
University of Colorado Boulder Robosub 1 of 5

Entering The Realm

Nathan Henault, Lauren Strand, Michael Marquez and Luke Barbier

Abstract— In order for the Boulder RoboSub

team to complete its first-ever tasks beyond the
start gate, the team has focused on the
fundamentals of building up a modular software
stack, incorporating a computationally assistive
GPU and expanding mechanical designs for
more complex tasks. By doing so they have made
themselves a competitive candidate for the 2019
finals and have built a strong platform for future
development.

A. COMPETITION STRATEGY
- We focused on the fundamentals

We have steadily increased our rankings from 35th
three years ago, to 19th two years ago, to 11th last
year. It is our goal to get into finals this year, and if
last year’s scores are a model for the estimated
number of points we would need to get into finals,
we would need around 3000/4000 points to have a
likely chance of getting into finals. We can achieve
this by maxing out the start gate, path and buoys
tasks. Our stretch goal to give our team an even
higher chance of participating in the finals is
dropping markers through the open slot in the
droppers task.

If successful, this would be the first year in which
our team has completed tasks “in the realm,” tasks
beyond the start gate. We had a strong controls and
state estimation system that enabled us to score full
points on the start gate, but our 2018 core
mechanical, electrical and software systems were
insufficient to perform the realm tasks. This is
because of general lack of developed software
systems, slow bounding box generation speed and
lack of physical hardware to perform droppers.

Our team made progress on all of these issues this
year and our vehicle is well capable of maxing out
the points in start gate, following the path, and
hitting its target buoy. Integration work remains on

our torpedos, but our pneumatics enclosure and
droppers have already been manufactured.

Besides not having a strong state machine and
perception stack to complete more tasks than the
start gate, we saw the largest barrier to performing
the buoys as our bounding box generation speed. To
resolve this issue we installed a GPU and
redesigned mechanical and electrical systems as
necessary to accommodate.

Similarly, in 2018 we did not have the hardware
capability to attempt the droppers tasks. Our
mechanical team went about constructing a new
pneumatics enclosure to effectively fit a powerful
pneumatics board.

To top off our competition strategy, this year we
went about constructing and practicing the start
gate, path and buoys at our campus’ divewell before
reaching the competition.

B. VEHICLE DESIGN

Fig 1: Leviathan 2019 CAD Model. Biggest mechanical
difference from our 2018 vehicle is our upgraded frame.

1. Mechanical
This year, the team designed a new frame, iterated
on last year’s electronics rack, and fabricated a new

University of Colorado Boulder Robosub 2 of 5

pneumatics enclosure. The frame was sized to
comfortably accommodate our hydrophones, DVL,
pneumatics, pressurized air canister, torpedos and
dropper mounts. Our team does not plan to utilize
our torpedo or hydrophones mounts, but space has
been provided. It also ensures our DVL has a large
enough safety clearance from contact beneath it.
The frame also features integrated mounts for the
battery pods, which are closed by a simple fastener
and make the pods more accessible than last year’s
design. Pre-drilled holes allow for mounted parts to
be moved around if needed, and for new parts to
easily be added. A more rigid and custom
electronics rack was made to better organize the
electronics and wiring. The electronics rack was
designed with the intent to optimize the space inside
the hull. Lastly, the pneumatics enclosure was
redesigned to fit the new PCB, which is smaller
than the previous year’s.
Last year, the team was extremely limited by the
frame’s size because they struggled with where to
mount the different enclosures. The frame was also
too short in height, and required temporary feet to
be added so that the DVL did not touch the bottom.
With the new design, there is more area for parts to
be mounted and allows for more flexibility.
However, the frame is slightly heavier which
requires the motors to run more, and thus drains
battery life quicker. The team’s old electronics rack
was made from acrylic, which broke under the
weight of the boards and computer. A new rack was
designed and fabricated from aluminum, providing
more support for these components. Last year, the
team used a pneumatics enclosure that was the same
design and size as the hydrophone enclosure. With
limited space on the old frame, it was a challenge to
fit both. The enclosure was larger than it needed to
be, and added a lot of unnecessary weight to the
sub. The pneumatics enclosure has been redesigned
this year to fulfill the same purpose but at a much
lower cost space.

2. Electrical
Leviathan features two cameras, one IMU, one
depth sensor and a DVL. Our first camera is the
Occam Omni 60 camera, located in the periscope on
top of our sub. This series of 5 cameras gives our
autonomy 360 degree vision. Our second camera is

our downcam, a BlackFly S GigE camera with a
141 degree angle Theia Lense. The primary role of
all of these cameras is task localization, or map
creation, through our perception pipeline. We have
transform functions set up with the tf package in
ROS to each one of these cameras. This role for
these cameras suffices for the tasks we are aiming
to accomplish because our solution for these tasks
relies purely on localizing a task. Our task logic is
often along these lines of once we find the task’s
pose, we can figure out what poses the AUV needs
to go to to complete the task.

The reason we adopted this task solving strategy is
completely derived from the amount of visibility
our camera setup grants us and our good quality
state estimation from our sensors. If we were fairly
restricted on how much we could see, we might opt
for task solutions, where, once found, we restricted
our controls such that we did not lose sight of the
task because we might have trouble finding it again.
But this is not a problem for us because we can see
360 degrees horizontally and have a very wide FOV
beneath us, so we will typically always see the task
if it is spatially near us. This grants reliability to our
task solving approaches because we have a high
probability of seeing a task and localizing it.

The Sparton AHRS-8 IMU gives us absolute
heading and orientation. We rely on this to solve the
random start attribute of the start gate task. We do
not use the acceleration data at all in our state
estimation, but we do monitor it for a jump in the
buoy task, indicating a successful hit.

Our depth sensor and DVL are the reason we can
solve tasks by simply going to poses without visual
feedback because these sensors are so accurate. Our
depth sensor is a BlueRobotics Bar30
High-Resolution depth sensor, giving us depth
accuracy to 2mm. Our Nortek DVL gives us
velocity accuracy of ±0.1 cm/s. Combined with the
magnetometer onboard the AHRS, these sensors
allow us to reach the poses we request with high
accuracy and reliability.

We also made many changes to our custom
electronics board this year, because we needed to

University of Colorado Boulder Robosub 3 of 5

reduce the space claim to make room for a GPU.
Last year we had four boards, which we have
reduced to two boards this year. Our merge/ESC
power board has two functions, which were split
into two boards last year and were very easy to
condense into one board this year. The first task is
to assure that the batteries are being used evenly,
which is accomplished by limiting the amount of
current drawn from each battery based on each of
their voltages. The output of the merge circuit is a
single battery voltage of about 14V-17V. The
second half of this board is the ESC power outputs.
This half has power outputs to our eight ESCs, each
with a high side kill MOSFET to cut power to the
ESCs when the kill switch is flipped.

Our second board has our power conversion circuits
and our embedded system, and it connects to the
merge board to receive a battery voltage input. The
conversion side of this board contains five circuits
to output 48V, 19V, 12V, and 9V, all of which are
required by the off the shelf electronics within the
sub. The embedded system is a new addition to the
sub, which was added to remove many of the USB
peripherals from the inside of the sub. For this year,
the goal of the embedded system was to remove the
need for the Pololu PWM controller and multiple
Arduinos which controlled the depth sensor and
pneumatics actuators. Removing these USB
peripherals will free up more space for additional
electronics within the sub by removing excess
boards and the USB hub which we currently need to
connect to everything.

3. Software
 Our software team’s approach this year was to
focus on the fundamentals of using our hardware
effectively for maximizing our points in the three
tasks: start gate, path and buoys. This meant
effectively using all of our sensors and building up
our software stack with the following things:
modular state machine, fast perception pipeline, and
an accurate simulator. If we achieved all of these,
we would be in a fantastic position for the 2020
competition in attempting the more complex tasks
such as hydrophones, droppers, torpedos and fine
object manipulation.

This approach built on our controls and state
estimation tuning that we had worked on
considerably last year. We were happy with what
we had so no novel changes were made to our
control system or state estimation this year.

Our software team continued solving the 2018 tasks
after the competition in order to debug, validate and
most importantly practice writing software for the
2019 tasks. We had never built and validated a state
machine and perception stack before. These were
simply not a priority if our controls and state
estimation were not tuned in well. This was the first
year our team was going to attempt tasks beyond
the start gate, so we were in fairly uncharted
territory and, in terms of our software stacks, we
were starting from scratch.

3.1 UUV Simulator

In fitting with most software design paradigms, the
first thing we built this year was a testing
environment. We used the UUV simulator plugin
for Gazebo which is designed for simulating
hydrodynamics. Gazebo has a plugin for interfacing
with ROS which made it fit very well with our
existing state estimation and controls code. We put
the CAD model of Leviathan, our divewell at CU,
Transdec, the start gate, the dice, the path and the
roulette table in the simulation and began
development. Once the 2019 tasks came out, we
added the vampire buoys as well.

Fig 2: Leviathan about to slay a vampire on the triangular
buoy inside our UUV simulator.

3.2 SMACH State Machine

University of Colorado Boulder Robosub 4 of 5

The state machine architecture we chose was
SMACH. We had attempted Smach development
last year, but never made significant progress.
Smach is natively python and because of python’s
development speed and its ROS support we chose to
write all of our state machine code in python.

Our state machine consists of one outer smach state
machine containing several other inner smach state
machines. The inner state machines are the tasks,
whose states are the steps to complete the task. The
outer state machine manages the transitions between
tasks.. At a high level, this architecture has been
effective in structuring the methodology of how we
solve tasks and can chain together tasks in a
mission.

3.3 Nodeleted Perception Stack

We at least knew of Smach last year, but in terms of
computer vision we were starting from scratch.
Knowing that our state machine code was going to
rely heavily on our ability to solve task poses, and
that no matter how well we wrote the classical cv
pose generation algorithms there were always going
to be rare cases of lighting or some other form of
noise that was going to give us a bad pose solve. So,
we needed to generate poses very quickly so that we
could effectively filter out these bad pose solves
through averaging and outlier rejection.

To speed up our perception stack, we went with a
software paradigm that every piece of code that
touched an image was written in C++ and
nodeleted. Nodelets are a feature of ROS that allow
for skipping the serialization of interprocess
messaging, allowing for much higher messaging
speeds between processes. From our camera drivers
to our ML algorithms to our pose generation code,
images are passed by reference instead of by value.

The process we always follow in our pose
generation code is: receive bounding box, employ
some classical technique to extract key points,
solvepnp the pose of the task. All of the difficulty in
pose generation is cleverly utilizing classical
techniques to find the 4 points in an image that can
be put through an opencv solvepnp function call to

localize the pose. The basic idea behind solvepnp is
that if we know where 4 points of an object in an
image are, we know how far away those points
should be from each other in reality and we know
the distortion coefficients of the camera, we can
reverse solve for the pose of the object. We
currently employ this pipeline with localizing the
gate, path and buoys and look forward to
experimenting with it on droppers and torpedos.

3.4 YOLO Neural Network Platform

Our ML platform for class recognition and
bounding box generation is YOLO. Our primary use
for YOLO in our perception pipeline is to lessen the
problem for our classical cv algorithms. When our
classical cv algorithms receive an image with the
YOLO bounding box, they crop out the bounding
box and reduce the problem space to just the
bounding box. This effectively brings our problem
to a known state where we can generally find the
shape and color we are looking for.

The other practical use we have had for YOLO is
recognizing our target vampire in the Slay
Vampires task. When we are orbiting the triangular
buoy we keep orbiting until we get indication from
YOLO that the only vampire we are seeing is our
target vampire. Upon which, we slay the vampire.

C. Experimental Results
Software testing was done both in our UUV
simulator and at our divewell located on the CU
Boulder campus. The UUV simulator showed its
greatest value in debugging mission level code in
our state machine and controls code for specialized
movements. As expected of most simulators, it was
not as useful for debugging computer vision code
because it could not reproduce the real world
problem to the precision required by classical cv
techniques. YOLO did however, when trained with
simulated and real world data, successfully
generalize to both real world and simulated data,
making the UUV simulator a valuable tool for
debugging controls algorithms utilizing bounding
box recognition.

University of Colorado Boulder Robosub 5 of 5

Testing at the CU divewell occured weekly for two
hours. This was the first year in which we
constructed tasks to practice with. This ended up
being instrumental in our ability to debug
perception code and train YOLO models. Not only
were we able to get example images to test classical
code, but also, we were able to test the entire
pipeline from camera driver to perception to
autonomy code to motor control. We started off the
2018 fall by constructing the start gate, dice and the
roulette table. In the spring we constructed the
3-legged start gate, path marker and both buoys.

D. Acknowledgments
The team would like to thank the CU Computer
Science Dept for providing the space in which the
club resides. In addition, the team would like to
thank the EEF Committee and the COHRINT lab
for the funding they have provided. The team would
also like to thank the ITLL machine shop for the
machining work they have done for the club.

Scanned with CamScanner

Scanned with CamScanner

