
Triton Robosub 1

Triton Robosub Technical Design Report 2019: ​Ra
University of California, San Diego

Ezequiel Ansaldi, Christopher Delgado, Donovan Drews, Steven Gov, Johnathan Huynh, Richard Lai, Patrick
Paxson, Kevin Resler, Alex Rivera, Dan Truong, Phillip Vally, Peter Xu

Abstract - The Triton Robosub team,
representing the University of California,
San Diego, is competing in Robosub for the
first time in 2019. In this paper, we will
discuss our competition strategy, vehicle
design, testing strategies and results,
acknowledgements of our supporters, and
references. This information will give an
overview capabilities of our robotic
submarine and how we overcame issues
related to hardware and software aspects.

I. Competition Strategy

Our newly formed organization was
keen to compete in its first tournament. Due
primarily to a lack of experience in the field
of underwater robotics, we chose to buy the
BlueROV2 stock model rather than build a
robot from scratch, and use it as a starting
point for our autonomous control and custom
design choices.

The competition provided many
objectives that we would have to complete.
To ensure that we obtain the maximum points
possible with our time, hardware, and
experience limitations, we narrowed down the
objective and decided on focusing on passing
through the gate and identifying images on
the buoys. By setting these goals, we had a
clear picture of the additional components and
code that would be required. Since this was
our first year, we did not want to attempt the
other challenges because we wanted to focus
on and guarantee success in the initial tasks.

Our main goal for this year was to
establish our team and learn as much as we
can, which we believe we succeeded at.

II. Vehicle Design

i. Hardware

The BlueROV2 acted as the base of
our vehicle and was modified for the purposes
of the competition. This stock model provided
us with a frame, motors, waterproof
enclosures, and computer/control electronics.
We chose it as the basis for our vehicle this
year rather than constructing one from scratch
because this is our first year competing in
Robosub. By modifying a robot that has
already gone through the design challenges of
buoyancy, freedom of movement, and
waterproofing, we are able to get a jumpstart
on tackling the competition challenges, and
get comfortable with underwater robotics
before proceeding with designing our own
vehicle.

Figure 1: ​Side view of the full robot. The Blue Robotics
frame can be seen below the custom chamber.

The frame is composed of seven
pieces of black HDPE (high-density
polyethylene) and two aluminum enclosure

Triton Robosub 2

cradles secured together. This structure fits
the enclosures, motors, fairings, and subsea
buoyancy foam in fixed positions, while
allowing flexibility with the mounting of 200g
lead ballast weights and four lumen subsea
lights. This flexibility increases adaptability,
as the lights can be positioned to their optimal
angles depending on use case and numerous
weights can be added at various positions to
stabilize the robot and reach neutral buoyancy
in various water conditions.

There are six Blue Robotics T200
thrusters used to move the vehicle through the
water. Four of them are positioned at 45
degree angles in each corner of the frame in
order to get more precise movement in the
xy-planes, and in order to move up and down
in the water, the last two motors are
positioned in the center of the robot facing up
in the z-axis. One design challenge faced as a
result of our custom third enclosure
(discussed below) is the effectiveness of the
motors. In order to combat the changed
weight distribution introduced by the
enclosure, we added lead weights and
decreased the speed of the motors for
autonomous navigation.

Two enclosures were provided in the
stock model specifically for the battery and
electronics. These are 3” and 4” acrylic tubes,
respectively, enclosed with aluminum end
caps and secured directly to the frame with
aluminum enclosure clamps. These end caps
are fitted with cable penetrators nuts and a
vent plug. The former is fitted with O-rings
and the cables are secured with epoxy to
allow cables to be run into the enclosures
while keeping the enclosure waterproof. The
latter is similar, but functions to vent pressure
within the tubes as well as to pressure test the
enclosure. The electronics enclosure also
includes a dome end cap to account for a
forward facing camera.

The primary electronics in this stock

robot include: Pixhawk Autopilot, Raspberry
Pi 3 Model B Computer, Fathom-X Tether
Interface Board, Low-Light HD USB Camera,
and Basic Electronic Speed Controllers. These
electronics enable us to pilot the robot using
Blue Robotics software called
QGroundControl, a wired tether to another
Fathom-X Tether Interface Board on the
surface, and a game controller. This tether
interface was very useful for driving the robot
for testing, but since the competition requires
the robot to be autonomous, it presented a
challenge in software, discussed further in
II.ii.

Figure 2: ​Top view of the completed robot. The top of
the robot is the custom chamber, containing our TX2,
Ethernet switch, Raspberry Pis, and more.

The creative aspect of our physical
robot was the positioning of the largest
container. The two options that were
contemplated was the bottom and top of the
BlueROV2. The bottom orientation would
require that we build a frame to hold the
enclosure so that it would be able to sit on a
flat surface. Ultimately, we chose to place the
enclosure on top of the sub. Using 3D-printed
parts, the top enclosure rests on the middle
one and is latched to the frame. Part of the
motivation for choosing the top was because
the large container will provide a large
buoyant force upwards due to its large
diameter. This would prevent the resulting

Triton Robosub 3

buoyant force from flipping our sub upside
down.

Figure 3: ​Front view of the sub. The swivel camera in
the middle enclosure and the Logitech C270 in the top
enclosure can be seen here, which are used for
computer vision.

A 4S 14.8V lithium-ion battery is used
to power our AUV. We chose the
custom-made battery pack from BlueRobotics
because it fit the specifications of the
components in the BlueROV2 and it perfectly
fit in the BlueROV2 3’’ battery enclosure.
The top enclosure houses two Raspberry Pis,
a Nvidia Jetson TX2, an Ethernet switch, a
USB camera, buck converters, and a reed
switch. To power these components, a power
cable is connected to a terminal block in the
middle enclosure and fed to the outside
through a cable penetrator and into the third
container through another cable penetrator. A
16-gauge wire used for the power cable to
ensure that enough amps can be safely used.
14.8V is transferred through this power cable
and then split to power each individual
component in the top enclosure. To power
each component, a voltage converter (Buck
converter) is needed to convert the 14.8V to
each component’s respective operating
voltage.

A reed switch is used as the
kill-switch. Using a Raspberry Pi, a reed
switch is attached to the inside surface of the
top enclosure [4]. A magnet is attached to the
outside surface of the top enclosure to “arm”
the kill-switch. Once the magnet is pulled, the
reed switch will send a signal to turn off the
thrusters.

ii. Software

Ra’s movement is derived from the
ArduPilot project. The ArduSub autopilot
software on the BlueROV2 provides robot
mobility through controllers. In order to
utilize this provided autopilot for vehicle
autonomy, the MAVLink protocol is used to
communicate between onboard components to
operate the motors. ArduPilot software
provided Ra with the ability to move in all
axes, and necessary functions were accessed
through the use of pymavlink, a Python
implementation of the MAVLink protocol.
Once the basic mobility functions were
established for Ra, these needed to be
incorporated with the state machine for Ra’s
autonomy.

The decision-making aspect of the
robot utilized a state machine, written in
Python, that took inputs from the other
systems in the robot like computer vision and
the IMUs in the PixHawk, and outputted the
instructions to motor control as well as the
next state. This model allowed us to have a
breadth of complex decision-making in
relatively simple terms, since each state only
needed to check one or two things. It was also
quite easy to integrate using the network
interfacing tool ZMQ, which allowed us to
send and receive signals to and from other
boards.

Computer vision was the most
complicated algorithm in our software
hierarchy. We initially attempted to use a

Triton Robosub 4

static color detection algorithm in order to
find the orange markers on the gate and
comparison with bottom angle markers in the
pool, but after experimentation and examining
competition footage from last year, we
determined that it would not be robust enough
to successfully detect orange in a pool as
murky and dark as the TRANSDEC pool. So,
we turned to machine learning and
Tensorflow [1] in order to detect objects
underwater like the gate. We used the Object
Detection API [2] as the basis of our training,
and since the Nvidia TX2 was a GPU that
allowed us to use CUDA, we optimized the
neural network generated by our training with
TensorRT [3]. Essentially, this allowed us to
run the program on the TX2 across GPU cores
instead of CPU cores, vastly increasing our
speed, which was crucial for real-time
processing. We trained it
on a vast set of data gathered from our team
members swimming through our prop gate
with a GoPro, hand-labeling the gate in
thousands of images. This grueling task
yielded a very large training set that we used
to train our network.

Overall, these individual components
worked together to turn our originally
manually-driven stock BlueROV2 into a fully
autonomous sub capable of underwater object
detection and autonomous movement. Given
this foundation, we are excited to apply our
newfound knowledge to next year’s
competition and make our software even
better.

III. Experimental Results

After construction of the robot was
completed, we moved on to pressure tests and
water tests. The initial pressure tests we
performed resulted in failure as there were
cracks in the container that would have led
water into the electronics container. Our
second set of pressure tests also resulted in

failure but we were unable to identify the
source of the leak on land. We resolved this
issue by doing a water test, because we
suspected that our vacuum pump may have
been the source. From this we found that
water was leaking from a defective motor
wire. After replacing the motor, our robot was
waterproof and we moved to autonomous
control tests.

The first autonomous control tests
yielded some disastrous results because some
of the motors needed to be electronically
reversed for the robot to move normally. After
reversing the motors, we were able to control
the robot’s movement in all planes, but faced
an issue with our third chamber affecting our
movement and buoyancy. We made several
adjustments to the chamber in order to
properly balance it, and attached lead weights
to combat the buoyancy issue. We also
lowered the throttle of our autonomous
movements so that the extra frontal surface
area of the chamber did not significantly
affect our performance.

To test the computer vision we set up
a test course in a pool to simulate the
competition setting. We put the robot into the
pool, and essentially simulated the
competition, gathering some information from
debugging tools we built in as well as the
unused swivel camera that came with the
BlueROV2.

We are excited to make even more
improvements through experimentation in the
coming weeks, and look forward to measuring
our performance at the competition!

IV. Acknowledgements

Triton Robosub greatly appreciated
the support of our faculty advisors: Ryan
Kastner in the CSE department and Curt
Schurgers in the ECE department. Their
mentorship aided our decision making and

Triton Robosub 5

kept our focus on getting results. We would
also like to thank Eric Lo and Nathan for their
help and advice throughout the year. We
would not have a robot without them. A
special thanks to the Kastner Research Group
for providing the base BlueROV2 and a
cutting edge laboratory space where we could
build and test Ra.

We would also like to thank the
Scripps Institute of Oceanography and the
Canyonview Athletic Center for allowing us
to perform tests in various pools on campus.
The data gathered from these tests have
proved invaluable to us.

Financial support in our first year was
tremendous. Thanks to the generous support
of UCSD benefactors like the Triton Research
& Experiential Learning Scholars organizers,
the Jacobs School of Engineering IDEA
Center, as well as the support of local
companies like Northrop Grumman,
ConnectTech Inc, Qualcomm, and BrainCorp
Inc, we were able to fund our robot’s
construction, as well as various competition
fees. We look forward to using more of our
donations and sponsorships in the future for
even better innovative design.

V. References
[1] ​Tensorflow, “tensorflow/models,” ​GitHub​.
[Online]. Available:
https://github.com/tensorflow/models/tree/ma
ster/research/object_detection. [Accessed:
09-Jul-2019].

[2] “Introduction and Use - Tensorflow
Object Detection API Tutorial,” ​Python
Programming Tutorials​. [Online]. Available:
https://pythonprogramming.net/introduction-u
se-tensorflow-object-detection-api-tutorial/.
[Accessed: 02-Jul-2019].

[3] “Deep Learning SDK Documentation,”
NVIDIA Developer Documentation​. [Online].

Available:
https://docs.nvidia.com/deeplearning/sdk/tens
orrt-developer-guide/index.html. [Accessed:
08-Jul-2019].

[4] “GPIO,” ​GPIO - Raspberry Pi
Documentation​. [Online]. Available:
https://www.raspberrypi.org/documentation/u
sage/gpio/. [Accessed: 09-Jul-2019].

[5] “BlueROV2 Assembly,” ​Blue Robotics.
[Online]. Available: https://bluerobotics.com/
learn/bluerov2-assembly/. [Accessed:
09-Jul-2019].

Triton Robosub 6

Appendix A: Expectations

Subjective Measures

Task Maximum
Points

Expected
Points

Points
Scored

Utility of Team Website 50 40

Technical Merit (from Technical Design Report) 150 150

Written Style (from Technical Design Report) 50 50

Capability for Autonomous Behavior (Static Judging) 100 50

Creativity in System Design (Static Judging) 100 70

Team Uniform (Static Judging) 10 10

Team Video 50 50

Pre-Qualifying Video 100 0

Discretionary Points (Static Judging) 40 40

Total 650 460

Performance Measures

Task Maximum
Points

Expected
Points

Points
Scored

Weight See Table 1 90

Marker/Torpedo over weight or size by <10% Minus 500 per
marker

0

Gate: Pass Through 100 100

Gate: Maintain Fixed Heading 150 150

Gate: Coin Flip 300 300

Gate: Pass through 60% section 200 0

Triton Robosub 7

Gate: Pass through 40% section 400 400

Gate: Style +100 (8x
max)

100

Collect Pickup: Crucifix, Garlic 400 per object 0

Follow the “Path” (2 total) 100 per
segment

0

Slay Vampires: Any, Called 300, 600 0

Drop Garlic: Open, Closed 700, 1000 per
marker

(2+pickup)

0

Drop Garlic: Move Arm 400 0

Stake Through Heart: Open Oval, Cover Oval, Sm
Heart

800, 1000,
1200 per

torpedo (2
max)

0

Stake Through Heart: Move Lever 400 0

Stake Through Heart Bonus: Cover Oval, Sm Heart 500 0

Expose to Sunlight: Surface in Area 1000 0

Expose to Sunlight: Surface with Object 400 per object 0

Expose to Sunlight: Open Coffin 400 0

Expose to Sunlight: Drop Pickup 200 per object
(crucifix only)

0

Random Pinger First Task 500 0

Random Pinger Second Task 1500 0

Inter-Vehicle Communication 1000 0

Finish the mission with T minutes (whole + fractional) T✕1000 0

Total 1140

Triton Robosub 8

Appendix B: Component Specifications
I. Hardware

Component Vendor Model/Type Specs Cost

BlueROV2 Blue Robotics Stock - 457 x 338 x
254 mm
- 10-11 kg

$3,663.00

Enclosure with Endcaps Blue Robotics Watertight
Enclosure

- 6 in.
diameter
- 1 Acrylic
Endcap
- 1 Aluminum
Endcap w/ 5
holes

$494.19

Thrusters Blue Robotics T200 - 3800
rev/min max

Included in
BlueROV2,
$169.00 ea

Motor Control Blue Robotics Basic ESC - 30 A Max,
7-26 V
- 400 Hz

Included in
BlueROV2,
$25.00 ea

Camera Logitech C270 $21.40

Camera Blue Robotics Low-Light
HD

-Installed on a
swivel

Included in
BlueROV2,
$118.00

Battery (x2) Blue Robotics Lithium Ion - 14.8V, 18Ah $501.61
($250 ea)

Buck Converter Amazon - 8A 5-40V to
1.2-36V
- 5A 4-38V to
1.25-36V

$29.13

Reed Switch Amazon - Glass
Length:14mm,
- Glass
Diameter:2m
m
- Total
Length: 45mm

$5.58

Triton Robosub 9

Penetrator Blue Robotics M10 -4-5mm cable
width
-8mm cable
width
-Blanks
-Vent plug

$4.00 ea

Tether Cable Blue Robotics Fathom ROV
tether

-100m length Included in
BlueROV2,
$500.00

Vision Board NVIDIA Jetson TX2 - 87 x 50 mm
- 8 GB 128-bit
LPDDR4
- NVIDIA
Pascal™
architecture
with 256
NVIDIA
CUDA cores
- Dual-core
Denver 2
64-bit CPU
and quad-core
ARM A57
complex

$479.00

Vision Daughter Board ConnectTech Orbitty - 87x50mm
- 1x GbE,
USB 3.0, USB
2.0, 1x HDMI,
1x MicroSD,
2x 3.3V
UART, I2C,
4x GPIO
- +9V to +14V
DC Nominal
(+19V Peak)

$174.00

Motor Control Board Raspberry Pi
(through Blue
Robotics)

Model 3B - 5V/2.5A DC
power input
- 1GB
LPDDR2
SDRAM
- Broadcom

Included in
BlueROV2,
$35.00

State Machine Board Raspberry Pi Model 3B $35.00

Triton Robosub 10

BCM2837B0,
Cortex-A53
(ARMv8)
64-bit SoC @
1.4GHz

II. Software

Control Unit Language(s) Tools/Libraries

Computer Vision Python LabelImg
Tensorflow
Object Detection API

State Machine Python ZMQ

Motor Control Python ArduPilot

III. Team Information

Team Size 12 people

HW/SW expertise ratio 4:7 (4 hardware, 7 software, 1 social media manager)

Testing time: simulation 80 hours

Testing time: in-water 40 hours

