
San Diego Robotics 101 1 of 6

Design and Implementation of Cubeception 3

Donovan Drews, Jason Ganton, Ryan Ganton, Rahul Keyal, Jason Ma, Patrick Paxson, Robert Quitt, and Rahul Salvi

Abstract—Cubeception 3 is the 2015-2016 iteration of San Diego

Robotics 101’s cube-shaped autonomous unmanned underwater

vehicle (UUV) designed for the 19th International RoboSub

competition. Cubeception 3 aims to take advantage of its modular

nature and complete a wide variety of tasks given a limited budget

and low construction time.

Notable improvements over previous designs include a

reworked core design allowing for separate removal of electronics

and the battery, increased optimization of space, multiple

specialized Raspberry Pis communicating via Ethernet, and

expanded navigation capabilities due to the addition of sonar,

computer vision, and improved algorithms.

I. INTRODUCTION

San Diego Robotics 101 is a highly interdisciplinary team

consisting of members across multiple schools at the university

and high school level with the purpose of building autonomous

UUVs. This allows for an exploration of the advantages and

disadvantages of a cube-shaped underwater vehicle,

particularly the highly modular nature and quick build time

afforded by this design. San Diego Robotics 101 is also

interested in the potential applications of its design to real world

underwater vehicles. The process of construction involved

CAD modeling, board prototyping, experimental analysis,

software testing, simulations, and assembly as well as real-

world trials, all of which were done in an approximately 8

month build cycle. San Diego Robotics 101 participates in the

annual AUVSI Foundation RoboSub Competition, which takes

place in late July and is hosted at the SSC Pacific TRANSDEC

in San Diego, CA. This competition puts autonomous UUVs

like Cubeception 3 through a wide variety of missions which

simulate tasks performed by professional UUVs. These tasks

range from passing through a gate to touching buoys, locating

pingers, surfacing within octagons, and handling objects,

requiring precise maneuverability, mission prioritization

software, and navigation capabilities. To achieve as many of

these tasks as possible, San Diego Robotics 101 is divided into

Mechanical, Electrical, Navigation, Sonar, and Computer

Vision subteams.

II. DESIGN OVERVIEW

A. Design Strategy

Due to the decreased distance that Cubeception 3 needs to

travel, more emphasis was placed on capability and

maneuverability over movement speed in its design. As such,

Cubeception 3 features a more extensive set of sensors

including hydrophones for sonar and cameras for computer

vision. This allows Cubeception 3 to more accurately determine

its location relative to missions and attempt a wide variety of

tasks, including passing through gates, touching buoys,

detecting the pinger, surfacing in the octagon, and moving

along marked paths. At the beginning of the design cycle of

Cubeception 3, some consideration was also given towards

including a separate, smaller robot or a claw for attempting

tasks involving grabbing objects, although San Diego Robotics

101 determined that sonar and computer vision were higher

priority capabilities. Much of San Diego Robotics 101’s time

was spent researching and simulating sonar and computer

vision to determine whether they were viable options on

Cubeception 3, and the tests ultimately concluded that sonar

was effective in bringing Cubeception 3 within close proximity

of tasks, while computer vision would allow Cubeception 3 to

precisely navigate through them, making a sonar and computer

vision combination the most viable addition to Cubeception 3’s

design in terms of added capability and point scoring.

The additional complexity introduced with sonar and

computer vision capabilities prompted San Diego Robotics 101

to implement a Raspberry Pi network in the hopes of increasing

robustness and modularity. Furthermore, significant changes in

the sealing of the main core were introduced to reduce failure

points as well as human error. The batteries need to be removed

relatively often compared to the electronics core, so having a

separate battery enclosure with a clear lid for the operator to

visually inspect the seal allows for faster and more reliable

waterproofing.

San Diego Robotics 101 also has relatively limited

manpower and funding compared to other autonomous UUV

building teams, so many design strategy choices were made

with that in mind, optimizing capability and reliability with a

small amount of time and funding.

Fig 1. Full model of Cubeception 3.

B. Hardware Overview

Cubeception 3’s core is based off of Cubeception 2’s core,

with the same screw-fastened lid and portholes for cameras to

see out of. However, changes in external mounting, a much

needed upgrade in thrusters, and the addition of a more

San Diego Robotics 101 2 of 6

maintainable battery enclosure make Cubeception 3 a more

robust and maintainable platform than ever before.

Fig 2. High level overview of Cubeception’s hardware.

C. Electronics Overview

Cubeception 3’s electrical hardware has been completely

redesigned for this year. Each of the many custom circuit boards

was designed in the EAGLE PCB design suite, then sent out for

fabrication to a local PCBA manufacturing business. Many

design considerations were made to effectively meet the

requirements that were placed on Cubeception 3’s design. The

final result is an electrical subsystem that efficiently delivers

power to and carries signals between the different parts of the

robot.

D. Software Overview

Cubeception 3's new distributed computation model

improves the performance of each individual component and

promotes high parallelism in its software functionality. The

cluster of Raspberry Pi 2 computers onboard naturally allows

many processes to be run at the same time, increasing the

overall throughput of the system. Individual computers are

given specialized tasks, creating clear divisions between

responsibilities. Instead of a “tall” software stack with many

processes built upon each other, Cubeception 3’s stack is

“wide”, with many processes sharing information, but able to

proceed with the loss of any individual machine.

III. MECHANICAL DESIGN

A. Thrusters

Cubeception 3 features a major upgrade in thrusters over

previous designs. One of the major issues in previous designs

was the complexity and unreliability of maintaining 24 bilge

pumps, which broke often and did not provide much thrust.

When deciding on a new system to replace the previous 24

bilge pump system, VideoRay thrusters and Blue Robotics T-

100 thrusters were the primary candidates. Both types of

thrusters required a significantly greater amount of power,

although the VideoRay thrusters would require too much.

Therefore, the best option was 8 T-100’s with future plans of

implementing the VideoRay thrusters as a main source of

forward thrust. This system requires only a third of the number

of motors from previous designs, and provides twice the

amount of thrust, reducing complexity and increasing

performance significantly.

B. External Mounting

The PVC rectangular prism frame was removed from

Cubeception 3 this year, as it did not provide enough benefits

to justify its continued use. Although this exposes the core and

outer components to potential impacts, it also simplifies cable

management for the robot, allows for easier maintenance of

the thrusters, and allows the motors to run with less

interference against the sensors located on the core. Pylons

will extend from the sides of the robot to house these Blue

Robotics thrusters, away from the robot and each other.

Fig 3. Pylon mount for Blue Robotics T100 Thruster.

Fig 4. Alternate pylon mount for Blue Robotics T100 Thruster.

C. Cube Core

As an improvement over Cubeception 2’s core design,

Cubeception 3’s core features greater ease of access to the

batteries while improving the robustness of the seal by

replacing threaded holes with latches. With the introduction of

a separate battery box outfitted with these latches, the lifespan

and reliability of the seal has increased greatly.

The two most appealing options for such an enclosure were

two smaller enclosures on the side of the core or a large one

San Diego Robotics 101 3 of 6

integrated into the core. Although the two smaller enclosures

offered a more even distribution of weight, the single integrated

enclosure was easier to build and required fewer changes from

Cubeception 2’s core. More space was also available on the

sides of the core for thruster mounting in the single enclosure

design. This decision resulted in a trade-off involving slightly

increased complexity in software for greatly reduced

complexity in hardware.

Fig 5. Alternate design with two battery enclosures.

Fig 6. Cube core with integrated battery box on top.

IV. ELECTRONICS DESIGN

A. Motor Driver Design

To control each of the many outputs that must be driven on

the vehicle, a motor driver shield board is used. The main IC in

use to create the pulse-width modulation (PWM) outputs is a

MAX6696ATE. The board attaches to a Raspberry Pi and

communicates with it over SPI. Software can command any of

the 20 channels to produce a specific PWM signal. These

signals are either available as singled-ended drive, as in the

Raspberry Pi, or opto-isolated drive for use with the motors.

This helps eliminate potential ground loop problems that can

occur in large systems.

Fig 7. Layout of motor driver shield.

B. Power Distribution Board Design

Efficiently supplying each subsystem with power is done by

using a custom power distribution board. The design features

several DC converters to take the 11.1V input from the batteries

and create 5V, 3.3V, and 1.8V outputs. As the battery voltage

is subject to dropping largely when multiple motors are in use,

creating large fluctuations, the board splits power between

“dirty” and “clean” sides. Dirty power may fluctuate greatly,

but clean power is regulated to produce a steady voltage, ideal

for sensitive electronics.

C. FPGA Shield Board Design

To address the Raspberry Pi’s lack of high throughput I/O, a

custom FPGA shield board was designed. An FPGA was found

to be the most suitable system because of its high

configurability, making the shield a modular attachment to any

Raspberry Pi. The card is capable of both input and output, so

it is critical to both the sensor and sonar subsystems. The

onboard Xilinx Artix-7 FPGA is programmed in VHDL using

Xilinx tools and has been found to be more than powerful

enough for each task to which it is assigned.

D. Sensor Board Design

Cubeception 3 features a custom circuit board for polling

sensor data from its IMU and pressure sensors. The board has a

total of nine STMicroelectronics LIS3DSH accelerometers,

nine STMicroelectronics LIS3MDL magnetometers, and four

InvenSense MPU3300 gyros, exploiting the advantages of

multiple-sensor systems to great effect. Additionally, there are

San Diego Robotics 101 4 of 6

analog to digital converters for the Measurement Specialities

UltraStable 300 pressure transducers on the vehicle. A

Raspberry Pi is incapable of the I/O throughput necessary to

read all the sensors in reasonable time, so the FPGA shield card

is incorporated with the sensor board. The FPGA is able to read

each sensor while the Raspberry Pi processes the data for other

subsystems to consume, resulting in a fast and effective sensing

system.

E. Sonar Board Design

To produce sonar pings and listen for their return,

Cubeception 3 employs 4 Aquarian Audio H1C hydrophones

and a specialized circuit card. The PCB turns a digital ping

signal into analog output to drive the hydrophones. Alternately,

the card can listen to the analog input from the hydrophone and

convert it to a digital signal for processing. Both pathways are

bandpass filtered to eliminate undesirable noise introduced by

the mechanical systems. Switching between modes has been

made extremely quick to allow each hydrophone to be a sender

and a receiver, increasing the amount of usable data.

V. SOFTWARE DESIGN

A. Sensor Data

Cubeception 3’s enhanced IMU hardware package has been

complemented with upgraded computation software. The signal

from each sensor on the IMU is first filtered and averaged with

other similar sensors. An unscented Kalman filter is then used

to fuse the 9-Axis IMU data into an accurate estimation of the

robot’s orientation and velocity. Cubeception 3 uses

quaternions to represent its orientation, preventing gimbal lock

and providing more robust estimation overall.

For depth estimation, Cubeception 3 uses its two pressure

sensors together to find the depth at a static point in the middle

of the vehicle, regardless of orientation. Without such

compensation for the location of the sensor, the vehicle would

tend to change depth during pitching or rolling maneuvers, so

this system is crucial to consistent control.

B. Sensor Calibration

Sensor calibration is handled by an interactive program that

collects all the necessary data and outputs a set of coefficients

that are used to adjust for small differences between runs. Gyro

and accelerometer calibration results in a set of offsets

representing the bias in the sensor’s output. Magnetometer

calibration is more complicated, producing a correction matrix

to handle stray magnetic fields and ferromagnetic materials in

the vicinity of the vehicle.

C. Networking

The increased complexity brought on by Cubeception 3’s

distributed computation model required a robust networking

system to facilitate communication between the different

subsystems. To fulfill this requirement, a distributed shared

memory system (DSM) was created. A DSM server process is

spawned on all participating computers, managing the

underlying UDP multicast and Boost shared memory backend.

Client programs can then connect to this server and request data

from similar servers running on other machines. Clients may

also offer information through the server for other machines to

access.

The DSM server was designed to gracefully respond to

unexpected errors. A server instance can detect and notify its

clients if a remote server fails to send an update within a certain

timeframe. If the remote server is brought back up, the stream

of data will automatically be restored, allowing clients to

proceed normally.

Processes running on the same machine can also use the

DSM server as a method of interprocess communication.

Utilizing this functionality, logging programs can passively

attach and observe the state of other processes on the robot.

Clients are given the ability to segment their data, so other

processes can only to listen to relevant information, allowing

for quick additions of logging data without needing to modify

other remote processes.

The DSM server and client software are written in C++, but

for convenience, a Python wrapper was also implemented.

Development for Cubeception 3 can thus leverage the quick

turnaround of code written in Python and the speed of code

written in C++.

Fig 8. Cubeception 3 network layout.

D. Raspberry Pi Imaging

Cubeception 3’s distributed computing created a new

challenge for maintainability. Ideally, replacing an individual

board in the system does not disturb the other boards.

Additionally, replacements should be fast to set up and not

require specialized instructions. To meet these needs, a solution

was devised using both hardware and software methods. Each

board is initially loaded with the same disk image on a microSD

card. Specialized GPIO inputs are given to the Raspberry Pi at

startup. A setup daemon then runs on the Raspberry Pi

recognizing these inputs and initializing the appropriate

services and setting a static IP address. Setting the IP address of

the board based on its role allows minimal changes on the other

boards to incorporate a replacement. SSH is used if necessary

to connect to a machine for specific adjustments.

E. Logging

A focus on logging was placed on this year’s software design.

In the past, only processed data was logged, limiting the

potential uses of the data. Cubeception 3’s logging backend this

year heavily leverages the distributed shared memory system to

log all data, raw and processed, to local files and over the

network. Raw data can be fed back through the processing

pipeline to test new algorithms and find potential issues. This

processed data can be plotted in real time for visualization and

San Diego Robotics 101 5 of 6

error identification.

F. Navigation

Using the continuously updated data from the inertial and

pressure sensors onboard, Cubeception 3 maintains precise

control over all six degrees of freedom. The robot compensates

for buoyancy, allowing for nearly identical control regardless

of position or orientation. PID controllers are then utilized to

meet desired values for linear velocity and angular velocity.

Commands to set orientation, depth, and relative position based

on predictive motion profiling are also available.

A waypoint system based on dead reckoning was developed

to ease navigation to known locations. A signal can be sent to

move to an absolute position, where the origin is the starting

point of a run. To move to a waypoint, the robot creates a

motion profile defining a smooth curve for its velocity over a

period of time. In this way, the motion is smooth, minimizing

jerk. Additionally, different time periods can be specified,

allowing for quick motions, which is good for tasks such as

bumping a buoy, making gradual motions, and scanning the

floor while keeping field elements undisturbed.

Fig 9. Sample velocity over time curves for a motion profile. This demonstrates
smooth acceleration and deceleration.

Fig 10. Another velocity over time curve for a motion profile.

To integrate the new physical motor layout on Cubeception

3, a new set of kinematic algorithms defining the robot’s

motion were derived. The focus of this work was to enhance

the predictability of the system without environmental sensor

intervention. Forces and torques that act on the robot can be

estimated using knowledge of Cubeception 3’s geometry and

motor outputs. This precise physical model allows

Cubeception 3 to balance its thruster outputs to accurately

predict motions for dead reckoning.

G. Computer Vision

Cubeception 3’s vision software utilizes two 5 megapixel

Raspberry Pi cameras connected to separate Raspberry Pi 2s

running OpenCV. Cubeception 3’s modular design allows for a

distinct separation of tasks. Since processing the images in real

time can be resource intensive, by having the computer vision

systems separate, the rest of the robot can operate smoothly and

work asynchronously with the vision system. Cubeception 3

can also continue to function without the vision system in case

of an emergency.

Due to the water’s translucent nature, Cubeception 3 only

uses computer vision as a short range method to precisely

maneuver and attempt tasks. It is not used for overall

navigation.

A forward-facing camera allows for detection of objects

directly in front of Cubeception 3. The computer vision

algorithm on this camera begins by averaging all the pixels to

determine the hue of the background water in the image. This

dynamic color-determining algorithm allows for objects in the

frame to be isolated and categorized. They are put through a

shape recognition algorithm to determine whether they are

buoys, gates, or not of interest. From there, a contour-detection

algorithm and trigonometric calculations yield how far and in

which direction the objects are so Cubeception 3 can precisely

maneuver in an appropriate manner.

The second, downwards-facing camera has a separate

navigational algorithm. Cubeception 3 isolates the distinct

orange color of the tape lining the bottom of the pool. It also

uses its depth sensors to estimate the expected difference

between the color of the tape compared to the floor of the pool.

Cubeception 3 does this because the lighting varies at different

depths and a static tape recognition routine may not properly

detect the tape in certain situations.

H. Sonar

Utilizing the sonar board and FPGA shield board,

Cubeception 3 is capable of performing both active and passive

sonar by calculating times from the emitter to an object to each

of the 3 hydrophones or simply receiving signals from a pinger

and calculating time differences.

From there, the received times are used to draw ellipses for

possible object locations. Target headings and distances can be

determined from the intersections of these ellipses, and this data

can be used to supplement navigation between mission

elements or find pingers.

VI. EXPERIMENTAL RESULTS

A. Sonar Simulations

After experimenting with various two and three linear

hydrophone array setups in a Matlab simulation, the sonar

subteam found that arranging an emitter and three consecutive

San Diego Robotics 101 6 of 6

hydrophones in a linear fashion allowed for reasonably accurate

resolution of target headings and distances. The obtained data

suggested that sonar is best used as both a supplement to

navigation and a way to move close enough to mission elements

that Cubeception 3’s onboard cameras could detect colors and

features more accurately.

Initially, the sonar subteam created simulations where the

simulation would calculate a grid of times for objects placed in

the field of view, comparing each of those times to program

input to see if an object could possibly be in that location.

Fig 11. Two hydrophone array comparing received times to a time table
generated based on expected times. The black curve represents possible

locations.

Fig 12. Three hydrophone array detecting eight objects placed in an

approximately circular fashion using time tables.

However, the sonar subteam quickly found that using ellipse

triangulation with a linear three hydrophone array was more

effective, as it was possible to pinpoint the heading and distance

of the object. Used in conjunction with previous data and

navigation data, this would allow for detection of objects in 3D

space.

B. Computer Vision Testing

The computer vision subteam’s first attempt at an algorithm

was to detect circular edges. This failed since it was difficult to

pick up edges in the water based on only light values. The

algorithm was refined to use hue to distinguish objects, since

the background water was a relatively uniform color compared

to buoys and other objects. Many test images and videos from

last year were tested to make the software perform well under

various lighting conditions.

Fig 13. Computer vision on buoys.

C. Multisensor Calculations

Many of the same type of sensor on a single platform has

several distinct benefits. From a logistical standpoint, having

several sensors increases the redundancy of the system, as a

single sensor failing does not bring down the entire processing

pipeline. Additionally, repairs are not immediately necessary,

improving the overall uptime. Considering the quality of data

produced, several sensors used together can produce a better

signal with some processing. Simple empirical testing saw

improvements of up to 30% in angular random walk (ARW) for

a gyro. With this in mind, a cost-effective solution to enhancing

Cubeception 3’s sensor performance was found.

Sensor Gyro 1 Gyro 2 Average Data

Drift (degrees) 0.241 0.273 0.197
Fig 14. Angular drift of stationary InvenSense MPU-9150 gyros over 15

minute period.

D. Component Testing

Before Cubeception 3 is assembled, it goes through a leak

test, all of the electronics are tested outside of the vehicle to

ensure compatibility, and the software is unit tested to reduce

runtime errors. Integrated testing for any potential problems

will continue until the RoboSub competition begins.

VII. ACKNOWLEDGEMENTS

San Diego Robotics 101 would like to thank all of its

sponsors for making Cubeception 3 a reality. Solidworks

provided invaluable software which made prototyping,

simulating, and animating models a very streamlined process.

Matlab also provided useful computational software which was

utilized heavily by the sonar development team for simulations.

Vinatech Engineering, Inc. and Apollo Manufacturing Services

were also integral in the creation of Cubeception 3’s electronics

and core.

