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Abstract—Cubeception 3 is the 2015-2016 iteration of San Diego 

Robotics 101’s cube-shaped autonomous unmanned underwater 

vehicle (UUV) designed for the 19th International RoboSub 

competition. Cubeception 3 aims to take advantage of its modular 

nature and complete a wide variety of tasks given a limited budget 

and low construction time.  

Notable improvements over previous designs include a 

reworked core design allowing for separate removal of electronics 

and the battery, increased optimization of space, multiple 

specialized Raspberry Pis communicating via Ethernet, and 

expanded navigation capabilities due to the addition of sonar, 

computer vision, and improved algorithms. 

I. INTRODUCTION 

San Diego Robotics 101 is a highly interdisciplinary team 

consisting of members across multiple schools at the university 

and high school level with the purpose of building autonomous 

UUVs. This allows for an exploration of the advantages and 

disadvantages of a cube-shaped underwater vehicle, 

particularly the highly modular nature and quick build time 

afforded by this design. San Diego Robotics 101 is also 

interested in the potential applications of its design to real world 

underwater vehicles. The process of construction involved 

CAD modeling, board prototyping, experimental analysis, 

software testing, simulations, and assembly as well as real-

world trials, all of which were done in an approximately 8 

month build cycle. San Diego Robotics 101 participates in the 

annual AUVSI Foundation RoboSub Competition, which takes 

place in late July and is hosted at the SSC Pacific TRANSDEC 

in San Diego, CA. This competition puts autonomous UUVs 

like Cubeception 3 through a wide variety of missions which 

simulate tasks performed by professional UUVs. These tasks 

range from passing through a gate to touching buoys, locating 

pingers, surfacing within octagons, and handling objects, 

requiring precise maneuverability, mission prioritization 

software, and navigation capabilities. To achieve as many of 

these tasks as possible, San Diego Robotics 101 is divided into 

Mechanical, Electrical, Navigation, Sonar, and Computer 

Vision subteams. 

II. DESIGN OVERVIEW 

A. Design Strategy 

Due to the decreased distance that Cubeception 3 needs to 

travel, more emphasis was placed on capability and 

maneuverability over movement speed in its design. As such, 

Cubeception 3 features a more extensive set of sensors 

including hydrophones for sonar and cameras for computer 

vision. This allows Cubeception 3 to more accurately determine 

its location relative to missions and attempt a wide variety of 

tasks, including passing through gates, touching buoys, 

detecting the pinger, surfacing in the octagon, and moving 

along marked paths. At the beginning of the design cycle of 

Cubeception 3, some consideration was also given towards 

including a separate, smaller robot or a claw for attempting 

tasks involving grabbing objects, although San Diego Robotics 

101 determined that sonar and computer vision were higher 

priority capabilities. Much of San Diego Robotics 101’s time 

was spent researching and simulating sonar and computer 

vision to determine whether they were viable options on 

Cubeception 3, and the tests ultimately concluded that sonar 

was effective in bringing Cubeception 3 within close proximity 

of tasks, while computer vision would allow Cubeception 3 to 

precisely navigate through them, making a sonar and computer 

vision combination the most viable addition to Cubeception 3’s 

design in terms of added capability and point scoring.  

The additional complexity introduced with sonar and 

computer vision capabilities prompted San Diego Robotics 101 

to implement a Raspberry Pi network in the hopes of increasing 

robustness and modularity. Furthermore, significant changes in 

the sealing of the main core were introduced to reduce failure 

points as well as human error. The batteries need to be removed 

relatively often compared to the electronics core, so having a 

separate battery enclosure with a clear lid for the operator to 

visually inspect the seal allows for faster and more reliable 

waterproofing.  

San Diego Robotics 101 also has relatively limited 

manpower and funding compared to other autonomous UUV 

building teams, so many design strategy choices were made 

with that in mind, optimizing capability and reliability with a 

small amount of time and funding. 

 
Fig 1. Full model of Cubeception 3. 

B. Hardware Overview 

Cubeception 3’s core is based off of Cubeception 2’s core, 

with the same screw-fastened lid and portholes for cameras to 

see out of. However, changes in external mounting, a much 

needed upgrade in thrusters, and the addition of a more 
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maintainable battery enclosure make Cubeception 3 a more 

robust and maintainable platform than ever before. 

 
Fig 2. High level overview of Cubeception’s hardware. 

C. Electronics Overview 

Cubeception 3’s electrical hardware has been completely 

redesigned for this year. Each of the many custom circuit boards 

was designed in the EAGLE PCB design suite, then sent out for 

fabrication to a local PCBA manufacturing business. Many 

design considerations were made to effectively meet the 

requirements that were placed on Cubeception 3’s design. The 

final result is an electrical subsystem that efficiently delivers 

power to and carries signals between the different parts of the 

robot. 

D. Software Overview 

Cubeception 3's new distributed computation model 

improves the performance of each individual component and 

promotes high parallelism in its software functionality. The 

cluster of Raspberry Pi 2 computers onboard naturally allows 

many processes to be run at the same time, increasing the 

overall throughput of the system. Individual computers are 

given specialized tasks, creating clear divisions between 

responsibilities. Instead of a “tall” software stack with many 

processes built upon each other, Cubeception 3’s stack is 

“wide”, with many processes sharing information, but able to 

proceed with the loss of any individual machine. 

III. MECHANICAL DESIGN 

A. Thrusters 

Cubeception 3 features a major upgrade in thrusters over 

previous designs. One of the major issues in previous designs 

was the complexity and unreliability of maintaining 24 bilge 

pumps, which broke often and did not provide much thrust. 

When deciding on a new system to replace the previous 24 

bilge pump system, VideoRay thrusters and Blue Robotics T-

100 thrusters were the primary candidates. Both types of 

thrusters required a significantly greater amount of power, 

although the VideoRay thrusters would require too much. 

Therefore, the best option was 8 T-100’s with future plans of 

implementing the VideoRay thrusters as a main source of 

forward thrust. This system requires only a third of the number 

of motors from previous designs, and provides twice the 

amount of thrust, reducing complexity and increasing 

performance significantly. 

B. External Mounting 

The PVC rectangular prism frame was removed from 

Cubeception 3 this year, as it did not provide enough benefits 

to justify its continued use. Although this exposes the core and 

outer components to potential impacts, it also simplifies cable 

management for the robot, allows for easier maintenance of 

the thrusters, and allows the motors to run with less 

interference against the sensors located on the core. Pylons 

will extend from the sides of the robot to house these Blue 

Robotics thrusters, away from the robot and each other.  

 
Fig 3. Pylon mount for Blue Robotics T100 Thruster. 

 

 
Fig 4. Alternate pylon mount for Blue Robotics T100 Thruster. 

C. Cube Core 

As an improvement over Cubeception 2’s core design, 

Cubeception 3’s core features greater ease of access to the 

batteries while improving the robustness of the seal by 

replacing threaded holes with latches. With the introduction of 

a separate battery box outfitted with these latches, the lifespan 

and reliability of the seal has increased greatly.  

The two most appealing options for such an enclosure were 

two smaller enclosures on the side of the core or a large one 
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integrated into the core. Although the two smaller enclosures 

offered a more even distribution of weight, the single integrated 

enclosure was easier to build and required fewer changes from 

Cubeception 2’s core. More space was also available on the 

sides of the core for thruster mounting in the single enclosure 

design. This decision resulted in a trade-off involving slightly 

increased complexity in software for greatly reduced 

complexity in hardware.  

 

Fig 5. Alternate design with two battery enclosures. 

 

 
Fig 6. Cube core with integrated battery box on top. 

IV. ELECTRONICS DESIGN 

A. Motor Driver Design 

To control each of the many outputs that must be driven on 

the vehicle, a motor driver shield board is used. The main IC in 

use to create the pulse-width modulation (PWM) outputs is a 

MAX6696ATE. The board attaches to a Raspberry Pi and 

communicates with it over SPI.  Software can command any of 

the 20 channels to produce a specific PWM signal.  These 

signals are either available as singled-ended drive, as in the 

Raspberry Pi, or opto-isolated drive for use with the motors. 

This helps eliminate potential ground loop problems that can 

occur in large systems. 

 
Fig 7. Layout of motor driver shield. 

B. Power Distribution Board Design 

Efficiently supplying each subsystem with power is done by 

using a custom power distribution board. The design features 

several DC converters to take the 11.1V input from the batteries 

and create 5V, 3.3V, and 1.8V outputs. As the battery voltage 

is subject to dropping largely when multiple motors are in use, 

creating large fluctuations, the board splits power between 

“dirty” and “clean” sides. Dirty power may fluctuate greatly, 

but clean power is regulated to produce a steady voltage, ideal 

for sensitive electronics. 

C. FPGA Shield Board Design 

To address the Raspberry Pi’s lack of high throughput I/O, a 

custom FPGA shield board was designed. An FPGA was found 

to be the most suitable system because of its high 

configurability, making the shield a modular attachment to any 

Raspberry Pi. The card is capable of both input and output, so 

it is critical to both the sensor and sonar subsystems. The 

onboard Xilinx Artix-7 FPGA is programmed in VHDL using 

Xilinx tools and has been found to be more than powerful 

enough for each task to which it is assigned. 

D. Sensor Board Design 

Cubeception 3 features a custom circuit board for polling 

sensor data from its IMU and pressure sensors. The board has a 

total of nine STMicroelectronics LIS3DSH accelerometers, 

nine STMicroelectronics LIS3MDL magnetometers, and four 

InvenSense MPU3300 gyros, exploiting the advantages of 

multiple-sensor systems to great effect. Additionally, there are 



San Diego Robotics 101 4 of 6 

 

analog to digital converters for the Measurement Specialities 

UltraStable 300 pressure transducers on the vehicle. A 

Raspberry Pi is incapable of the I/O throughput necessary to 

read all the sensors in reasonable time, so the FPGA shield card 

is incorporated with the sensor board. The FPGA is able to read 

each sensor while the Raspberry Pi processes the data for other 

subsystems to consume, resulting in a fast and effective sensing 

system. 

E. Sonar Board Design 

To produce sonar pings and listen for their return, 

Cubeception 3 employs 4 Aquarian Audio H1C hydrophones 

and a specialized circuit card. The PCB turns a digital ping 

signal into analog output to drive the hydrophones. Alternately, 

the card can listen to the analog input from the hydrophone and 

convert it to a digital signal for processing. Both pathways are 

bandpass filtered to eliminate undesirable noise introduced by 

the mechanical systems. Switching between modes has been 

made extremely quick to allow each hydrophone to be a sender 

and a receiver, increasing the amount of usable data. 

V. SOFTWARE DESIGN 

A. Sensor Data 

Cubeception 3’s enhanced IMU hardware package has been 

complemented with upgraded computation software. The signal 

from each sensor on the IMU is first filtered and averaged with 

other similar sensors. An unscented Kalman filter is then used 

to fuse the 9-Axis IMU data into an accurate estimation of the 

robot’s orientation and velocity. Cubeception 3 uses 

quaternions to represent its orientation, preventing gimbal lock 

and providing more robust estimation overall. 

For depth estimation, Cubeception 3 uses its two pressure 

sensors together to find the depth at a static point in the middle 

of the vehicle, regardless of orientation. Without such 

compensation for the location of the sensor, the vehicle would 

tend to change depth during pitching or rolling maneuvers, so 

this system is crucial to consistent control. 

B. Sensor Calibration 

Sensor calibration is handled by an interactive program that 

collects all the necessary data and outputs a set of coefficients 

that are used to adjust for small differences between runs. Gyro 

and accelerometer calibration results in a set of offsets 

representing the bias in the sensor’s output. Magnetometer 

calibration is more complicated, producing a correction matrix 

to handle stray magnetic fields and ferromagnetic materials in 

the vicinity of the vehicle. 

C. Networking 

The increased complexity brought on by Cubeception 3’s 

distributed computation model required a robust networking 

system to facilitate communication between the different 

subsystems. To fulfill this requirement, a distributed shared 

memory system (DSM) was created. A DSM server process is 

spawned on all participating computers, managing the 

underlying UDP multicast and Boost shared memory backend. 

Client programs can then connect to this server and request data 

from similar servers running on other machines. Clients may 

also offer information through the server for other machines to 

access.  

The DSM server was designed to gracefully respond to 

unexpected errors. A server instance can detect and notify its 

clients if a remote server fails to send an update within a certain 

timeframe. If the remote server is brought back up, the stream 

of data will automatically be restored, allowing clients to 

proceed normally. 

Processes running on the same machine can also use the 

DSM server as a method of interprocess communication. 

Utilizing this functionality, logging programs can passively 

attach and observe the state of other processes on the robot. 

Clients are given the ability to segment their data, so other 

processes can only to listen to relevant information, allowing 

for quick additions of logging data without needing to modify 

other remote processes. 

The DSM server and client software are written in C++, but 

for convenience, a Python wrapper was also implemented. 

Development for Cubeception 3 can thus leverage the quick 

turnaround of code written in Python and the speed of code 

written in C++. 

 
Fig 8. Cubeception 3 network layout. 

D. Raspberry Pi Imaging 

Cubeception 3’s distributed computing created a new 

challenge for maintainability. Ideally, replacing an individual 

board in the system does not disturb the other boards. 

Additionally, replacements should be fast to set up and not 

require specialized instructions. To meet these needs, a solution 

was devised using both hardware and software methods. Each 

board is initially loaded with the same disk image on a microSD 

card. Specialized GPIO inputs are given to the Raspberry Pi at 

startup. A setup daemon then runs on the Raspberry Pi 

recognizing these inputs and initializing the appropriate 

services and setting a static IP address. Setting the IP address of 

the board based on its role allows minimal changes on the other 

boards to incorporate a replacement. SSH is used if necessary 

to connect to a machine for specific adjustments. 

E. Logging  

A focus on logging was placed on this year’s software design. 

In the past, only processed data was logged, limiting the 

potential uses of the data. Cubeception 3’s logging backend this 

year heavily leverages the distributed shared memory system to 

log all data, raw and processed, to local files and over the 

network. Raw data can be fed back through the processing 

pipeline to test new algorithms and find potential issues. This 

processed data can be plotted in real time for visualization and 
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error identification. 

F. Navigation 

Using the continuously updated data from the inertial and 

pressure sensors onboard, Cubeception 3 maintains precise 

control over all six degrees of freedom. The robot compensates 

for buoyancy, allowing for nearly identical control regardless 

of position or orientation. PID controllers are then utilized to 

meet desired values for linear velocity and angular velocity. 

Commands to set orientation, depth, and relative position based 

on predictive motion profiling are also available. 

A waypoint system based on dead reckoning was developed 

to ease navigation to known locations. A signal can be sent to 

move to an absolute position, where the origin is the starting 

point of a run. To move to a waypoint, the robot creates a 

motion profile defining a smooth curve for its velocity over a 

period of time. In this way, the motion is smooth, minimizing 

jerk. Additionally, different time periods can be specified, 

allowing for quick motions, which is good for tasks such as 

bumping a buoy, making gradual motions, and scanning the 

floor while keeping field elements undisturbed. 

 
Fig 9. Sample velocity over time curves for a motion profile. This demonstrates 
smooth acceleration and deceleration. 

 
Fig 10. Another velocity over time curve for a motion profile. 

To integrate the new physical motor layout on Cubeception 

3, a new set of kinematic algorithms defining the robot’s 

motion were derived. The focus of this work was to enhance 

the predictability of the system without environmental sensor 

intervention. Forces and torques that act on the robot can be 

estimated using knowledge of Cubeception 3’s geometry and 

motor outputs. This precise physical model allows 

Cubeception 3 to balance its thruster outputs to accurately 

predict motions for dead reckoning. 

G. Computer Vision 

Cubeception 3’s vision software utilizes two 5 megapixel 

Raspberry Pi cameras connected to separate Raspberry Pi 2s 

running OpenCV. Cubeception 3’s modular design allows for a 

distinct separation of tasks. Since processing the images in real 

time can be resource intensive, by having the computer vision 

systems separate, the rest of the robot can operate smoothly and 

work asynchronously with the vision system. Cubeception 3 

can also continue to function without the vision system in case 

of an emergency. 

Due to the water’s translucent nature, Cubeception 3 only 

uses computer vision as a short range method to precisely 

maneuver and attempt tasks. It is not used for overall 

navigation. 

A forward-facing camera allows for detection of objects 

directly in front of Cubeception 3. The computer vision 

algorithm on this camera begins by averaging all the pixels to 

determine the hue of the background water in the image. This 

dynamic color-determining algorithm allows for objects in the 

frame to be isolated and categorized. They are put through a 

shape recognition algorithm to determine whether they are 

buoys, gates, or not of interest. From there, a contour-detection 

algorithm and trigonometric calculations yield how far and in 

which direction the objects are so Cubeception 3 can precisely 

maneuver in an appropriate manner. 

The second, downwards-facing camera has a separate 

navigational algorithm. Cubeception 3 isolates the distinct 

orange color of the tape lining the bottom of the pool. It also 

uses its depth sensors to estimate the expected difference 

between the color of the tape compared to the floor of the pool. 

Cubeception 3 does this because the lighting varies at different 

depths and a static tape recognition routine may not properly 

detect the tape in certain situations. 

H. Sonar 

Utilizing the sonar board and FPGA shield board, 

Cubeception 3 is capable of performing both active and passive 

sonar by calculating times from the emitter to an object to each 

of the 3 hydrophones or simply receiving signals from a pinger 

and calculating time differences. 

From there, the received times are used to draw ellipses for 

possible object locations. Target headings and distances can be 

determined from the intersections of these ellipses, and this data 

can be used to supplement navigation between mission 

elements or find pingers. 

VI. EXPERIMENTAL RESULTS 

A. Sonar Simulations 

After experimenting with various two and three linear 

hydrophone array setups in a Matlab simulation, the sonar 

subteam found that arranging an emitter and three consecutive 
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hydrophones in a linear fashion allowed for reasonably accurate 

resolution of target headings and distances. The obtained data 

suggested that sonar is best used as both a supplement to 

navigation and a way to move close enough to mission elements 

that Cubeception 3’s onboard cameras could detect colors and 

features more accurately.  

Initially, the sonar subteam created simulations where the 

simulation would calculate a grid of times for objects placed in 

the field of view, comparing each of those times to program 

input to see if an object could possibly be in that location. 

 
Fig 11. Two hydrophone array comparing received times to a time table 
generated based on expected times. The black curve represents possible 

locations. 

 
Fig 12. Three hydrophone array detecting eight objects placed in an 

approximately circular fashion using time tables. 
 

However, the sonar subteam quickly found that using ellipse 

triangulation with a linear three hydrophone array was more 

effective, as it was possible to pinpoint the heading and distance 

of the object. Used in conjunction with previous data and 

navigation data, this would allow for detection of objects in 3D 

space.  

B. Computer Vision Testing 

The computer vision subteam’s first attempt at an algorithm 

was to detect circular edges. This failed since it was difficult to 

pick up edges in the water based on only light values. The 

algorithm was refined to use hue to distinguish objects, since 

the background water was a relatively uniform color compared 

to buoys and other objects. Many test images and videos from 

last year were tested to make the software perform well under 

various lighting conditions. 

 

 
Fig 13. Computer vision on buoys. 

C. Multisensor Calculations 

Many of the same type of sensor on a single platform has 

several distinct benefits. From a logistical standpoint, having 

several sensors increases the redundancy of the system, as a 

single sensor failing does not bring down the entire processing 

pipeline. Additionally, repairs are not immediately necessary, 

improving the overall uptime. Considering the quality of data 

produced, several sensors used together can produce a better 

signal with some processing. Simple empirical testing saw 

improvements of up to 30% in angular random walk (ARW) for 

a gyro. With this in mind, a cost-effective solution to enhancing 

Cubeception 3’s sensor performance was found. 

 

Sensor Gyro 1 Gyro 2 Average Data 

Drift (degrees) 0.241 0.273 0.197 
Fig 14. Angular drift of stationary InvenSense MPU-9150 gyros over 15 

minute period. 

D. Component Testing 

Before Cubeception 3 is assembled, it goes through a leak 

test, all of the electronics are tested outside of the vehicle to 

ensure compatibility, and the software is unit tested to reduce 

runtime errors. Integrated testing for any potential problems 

will continue until the RoboSub competition begins. 
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