to seven or eleven. The four available
dice for the task comprises one, two, five, and six dot
variants. Adding the last two to eleven would mean
touching the five and six last, while adding to seven
yields the options of using five and two, or six and
one.

The strategy for our AUV to accomplish this task
is as follows: First, image data is processed and light
gray rectangles of a certain scale are identified. This
is done using OpenCV to color filter for high
luminosity values, and then applying contour
detection to find objects of a certain scale. Second,
these areas of interest are analyzed further by
detecting dark circles or blobs in their interior. This
is done using OpenCV blob detection.

The next step has two cases. The first case
involves the second step being successful in
determining the dot count of each buoy. In this
scenario, the AUV would plot a path to touch the five
dot buoy and then the six dot buoy (or vice versa). In
contrast, the second case is concerned with having
detected buoys but not being able to determine their
dot count. In this scenario, the AUV would attempt to
reposition itself and attempt to repeat the process. If
this is unsuccessful, then the AUV would plot a path
to touch the two buoys with higher interior dark to
light ratios, as this would correspond with five and
six. This is assuming that the AUV is viewing the
buoys from a head-on angle of one of the sides and
not viewing the corner of the dice.

4) “Buy Gold Chip”
This task, while providing a high amount of points

in and of itself, also has the potential to give
additional points to subsequent tasks. To accomplish
this task, our strategy is to use image feature
matching to detect the distinctive ‘$’ icon on the push
plate. Once detected, the corresponding point cloud
data is used to map the offset from the vehicle and a
course to the plate is generated. The gold golf ball is
intended to be caught by a net which is extended and
positioned such that it is aligned with the dispenser
for the in-line version. The plate is pushed with the
lower front bar of the AUV after the net is extended.

5) “Play Slots”
Our vehicle doesn’t currently have operational

torpedoes and thus our strategy for this particular task
will be limited to pulling the lever or skipping this
task entirely. If we are able to add functional
torpedoes (which meet the torpedo specifications),
then our strategy for this task would involve detecting
the outline of the rectangular slots with OpenCV
color filtering and canny edge detection. Once
identified, our AUV would align itself (more
specifically, the torpedo pod) with the target and
launch a torpedo.

6) “Play Roulette”
For this task, the AUV must find the roulette

wheel and place chips into any of its six bins. Placing
it into the bin of the called color or the green bin
scores more points, although our strategy is focused
on ensuring that the chip is successfully placed in a
bin rather than risking an unsuccessful chip
deployment. To this end, our AUV would position
itself directly above the roulette wheel and release the

NDSUB Hydro Bison 4

chip from its holder (controlled via a servo motor).
Furthermore, determining when the vehicle is
positioned directly above the roulette wheel is done
through analyzing the visual offset of the detected
portions of the wheel, and adjusting the vehicle’s
position to centralize the image. This imagery is
obtained from the AUV’s downward facing low light
camera.

Both this task and the next task (‘cash in’) involve
dispensing chips. Thus, if both tasks are intended to
be done in one run, the blue chips may be allocated
such that one blue chip is used in roulette and the
other used in the ‘cash in’ task. Each initial blue chip
has a latch which is opened by a servo, so the two
blue chips can be deployed independently. Rationing
of the initial chips and any obtained chips is further
discussed in the overall strategy section.

7) “Cash in”
For this task, there are four red and four green golf

balls in bins on the bottom of the arena that need to
be collected. The second portion of this task is to
place chips into either the registers at the surface or
into the registers two feet below the surface
(subsurface registers).

First, placing any collected gold chips into the
subsurface gold register is a priority. This is because
it would gain maximum points and have the same
associated difficulty of placing chips into any other
register. Furthermore, the net used to collect
additional chips would at this point still have the gold
chip (if successfully collected) and not doing this step
first may introduce a risk of losing the collected gold
chip when attempting to collect red/green chips. To
place the gold chip in the register, our AUV would
color filter for yellow/gold and select the point cloud
data for the positional offset of the bin. Once in range,
the AUV would turn the net upside-down over the
register and let the golf ball sink into it.

Next, the chips in the red bin on the bottom would
be targeted, as the red chips have a subsurface register
and the net of our AUV is less effective at the surface.
Our strategy for collecting them is to use the net and
have the vehicle move forward at a slight downward
angle and then tilt upwards in order to perform a
scooping motion. If successful, the chips would be
placed in the red register using the same strategy as
with the gold chips.

B. Overall Strategy

Our current overall strategy is pass through the
gate, follow the first path, and do the ‘shoot craps’
task. Then, an attempt at acquiring the first gold chip
would be made. If unsuccessful for a preset timeout
period, or the gold chip is acquired, our AUV would
move on and follow the second orange path.
However, our AUV would not go to the ‘play slots’
task, pending the status of our torpedo development.

The next stage would be to find the next task using
visual feature matching. If both the ‘roulette wheel’
and the ‘cash in’ tasks are found, and adequate time
is left, both would be attempted. Our blue chip
rationing strategy is currently in favor of using them
both for roulette, as the wheel is a larger target than
the cash in registers. In the case that only one of them
is found, both the blue chips would be used on that
task. In either case, when the time is sufficiently low
or if neither of the latter two tasks are found, our
AUV would plot a course to the breaching area and
surface there, ending that run.

V. DESIGN CREATIVITY

Throughout the design process, our team has had
to find creative solutions to problems/tasks that all
felt very new – with this being our first year
competing. Our decision to use a stereo camera
(ZED) was based on our successful experience using
it for ground vehicles and researching their usability
for underwater robotic applications. The design of the
vehicle was influenced by this as it made it necessary
to use a larger enclosure in order to fit the camera and
the accompanying TK1. In this regard, utilizing the
ZED with a TK1 and Python proved challenging in
and of itself because the 32bit TK1 wasn’t compatible
with the opensource python-wrapper that Stereolabs
provided. Thus, an older version of the ZED SDK
was used with C++ and bridged with Python by
making a custom Cython bridge.

With the majority of the team being software
oriented, the bulk of the customization was on the
programming side. The code consists primarily of
custom Python code, with a particular focus on
developing it to be loosely coupled such that changes
could easily be made throughout our development
process. On the hardware side, the focus was on
achieving the buoyancy and mobility requirements
and less so on novelties. Due to this being our first

NDSUB Hydro Bison 5

year competing, this scheme may completely reverse
next year with the software largely being reusable and
the mechanical side being the primary customization
element.

VI. EXPERIMENTAL RESULTS

A. Simulations

For testing our AUV, we designed a simulator that
takes preset scenario inputs and runs them through
the main program. The simulator also generates (and
updates) a visualization of the current global obstacle
and feature maps. In addition, the current path the
vehicle intends to traverse is also added and updated
on the visualization.

Furthermore, the ZED SDK can record and save
data in SVO format, which contains not only the RGB
video but also 3D point clouds for each frame and the
camera’s position relative to the starting point for
movement tracking. These SVO files were recorded
during trial runs of the vehicle in a pool, allowing the
feature matching and other image processing
techniques to be refined and tested without needing
the vehicle to be constantly in a pool (which could
introduce some logistical issues).

The location information in each frame of the
SVO file allowed us to simulate the path taken by the
robot on any recorded trial. This also aided in further
refining the image processing as it provided feedback
on how the obstacle and feature maps would be
populated based on the image selection.

B. Vehicle Testing

The vehicle was tested in a pool using both manual
drive testing and autonomous feature testing. In
particular, the pool testing provided the means to
adjust the buoyancy and mobility of the vehicle as
even refined paper calculations aren’t always
accurate in determining these attributes.

Certain task components and props were
assembled and used for testing the AUV’s ability to
accomplish them. Some of the more difficult and
complicated task assemblies (roulette wheel/slots)
are still being evaluated for a means to physically
represent them. These will likely be far more
simplistic versions of the real task assemblies and
will consist of only the portions of the task that the
vehicle would need to be tested for.

ACKNOWLEDGMENTS

The Hydro Bison team would like to thank the
NASA North Dakota Space Grant Consortium, and
the NDSU Foundation & Alumni Association for
providing materials used in this project.

REFERENCES

[1] S. W. Moore, H. Bohm, and V. Jensen, Underwater

Robotics: Science, Design & Fabrication. Marine

Advanced Technology Education (MATE) Center,

2010.

[2] Z. Zeng, K. Sammut, L. Lian, F. He, A. Lammas, and

Y. Tang, “A comparison of optimization techniques

for AUV path planning in environments with ocean

currents,” Rob. Auton. Syst., vol. 82, pp. 61–72, Aug.

2016.

NDSUB Hydro Bison 6

APPENDIX A: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost

Buoyancy Control Blue Robotics Static Ballast/Buoyancy Foam - ~$50

Frame - HDPE/Aluminum - ~$200

Waterproof Housing Blue Robotics 8” and 4” Acrylic Enclosures 1/2” thick $580

Waterproof Connectors Blue Robotics Cable Penetrators 6mm and 8mm ~$50

Thrusters Blue Robotics T200 Quantity: 8 $1300

Motor Control ArduPilot Pixhawk 2.4.8 ArduSub $60

Actuators Power HD LW-20MG Digital Servo Quantity: 5 $150

Propellers Blue Robotics T200 Propellers 4 CW, 4 CCW -

Battery Venom 3s Li-Po 5000mAH $50

Converter eboot LM2596 DC-DC 12v to 5v $5

CPU Nvidia TK1 192 Cuda Cores $220

Compass - Pixhawk (internal) LSM303D -

IMU - Pixhawk (internal) MPU6000 -

Camera 1 Stereolabs ZED Stereo Camera $450

Camera 2 Blue Robotics Low Light HD USB Camera (2MP, 1080p) $90

Programming Language 1 - Python (2.7) - -

Programming Language 2 - C++ - -

Open source software 1 - ROS EKF, tf2 -

Open source software 2 - OpenCV - -

Team size - 6 - -

HW/SW expertise ratio - HW: 2, SW: 4 - -

Testing time: simulation - ~50 hours - -

Testing time: in-water - ~20 hours - -

