
Palouse RoboSub 1 of 12

The Cobalt AUV: Design and Development
Palouse Robosub

James Irwin, Brandon Kallaher, Ryan Summers, Christian Ziruk, et al.

Abstract—This paper aims to convey the design of the 2016-
2017 Palouse RoboSub AUV - Cobalt. Included is the theory
behind the design process and the implementation from electrical,
software, and mechanical engineering perspectives. The electrical
aspect of the paper goes over the change from a system with
centralized control boards to a more distributed board design
scheme, while the mechanical section covers the design decisions
made to accommodate changes in the electrical design and new
system additions. In terms of software, the paper goes over the
new features and tools created to help increase development
speed, including the conversion of the system to use the ROS
(Robot Operating System) framework.

Keywords—journal, LATEX, paper, RoboSub, Palouse, WSU, AUV,
engineering, Cobalt, AUVSI, ROS.

I. DESIGN STRATEGY

In order to facilitate effective communication both between
teams and between sub-team members, the team primarily
focused on design processes, communication, and improved
information flow. Included in this philosophy was the extensive
development of an online wiki [2] for containing documen-
tation and design resources. This helped the sub-teams to
quickly and effective communicate designs with each other.
By developing standardized ways of introducing new ideas
into the project, the team established the foundations for good
engineering practices. This was a guiding principle for the
fundamental design strategy employed by the team for the
2016-17 competition year, and differs substantially from the
engineering-focused mindset of previous competition seasons.

A. Software
At the beginning of this year, the software team spent a

significant amount of time to find the root causes of the
difficulties experienced in previous years and identified new
ways to circumvent them. As a result, the software team
developed 4 main goals to focus on over the course of the
2016-17 competition season:

1) Implement (and stick to) a well-defined software work-
flow

2) Focus on core functionality first to ensure a solid
foundation

3) Grow the software team
4) Develop a simulator to accelerate development
Workflow: For goal 1, the software team wanted to create a

structured environment for collaboratively working on code.
Historically, the team would regularly encounter compiler
errors, incomplete code, and various other issues in the ”stable”
branch of the codebase, as well as confusion over what each

team member was working on and its state of completion.
The team determined that a well-defined process for assigning
tasks and merging code was needed. In addition, the team
felt it important to implement a review process to improve
code quality. Although the software team has attempted this
goal in the past, they failed largely because people would
simply choose not to follow it - particularly when faced with
looming deadlines. To combat this, tool assistance was used
wherever possible to enforce the workflow. Tools such as
Github’s pull requests and issue tracker, Reviewable’s code
review tool, and TravisCI’s continuous integration server have
been used extensively throughout the year, and Github’s branch
permissions helped to ensure these checks all passed. The
software team lead set up a Debian software repository so
that a single command could be used to download all the
necessary software and configure a computer for RoboSub
development, whereas previously the team lead maintained a
bash script for performing initial installation. In addition, the
Debian repository allowed the computer’s main update system
to ensure everyone used the same software packages.

Fig. 1: Cobalt sits in the lab after a successful pool test.

Task Priority: Goal 2 can be interpreted on several different
levels: a system architecture level, a task-priority level, and the
individual module level. Since the software team’s creation,
a multi-process system architecture has been used where
multiple computer processes run to implement the complex
functionality of the AUV, and it is necessary for these processes
to communicate with each other to some degree. Another task
is the coordination and management of the individual pro-
grams. To implement this communication, the software team
has historically tried to develop a custom message-passing
framework, which was usually based on the the ZeroMQ
library [12]. However, each year it was scrapped to be replaced



Palouse RoboSub 2 of 12

with a ”better” custom system, which resulted in large yearly
efforts to debug the communication framework. This resulted
in spending more time fighting and debugging the networking
and process management tools than writing the actual code
for the AUV. In an attempt to stop this cycle, the software
team decided to try out a popular software library designed
for robotics coined the Robot Operating System (ROS) [9].

Another lesson from the team’s history revolved around the
workflow. The software team historically followed a top-down
design model, and usually spent most effort on vision process-
ing and the high-level decision making programs (AI) while
simultaneously neglecting essential lower-level components,
such as the control system and thruster modules. As a result,
these critical components were often buggy and, in the end,
prevented the practical use of any vision processing results or
AI decisions. The software team chose to follow a bottom-up
design this year, which entailed creating the smallest building
blocks first and then building more complex functionality on
top of them. At the start of the 2016 fall semester, the software
team started out by writing the software for our sensors and
thrusters, and thoroughly tested those modules. Next, the team
debugged the control system to the point of having stable
movement, and by the 2017 spring semester they started work
on vision processing and decision-making. This work ordering
resulted in tangible progress much earlier in the year, and
allowed immediate pool testing of vision and decision-making
code as soon as it was written.

Fig. 2: Gazebo Simulator

An issue that has constantly plagued the software team is
that members would write large, elaborate software modules
with the preemptive intent to be efficient and customizable
(premature optimization and modularity). This was combined
with little practical integration testing until the end of the year,
at which point it was often discovered that the prime function-
ality of the module was buggy. Compounding this complexity
was a lack of documentation, which made software difficult
to maintain. To combat this, the software team followed the
KISS principal (keep it simple, stupid) and decided that the
main priority would be to get the basic functionality of the
module running and well-tested, and only perform optimization
and add modularity when needed. This has resulted in faster
software development and code that is much easier to maintain.

Team Growth: Historically, the software team was com-
posed of 2-3 members, typically juniors or seniors, which
resulted in a lot of software turnover and was a lot of work
for such a small team. Goal 3 is a necessary step to ensure the
survival of the team on a long-term basis, but also increase the
team’s software output. This year the software team attempted
to simplify the learning curve for new members, and also
focused most of the first semester towards on-boarding new
members. Simplifying software setup (as discussed in goal
1) helped immensely with getting new members started. In
addition, the software veterans created many smaller example
programs to help members ”learn the ropes” before having to
understand the complex minutiae of a real module. During
the first few weeks, the team explicitly disallowed veteran
members from writing code. Instead, they assisted the new
recruits to write software modules. Although time consuming,
this was found to be an effective method of teaching the
idiosyncrasies of how we write software. It also helped new
members engage with the veteran members and feel part of
the group. The software team has also maintained a wiki [2]
to document high-level code design and organization.

Simulator: Although a side goal last year, goal 4 became
a major objective for this year’s team. The ability to perform
preliminary tests of total system integration without running on
real hardware has had a huge impact in software development
speed. Progress of the simulator is described further in section
II, while an example image from the simulator is visible in
Figure 2.

B. Electrical
In previous years, concurrent development between the

software and electrical teams has been fraught with difficulty.
The electrical team naturally desires having the ability to make
modifications to the AUV to prototype hardware, while the
software team needs a stable AUV to test algorithms on.
When its not known whether a bug is a result of hardware
or software, the time required to debug problems on the
AUV increases drastically. This year, the electrical team took
great pains when implementing upgrades so that Cobalt has
been able to undergo a complete overhaul to the electrical
design, while simultaneously maintaining a stable development
platform for the software team. The motivation for the rework
of the electrical system revolved around 3 key goals:

1) Stability
2) Reliability
3) Ease of Implementation
Stability: Maintaining an AUV that is continuously avail-

able to other parts of the club is crucial to success at the
competition. If the AUV is taken out of commission as a result
of electrical work, significant setbacks can be experienced by
other portions of the club. By establishing a number of guiding
principles to follow when working on electrical portions of
the AUV design, the team has vastly improved stability over
previous years. In order to maintain a stable software testing
platform, the electrical team focused the first two months on
finalizing all remnant projects from the previous year’s design
cycle. This provided the rest of the club with an AUV that was



Palouse RoboSub 3 of 12

capable of performing basic functions in a reliable fashion, i.e.
moving around the pool, determining orientation, and sensing
depth. By keeping the initial requirements simple, the first
iteration of the electrical framework came together quickly
and provided the first initial, stable platform for the software
team. Once the AUV was functional, the electrical team
transitioned towards individually upgrading specific projects.
Instead of removing and replacing sensors for testing, a ’ride-
along’ methodology was employed where multiple sensors
were installed on the AUV. This allowed for prototype software
and hardware to be run in realistic testing environments (i.e.
when the AUV is moving around in the pool), while it
also ensured that the software team would have access to
hardware that was known to be stable. When the new sensors
and electrical equipment were properly tested and verified,
components were swapped out and older sensors and hardware
components were removed without the software team having
to compensate. This streamlined the testing and verification
process between the electrical and software teams and resulted
in a large productivity increase throughout the year.

Reliability: Reliability was a core design requirement
throughout the electrical team’s design process. When there
was confusion about whether the code was broken or if the
hardware was actually the problem, time was lost and errors
were made. Reliability is composed of two distinct parts:
designing with intent and hardware verification. By designing
with reliability as a key principle, steps can be taken early
in the design process to facilitate a more reliable system.
Additionally, if reliability principles are put in place with the
first revisions of hardware systems, dependability problems
can be quickly addressed and remedied before designs are
finalized. This permits the design process to be much more
flexible on both the electrical and mechanical teams. However,
designing with an intent for reliability is meaningless unless
projects are extensively tested to ensure they meet the specifi-
cation. This year, the electrical team focused on ensuring that
all projects met rigid standards on electrical connectivity and
specification performance before projects were integrated into
the AUV. This resulted in a vast improvement in usability of
AUV hardware over previous years.

Ease of Implementation: Because the RoboSub competi-
tion requires so many different electrical subsystems to be
completed in a short development period, the electrical team
chose to leverage popular hardware platforms. By utilizing the
Arduino framework based on Atmel AVR microcontrollers for
all of the embedded systems, development time was drastically
reduced and code maintainability was improved. This allowed
for the electrical team to take on more ambitious projects,
while worrying less about the smaller details. The overarching
philosophy put in place was integration as opposed to building
from scratch. Inertial sensors were selected that provided em-
bedded fusion algorithms as opposed to raw IMU readings, and
projects were abstracted into individual components connected
to the main computer by individual USB connections. By
focusing on systems that were easy to implement, the electrical
team was able to ensure that projects met specification and
performed reliably for the software team.

C. Mechanical

The mechanical team’s primary focus for Cobalt was op-
timization. With fatigue failure occurring on certain compo-
nents, it was necessary to redesign and manufacture enclosures
for new and old electronics systems in order to have an ideal
lifespan. This route allowed our team to maintain most of last
year’s AUV while focusing on areas in need of improvement.
Focusing on smaller projects allowed the team to practice and
develop their mechanical engineering skills on smaller more
focused projects. By not designing and manufacturing an entire
AUV, the mechanical team was able to focus on three major
areas of improvement:

1) Robustness
2) Ease of Maintenance
3) Modularity

Robustness: In order to be successful the team needed to
understand the AUV and the systems within it. To kickoff the
season, the team focused its energy on understanding the areas
in need of redesign due to the lack of robustness. By spending
the first month learning faults within Cobalt and why they
occurred, the team was able to develop a strong foundation
for future design decisions that would be made for this
year’s AUV. The design of the new enclosures were designed
with appropriate material selection and appropriate sealing
considerations. In previous years, material and sealing was
decided based on earlier iterations of the team’s AUVs. With
access to many different materials and machining capabilities,
using appropriate material for a greater fatigue life is optimal.
Spending additional time to make the AUV more robust allows
the AUV to be in a usable state much longer and used for
testing for years to come.

Ease of Maintenance: Certain systems require more atten-
tion than others on the AUV. When designing for ease of
maintenance it was critical to understand which enclosures
would need to be accessed at a moments notice versus an
enclosure that would need to be opened due to a critical
failure. The team approached this challenge by dividing the
enclosures and main hull into different categories based on
need of accessibility. From there the choice in sealing method
was made between O-rings and Epoxy. Cobalt reflects the
use of both O-rings and epoxy. However due to the need for
accessibility, O-rings were a more prevalent choice for most
enclosures.

Modularity: Due to the nature of our team’s hardware
and electronics choices, being dynamic and having modularity
within the design is critical to system integration. The design
of the main hull and all enclosures are placed in sections of the
AUV that allow other systems to be added to it at anytime. By
incorporating modularity in needed areas of our AUV, the team
can continue to test and implement necessary hardware without
a complete redesign. This approach saves time and gives other
sub-teams a chance to test systems while we continue to add
to the AUV.



Palouse RoboSub 4 of 12

II. VEHICLE DESIGN

A. Software
1) Overview: A high value was placed on small, simple

programs to do specific tasks. A ROS node was written for
each sensor (various IMUs, depth sensor). A control system
node receives sensor data describing the state of the AUV
(orientation, depth), as well as goals (roll, pitch, yaw, depth,
forward, and strafe), and sends normalized thruster values, as
seen in Appendix B. These normalized thruster commands are
received by our thruster module, which uses a serial port to
talk to the hardware that controls the thrusters. This basic
layout can be seen in Appendix A. In addition, we started
development of a particle filter for integrating IMU data, depth
reading, vision processing, and hydrophone measurements to
estimate our position in the pool. Although this shows promise
in the simulator, its appearance at the competition is dependent
on the state of hydrophone progress.

2) Simulator: Last year we started the development of a
simulator primarily for testing the control system, vision pro-
cessing, and higher-level decision making logic. The simulator
was developed in the Unity [11] game engine because of its
potential for realistic imagery. However, it was difficult to
install and use, and added yet another programming language
to our codebase (C#). We chose to rewrite our simulator using
the Gazebo7 [1] simulator because of its realistic physics
modeling, ease of installation and interfacing with ROS despite
that fact that the graphics are much poorer than Unity. We
wanted the simulator to provide a solid integration test-bench,
therefore several bridge modules were written to present an
interface that exactly mimics the software interfaces on the
real hardware, including the serial ports. This allows us to
realistically test that every component of the system talks
correctly without needing the real AUV present.

Fig. 3: Simulated Camera View

3) Vision: Previously the object detection system used hand
coded filters to programmatically detect the location of objects
in the pool. It was found that this style of object detection is
not sufficient, even after extensive tuning. In order to solve

this problem, object detection systems using machine learn-
ing methods to detect objects in the pool were investigated.
Theoretically, machine learning methods of object detection
are much more reliable than hand coded filters because the
algorithms create more powerful models and are able to use
more feedback than can be accomplished by hand. This has
been shown by image tagging and classification competitions
such as ImageNet [3] and PASCAL VOC [8] where algorithms
are able to recognize hundreds of objects in real-world pictures.

When evaluating which algorithm to use, speed was an im-
portant concern as there is limited computing power available
on the AUV and deep object detection is a computationally
expensive operation. Additionally, the object detection system
should run at the same rate as our camera input (5 frames per
second) so that the AI system is able to run with adequate
feedback. Training speed was also a concern, while there are
significant computing resources available through the Intel-
ligent Robotics Learning Lab (IRLL), there are only about
3 days available to collect, label, and train with data at the
competition. Thus, any framework chosen must be able to
converge in less than 2 days. Cobalt has also been outfitted
with a Jetson TX2 [7] to help the object detection subsystem
run as quickly as possible.

Three machine learning algorithms for object detection were
tested for their accuracy, evaluation speed, and training speed.
These algorithms were evaluated using only an i7-7700K
quad core CPU running at 4.2GHz on a hand labeled dataset
designed for the RoboSub competition. First and foremost,
YOLO (You Only Look Once) [5] was evaluated using the
Darknet [4] framework, a deep object detection framework
boasting the fastest speeds, with real time performance on a
dedicated GPU. Both standard YOLO v2 and YOLO-tiny v2
were tested [5]. Both were able to perform with good accuracy
on the dataset at relatively fast speeds. YOLO evaluated at a
rate of 0.2 FPS (frames per second) and YOLO-tiny evaluated
at a rate of 1 FPS. Notably, the Darknet framework only allows
evaluation on one thread when running in CPU mode. Second,
YOLO-tiny v2 was tested in the TensorFlow [10] framework.
TensorFlow allows for execution on all CPU threads and as a
result YOLO-tiny evaluated at 8 FPS. Lastly, Faster R-CNN
was tested. Faster R-CNN was the most accurate, but also
the slowest of the frameworks tested. With a back end of
TensorFlow, Faster R-CNN evaluated at 0.17 FPS.

After testing, Darknet YOLO was chosen to integrate into
Cobalt for its speed and ability to train with multiple GPUs.
Because of its lower CPU performance, training the network
with Darknet and moving the network weights to TensorFlow
for prediction was considered but rejected because the Jetson
TX2 should allow Darknet to run sufficiently once it has been
integrated.

4) Localization: In the past Cobalt has had no way of
knowing its precise X and Y position within its environ-
ment, though Z position can be found relatively accurately
using depth sensors. This year brought the development of
a hydrophone system that should be able to determine the
position of the AUV relative to the acoustic pinger in the
pool allowing the system to determine the general position
of the sub. Unfortunately, the hydrophones only report data



Palouse RoboSub 5 of 12

once every 2 seconds (because the pinger only pings once
every 2 seconds) and they are quite susceptible to noise which
results in low frequency and somewhat inaccurate position
measurements. To improve this, the localization system uses
both a particle filter and a Kalman filter to perform sensor
fusion and produce a more accurate and higher frequency
estimate of the sub’s position.

Since the team does not have a DVL (Doppler Velocity
Logger) or another way to determine the velocity of the sub,
a nine state Kalman filter was chosen to fuse acceleration and
orientation data from the IMU and depth data, to estimate the
subs velocity. Additionally, once the particle filter is converged
and stable, its position estimate is input into the Kalman filter.
A Kalman filter was chosen due to its simplicity, efficiency,
and accuracy using linear, Gaussian data.

Localization uses the particle filter to fuse the hydrophone
data and depth data, as well as the velocity estimated by the
Kalman filter. A particle filter was chosen as it handles low
frequency, non-linear input well.

The simulator was essential to the development of the
localization system since the hydrophone system was being
developed in parallel. It allowed changes to be made and
rapidly tested using unit tests that would be difficult or
impossible to do in real pool testing.

5) AI: Although it has not been the main focus of the year,
the AI is an important piece of the software as it sets high
level goals such as ”go to depth”, ”maintain orientation”, ”yaw
right”, and ”move forward.” Problems such as ”is this orange
object a path marker or a start gate?” were designated to be the
domain of the vision processing system in order to simplify
the higher-level decision making logic. This was in an attempt
to make modifying the behavior of the AUV on-the-fly as
simple as possible. Python is used to keep the code simple,
straightforward, and mutable. Going forward, the AI will be
the main focus of the software team as the other parts are
being polished.

B. Electrical
Overview: The electrical design of the AUV is composed

of two main components. The first priority of the electrical
team was to properly and safely route power to the thrusters
and main hull. Because Cobalt is utilizing Blue Robotics T200
thrusters, there were much higher power requirements as each
thruster can draw up to 25 Amps. To accommodate for the
large current requirements on the battery, all power routing
was done in an external power compartment. A dual relay
setup was used to allow for the thrusters to be independently
shut down while maintaining power to the main hull and the
hardware controllers. The overall system diagram of power
flow throughout the submarine can be seen in diagram in
Appendix D.

The second set of responsibilities for the electrical team
was to provide sensor data to the software team. This year,
the electrical system on Cobalt follows a simple, expandable
model for changing hardware, adding functionality, and verify-
ing and testing projects independently. To do this, each project
was considered as a separate entity that connected to the main

computer through a USB port. Each USB port then enumerated
as a serial interface for the software team to interface with. This
also allowed for simplifying cabling within the AUV because
each electrical peripheral only had a single cable running to
it. This has increased the reliability of individual projects and
has reduced clutter within the hull of the AUV.

Fig. 4: The pneumatics circuit board was designed through
close collaboration between mechanical engineering
specifications and electrical engineering designers.

Peripherals
Cobalt is composed of a number of electrical peripherals

connected through a common USB hub including up to three
inertial measurement units (IMUs), four independent, high-
precision depth sensors orientated throughout the AUV, two
cameras mounted on the bow, controllable LED strips for pro-
viding mission feedback information, and a remote pneumatics
controller. Microcontrollers were eliminated throughout the
previous revisions of Cobalt in favor of software controllers.
This was in order to reduce both developmental overhead as
well as information latency. By writing software drivers that
interfaced directly with IMU serial interfaces, code was easier
to test and verify, information was acquired faster, and unit
testing could be put in place for continuous integration. It
also reduced the hardware design overhead as it removed the
hardware support for an embedded device. Cobalt transformed
from running over six independent microcontroller programs
last year to only utilizing three simple controllers. Additionally,
all controllers were written utilizing the ROS-Serial interface,
which allows the embedded hardware to communicate with
the rest of the software system as if they were independent
programs. The overall communication architecture for the
electrical system can be observed in Appendix C.

Throughout the year, the electrical team chose to utilize
common designs to eliminate all possible rework. Because
all electrical peripherals communicate through a common
serial-USB interface, a generic adapter board was created for
interface conversion. This board mounts on top of all other
boards for small form factor and high reliability of signal
continuity. The universal adapter shown in Fig. 5 resulted in a
much smaller electronics footprint within the AUV and gave
the mechanical team more freedom in designing the internals
of the AUV. The pneumatics controller board shown in Fig.
4 was one of the first collaborations between the electrical



Palouse RoboSub 6 of 12

Fig. 5: The interface converter board sits aboard the depth
sensor controller and communicates through a mezzanine

connector.

engineers and the mechanical engineers to create a circuit
board that fit into the mechanical design of the AUV.

IMU Selection: One of the most important tasks for the
electrical team was the selection of a reliable IMU to provide
orientation information to the software team with minimal
error. After learning the difficulties of implementing custom
fusion algorithms in previous years, the team decided to
utilize IMUs with integrated fusion algorithms. The BNO055
proved to be a low-cost IMU that still provided reliable and
consistent results. It allowed for easy implementation, as it
has a serial UART communication interface. Two individual
BNO055s were installed in the AUV in opposite locations
to minimize environmental impact as a result of magnetic
transients introduced by the power relays and thruster currents.

C. Mechanical
Overview: With a complete AUV that was built for all

movement tasks, there were still a few places in need of
optimization. As mentioned earlier, the Blue Robotics T200
thrusters with integrated BlueESC did not work at last years
competition resulting in seven dead thrusters. It was urgent
to adapt new enclosures to accommodate new, discrete ESCs.
Additionally, other enclosures were in need of changes to adapt
to new electronics hardware that was being updated. Two main
enclosures and updates were made to Cobalt in order to meet
the need of the competition being the ESC case and Pneumatics
case.

ESC Case: The ESC case started out within a tubular
enclosure, than evolved to a rectangular one due to the number
of connectors required and to improve accessibility to the
ESCs. The connector choice was a hybrid of SUBCONN
In-line and Blue Robotics Bulkhead connectors. Originally
the design was going to only have SUBCONN Bulkhead
connector, but due to the connector being too large for the
case, a hybrid solution meets the requirements and was less
expensive overall. The case itself is designed to hold four Afro
ESCs, requiring two case assemblies to be manufactured. By
doing this an equal weight distribution was maintained and

divided the eight thrusters between two cases. The material
choice was 6061 Aluminum for the outside and cover, ABS
for power distribution and ESC fixtures, and a Buna N O-
ring for the seals of the lid and bulkhead connectors. With
the choice of material having a high machinability, the case
was manufactured on campus at the Cougar Student Machine
Shop. Due to case size and the machines work volume, the
Haas Mini Mill was the ideal choice to machine out the lid
and base for the case. Using MasterCam the case was able to
be machined using dynamic tool paths to reduce machine time.
Also reducing machine time was the choice to place all holes
for connectors on one side, thereby reducing tool and part set
up within the machine. All fixtures within the case were either
laser cut for parts that only required 2D vector files and others
were 3D printed. A view of the ESC case can be seen in Fig.
6.

Fig. 6: An ESC Case

Pneumatics: Air is the primary source for actuation on
Cobalt. Purchasing reliable motors for an underwater applica-
tion can be hard to come by for the specific needs of Cobalt.
Holding six solenoids, the pneumatics case is placed on the
bottom to help balance the AUV. Directing the air to each
of the solenoids through the manifold was a difficult task.
Our manifold acts as the air supply channel and the base
to the enclosure. To minimize the volume of the enclosure
it was ideal to incorporate the manifold as the base to the
enclosure. Initial design considerations incorporated a off the
shelf manifold, but this proved to be a waste of space and
make the assembly much heavier. Since this case will be
accessed for maintenance, a face seal was used with a bolt
pattern to compress the O-ring between the base and lid.
The material choice for this case consisted of 6061 aluminum
for the manifold and Buna-N for O-ring and gasket material.
The most difficult part to manufacturing this assembly is
the manifold. With three different sides that require material
removal, three different set ups were needed. As with the ESC
case, this enclosure used Mastercam’s dynamic tool paths for



Palouse RoboSub 7 of 12

the roughing operations alongside contour and peck drilling
operations for the holes and pockets. The Pneumatics case can
be seen in Fig. 7.

Fig. 7: Pneumatics Case

III. EXPERIMENTAL RESULTS

Simulator Testing

Within the Gazebo simulator, the localization engine, vision
processing, and control system have been verified to perform
as designed. Additionally, the AUV can successfully (and
repeatedly) complete the start gate and buoy tasks.

Orientation Testing

After a number of pool tests with the completed preliminary
AUV, it was noted that Cobalt had a noticeable drift in yaw
over time. A number of precision tests were conducted on
yaw authority, and it was observed that the AUV yaw could
drift up to 180 degrees over the course of a few minutes.
However, pitch, roll, and depth sensing were consistently
correct. After a preliminary investigation, it is believed that
the relays controlling power may be causing a level of static
magnetic distortion that the BNO055 is not able to properly
filter out. This results in the magnetometer reading of the IMU
being inaccurate, which automatically puts the sensor into a
relative orientation mode. During these periods, the sensor
primarily utilizes the gyroscope for determining yaw. The
BNO055, being a relatively in-expensive IMU, has a gyroscope
drift of up to three degrees per second, and it is believed that
this error contributed to the noticed yaw drift. The sensors have
since been moved further away from the power relays, relays
with smaller active current (and thus smaller magnetic fields)
have also been put in place, but the team has not yet had the
opportunity to see if these changes result in corrections to the
IMU orientation readings.

Object Detection
The YOLO framework has shown excellent performance in

both speed and accuracy on example footage collected from
pool tests. However, testing on previous competition footage
has shown that the network fails to generalize to the murky
competition environment. The software team plans to improve
the system by training on existing competition footage and on
new data collected at this year’s competition. Unfortunately,
the object detection system has not been evaluated live during
a pool test as necessary hardware has yet to be integrated.

Fig. 8: Object Detection

IV. ACKNOWLEDGEMENTS

The authors would like to acknowledge the following people
for their assistance with the project this year:

General Team Members
Peter Brennan, Mykhailo Bykhovtsev, Courtney Cadenhead,

Kayl Coulston, Dustin Crossman, Justin Dominiak, Bran-
don Evans, Andrew Feistner, Omar Finol-Evans, Derek Fisk,
Edoardo Franco-Vianelli, Adolfo Garcia, Daniel Goto, Alex
Gu, Alex Hirte-Uhlorn, Gunnar Jensen, Sean Kallaher, Daylan
Kelting, Stasia Kulsa, Edward Kuo, Alex Lanphere, Cal Mer-
riman, Drew Miller, Brian Pecha, Kimi Phan, Zachary Pratt,
Ben Songras, Mark Summers, Courtney Snyder, Lucy Tran,
Johnny Wang, Liudi Yang

Mentors
Dr. Aaron Crandall, Aaron Darnton, Mike Kapus, Dr. Patrick

Pedrow, Alex Read, Dr. Matthew Taylor



Palouse RoboSub 8 of 12

REFERENCES

[1] ”Gazebo”. Gazebosim.org. N.p., 2017. Web. 21 June 2017.
[2] ”Home”, Palouse RoboSub Technical Documentation, 2017. [Online].

Available: http://robosub.eecs.wsu.edu/wiki/. [Accessed: 21- Jun- 2017].
[3] ImageNet, 2016. [Online]. Available: http://image-net.org. [Accessed:

21- Jun- 2017].
[4] J. Redmon, ”Darknet: Open Source Neural Networks in C”, Pjred-

die.com. [Online]. Available: https://pjreddie.com/darknet/. [Accessed:
21- Jun- 2017].

[5] J. Redmon, ”YOLO: Real-Time Object Detection”, Pjreddie.com, 2016.
[Online]. Available: https://pjreddie.com/darknet/yolo/. [Accessed: 21-
Jun- 2017].beginthebibliography10

[6] Leslie Lamport, LATEX: a document preparation system, Addison Wesley,
Massachusetts, 2nd edition, 1994.

[7] ”NVIDIA Jetson Modules and Developer Kits for Embedded
Systems Development”, Nvidia.com, 2017. [Online]. Available:
http://www.nvidia.com/object/embedded-systems-dev-kits-
modules.html. [Accessed: 21- Jun- 2017].

[8] ”The PASCAL Visual Object Classes Homepage”, Host.robots.ox.ac.uk.
[Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/. [Accessed:
21- Jun- 2017].

[9] Robot Operation System, ROS.org. [Online]. Available:
http://www.ros.org/. [Accessed: 20-Jun-2017].

[10] ”TensorFlow”, TensorFlow, 2017. [Online]. Available:
https://www.tensorflow.org/. [Accessed: 21- Jun- 2017].

[11] ”Unity - Game Engine”, Unity, 2017. [Online]. Available:
https://unity3d.com/. [Accessed: 21- Jun- 2017].

[12] zeromq, Distributed Messaging - zeromq. [Online]. Available:
http://zeromq.org/. [Accessed: 20-Jun-2017].



Palouse RoboSub 9 of 12

APPENDIX A
ROS NODE GRAPH



Palouse RoboSub 10 of 12

APPENDIX B
CONTROL SYSTEM DESIGN



Palouse RoboSub 11 of 12

APPENDIX C
ELECTRICAL COMMUNICATIONS DIAGRAM



Palouse RoboSub 12 of 12

APPENDIX D
POWER DIAGRAM


