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Abstract— In order for the Boulder RoboSub       

team to complete its first-ever tasks beyond the        
start gate, the team has focused on the        
fundamentals of building up a modular software       
stack, incorporating a computationally assistive     
GPU and expanding mechanical designs for      
more complex tasks. By doing so they have made         
themselves a competitive candidate for the 2019       
finals and have built a strong platform for future         
development. 

 

A. COMPETITION STRATEGY 
- We focused on the fundamentals 

 
We have steadily increased our rankings from 35th        
three years ago, to 19th two years ago, to 11th last           
year. It is our goal to get into finals this year, and if             
last year’s scores are a model for the estimated         
number of points we would need to get into finals,          
we would need around 3000/4000 points to have a         
likely chance of getting into finals. We can achieve         
this by maxing out the start gate, path and buoys          
tasks. Our stretch goal to give our team an even          
higher chance of participating in the finals is        
dropping markers through the open slot in the        
droppers task.  
 
If successful, this would be the first year in which          
our team has completed tasks “in the realm,” tasks         
beyond the start gate. We had a strong controls and          
state estimation system that enabled us to score full         
points on the start gate, but our 2018 core         
mechanical, electrical and software systems were      
insufficient to perform the realm tasks. This is        
because of general lack of developed software       
systems, slow bounding box generation speed and       
lack of physical hardware to perform droppers.  
 
Our team made progress on all of these issues this          
year and our vehicle is well capable of maxing out          
the points in start gate, following the path, and         
hitting its target buoy. Integration work remains on        

our torpedos, but our pneumatics enclosure and       
droppers have already been manufactured.  
 
Besides not having a strong state machine and        
perception stack to complete more tasks than the        
start gate, we saw the largest barrier to performing         
the buoys as our bounding box generation speed. To         
resolve this issue we installed a GPU and        
redesigned mechanical and electrical systems as      
necessary to accommodate.  
 
Similarly, in 2018 we did not have the hardware         
capability to attempt the droppers tasks. Our       
mechanical team went about constructing a new       
pneumatics enclosure to effectively fit a powerful       
pneumatics board.  
 
To top off our competition strategy, this year we         
went about constructing and practicing the start       
gate, path and buoys at our campus’ divewell before         
reaching the competition. 

B. VEHICLE DESIGN 

 
Fig 1: Leviathan 2019 CAD Model. Biggest mechanical        
difference from our 2018 vehicle is our upgraded frame. 
 

1. Mechanical 
This year, the team designed a new frame, iterated 
on last year’s electronics rack, and fabricated a new 
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pneumatics enclosure. The frame was sized to 
comfortably accommodate our hydrophones, DVL, 
pneumatics, pressurized air canister, torpedos and 
dropper mounts. Our team does not plan to utilize 
our torpedo or hydrophones mounts, but space has 
been provided. It also ensures our DVL has a large 
enough safety clearance from contact beneath it. 
The frame also features integrated mounts for the 
battery pods, which are closed by a simple fastener 
and make the pods more accessible than last year’s 
design. Pre-drilled holes allow for mounted parts to 
be moved around if needed, and for new parts to 
easily be added. A more rigid and custom 
electronics rack was made to better organize the 
electronics and wiring. The electronics rack was 
designed with the intent to optimize the space inside 
the hull. Lastly, the pneumatics enclosure was 
redesigned to fit the new PCB, which is smaller 
than the previous year’s.  
Last year, the team was extremely limited by the 
frame’s size because they struggled with where to 
mount the different enclosures. The frame was also 
too short in height, and required temporary feet to 
be added so that the DVL did not touch the bottom. 
With the new design, there is more area for parts to 
be mounted and allows for more flexibility. 
However, the frame is slightly heavier which 
requires the motors to run more, and thus drains 
battery life quicker. The team’s old electronics rack 
was made from acrylic, which broke under the 
weight of the boards and computer. A new rack was 
designed and fabricated from aluminum, providing 
more support for these components. Last year, the 
team used a pneumatics enclosure that was the same 
design and size as the hydrophone enclosure. With 
limited space on the old frame, it was a challenge to 
fit both. The enclosure was larger than it needed to 
be, and added a lot of unnecessary weight to the 
sub. The pneumatics enclosure has been redesigned 
this year to fulfill the same purpose but at a much 
lower cost space. 

2. Electrical 
Leviathan features two cameras, one IMU, one 
depth sensor and a DVL. Our first camera is the 
Occam Omni 60 camera, located in the periscope on 
top of our sub. This series of 5 cameras gives our 
autonomy 360 degree vision. Our second camera is 

our downcam, a BlackFly S GigE camera with a 
141 degree angle Theia Lense. The primary role of 
all of these cameras is task localization, or map 
creation, through our perception pipeline. We have 
transform functions set up with the tf package in 
ROS to each one of these cameras. This role for 
these cameras suffices for the tasks we are aiming 
to accomplish because our solution for these tasks 
relies purely on localizing a task. Our task logic is 
often along these lines of once we find the task’s 
pose, we can figure out what poses the AUV needs 
to go to to complete the task.  
 
The reason we adopted this task solving strategy is 
completely derived from the amount of visibility 
our camera setup grants us and our good quality 
state estimation from our sensors. If we were fairly 
restricted on how much we could see, we might opt 
for task solutions, where, once found, we restricted 
our controls such that we did not lose sight of the 
task because we might have trouble finding it again. 
But this is not a problem for us because we can see 
360 degrees horizontally and have a very wide FOV 
beneath us, so we will typically always see the task 
if it is spatially near us. This grants reliability to our 
task solving approaches because we have a high 
probability of seeing a task and localizing it.  
 
The Sparton AHRS-8 IMU gives us absolute 
heading and orientation. We rely on this to solve the 
random start attribute of the start gate task. We do 
not use the acceleration data at all in our state 
estimation, but we do monitor it for a jump in the 
buoy task, indicating a successful hit.  
 
Our  depth sensor and DVL are the reason we can 
solve tasks by simply going to poses without visual 
feedback because these sensors are so accurate. Our 
depth sensor is a BlueRobotics Bar30 
High-Resolution depth sensor, giving us depth 
accuracy to 2mm. Our Nortek DVL gives us 
velocity accuracy of ±0.1 cm/s. Combined with the 
magnetometer onboard the AHRS, these sensors 
allow us to reach the poses we request with high 
accuracy and reliability. 
 
We also made many changes to our custom 
electronics board this year, because we needed to 
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reduce the space claim to make room for a GPU. 
Last year we had four boards, which we have 
reduced to two boards this year. Our merge/ESC 
power board has two functions, which were split 
into two boards last year and were very easy to 
condense into one board this year. The first task is 
to assure that the batteries are being used evenly, 
which is accomplished by limiting the amount of 
current drawn from each battery based on each of 
their voltages. The output of the merge circuit is a 
single battery voltage of about 14V-17V. The 
second half of this board is the ESC power outputs. 
This half has power outputs to our eight ESCs, each 
with a high side kill MOSFET to cut power to the 
ESCs when the kill switch is flipped. 
 
Our second board has our power conversion circuits 
and our embedded system, and it connects to the 
merge board to receive a battery voltage input. The 
conversion side of this board contains five circuits 
to output 48V, 19V, 12V, and 9V, all of which are 
required by the off the shelf electronics within the 
sub. The embedded system is a new addition to the 
sub, which was added to remove many of the USB 
peripherals from the inside of the sub. For this year, 
the goal of the embedded system was to remove the 
need for the Pololu PWM controller and multiple 
Arduinos which controlled the depth sensor and 
pneumatics actuators. Removing these USB 
peripherals will free up more space for additional 
electronics within the sub by removing excess 
boards and the USB hub which we currently need to 
connect to everything. 
 

3. Software 
  Our software team’s approach this year was to 
focus on the fundamentals of using our hardware 
effectively for maximizing our points in the three 
tasks: start gate, path and buoys. This meant 
effectively using all of our sensors and building up 
our software stack with the following things: 
modular state machine, fast perception pipeline, and 
an accurate simulator. If we achieved all of these, 
we would be in a fantastic position for the 2020 
competition in attempting the more complex tasks 
such as hydrophones, droppers, torpedos and fine 
object manipulation.  

 
This approach built on our controls and state 
estimation tuning that we had worked on 
considerably last year. We were happy with what 
we had so no novel changes were made to our 
control system or state estimation this year.  
 
Our software team continued solving the 2018 tasks 
after the competition in order to debug, validate and 
most importantly practice writing software for the 
2019 tasks. We had never built and validated a state 
machine and perception stack before. These were 
simply not a priority if our controls and state 
estimation were not tuned in well. This was the first 
year our team was going to attempt tasks beyond 
the start gate, so we were in fairly uncharted 
territory and, in terms of our software stacks, we 
were starting from scratch.  
 

3.1 UUV Simulator 
 
In fitting with most software design paradigms, the 
first thing we built this year was a testing 
environment. We used the UUV simulator plugin 
for Gazebo which is designed for simulating 
hydrodynamics. Gazebo has a plugin for interfacing 
with ROS which made it fit very well with our 
existing state estimation and controls code. We put 
the CAD model of Leviathan, our divewell at CU, 
Transdec, the start gate, the dice, the path and the 
roulette table in the simulation and began 
development. Once the 2019 tasks came out, we 
added the vampire buoys as well.  
 

 
Fig 2: Leviathan about to slay a vampire on the triangular           
buoy inside our UUV simulator.  
 

3.2 SMACH State Machine 
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The state machine architecture we chose was       
SMACH. We had attempted Smach development      
last year, but never made significant progress.       
Smach is natively python and because of python’s        
development speed and its ROS support we chose to         
write all of our state machine code in python.  
 
Our state machine consists of one outer smach state         
machine containing several other inner smach state       
machines. The inner state machines are the tasks,        
whose states are the steps to complete the task. The          
outer state machine manages the transitions between       
tasks.. At a high level, this architecture has been         
effective in structuring the methodology of how we        
solve tasks and can chain together tasks in a         
mission. 
 

3.3 Nodeleted Perception Stack 
 
We at least knew of Smach last year, but in terms of            
computer vision we were starting from scratch.       
Knowing that our state machine code was going to         
rely heavily on our ability to solve task poses, and          
that no matter how well we wrote the classical cv          
pose generation algorithms there were always going       
to be rare cases of lighting or some other form of           
noise that was going to give us a bad pose solve. So,            
we needed to generate poses very quickly so that we          
could effectively filter out these bad pose solves        
through averaging and outlier rejection.  
 
To speed up our perception stack, we went with a          
software paradigm that every piece of code that        
touched an image was written in C++ and        
nodeleted. Nodelets are a feature of ROS that allow         
for skipping the serialization of interprocess      
messaging, allowing for much higher messaging      
speeds between processes. From our camera drivers       
to our ML algorithms to our pose generation code,         
images are passed by reference instead of by value.  
 
The process we always follow in our pose        
generation code is: receive bounding box, employ       
some classical technique to extract key points,       
solvepnp the pose of the task. All of the difficulty in           
pose generation is cleverly utilizing classical      
techniques to find the 4 points in an image that can           
be put through an opencv solvepnp function call to         

localize the pose. The basic idea behind solvepnp is         
that if we know where 4 points of an object in an            
image are, we know how far away those points         
should be from each other in reality and we know          
the distortion coefficients of the camera, we can        
reverse solve for the pose of the object. We         
currently employ this pipeline with localizing the       
gate, path and buoys and look forward to        
experimenting with it on droppers and torpedos. 
  

3.4  YOLO Neural Network Platform 
 
Our ML platform for class recognition and 
bounding box generation is YOLO. Our primary use 
for YOLO in our perception pipeline is to lessen the 
problem for our classical cv algorithms. When our 
classical cv algorithms receive an image with the 
YOLO bounding box, they crop out the bounding 
box and reduce the problem space to just the 
bounding box. This effectively brings our problem 
to a known state where we can generally find the 
shape and color we are looking for.  
 
The other practical use we have had for YOLO is 
recognizing our target vampire in the Slay 
Vampires task. When we are orbiting the triangular 
buoy we keep orbiting until we get indication from 
YOLO that the only vampire we are seeing is our 
target vampire. Upon which, we slay the vampire.  
 

C. Experimental Results 
Software testing was done both in our UUV 
simulator and at our divewell located on the CU 
Boulder campus. The UUV simulator showed its 
greatest value in debugging mission level code in 
our state machine and controls code for specialized 
movements. As expected of most simulators, it was 
not as useful for debugging computer vision code 
because it could not reproduce the real world 
problem to the precision required by classical cv 
techniques. YOLO did however, when trained with 
simulated and real world data, successfully 
generalize to both real world and simulated data, 
making the UUV simulator a valuable tool for 
debugging controls algorithms utilizing bounding 
box recognition.  
 



University of Colorado Boulder Robosub 5 of 5 
 

Testing at the CU divewell occured weekly for two 
hours. This was the first year in which we 
constructed tasks to practice with. This ended up 
being instrumental in our ability to debug 
perception code and train YOLO models. Not only 
were we able to get example images to test classical 
code, but also, we were able to test the entire 
pipeline from camera driver to perception to 
autonomy code to motor control. We started off the 
2018 fall by constructing the start gate, dice and the 
roulette table. In the spring we constructed the 
3-legged start gate, path marker and both buoys. 
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