
Illinois Autonomous Underwater Vehicle Design and Implementation

of Enigma

Shubhankar Agarwal, Adrian Brandemuehl, Saleh Ahmed, Raimi Shah, Mohammad Saad,
Tanay Vardhan, Krishna Dusad, Akshay Mishra, Wale Adeyinka, Harshit Agarwal, Jay Patel,

Volodmyr Kindratenko and David Forsyth.

Abstract - IllinoisAUV is a research oriented
team comprising 11 driven undergraduate stu-
dents drawn from diverse backgrounds and dis-
ciplines, who aim to explore the applications
of cutting-edge technology and engineering in
building an autonomous underwater vehicle.
AUVs have immense uses for industry, gov-
ernment, and science. This year, IllinoisAUV
has designed, programmed and built, Enigma.
With the goal of bringing and adapting a lot of
the cutting edge research in Machine Learning
and related fields to AUVs. With Enigma, the
focus was on setting the right foundations such
as using GPU computing for future work using
Neural Networks. The team has also focused
on keeping the costs as low as possible and in-
stead rely on software to do many of the tasks
that have traditionally been performed using
costly specialized hardware, such as using cam-
eras for localization, mapping and odometry
instead of using DVL.

1 Introduction

Vehicles capable of understanding their environment
and navigating without explicit human input are a
major value to humanity. Recent progress in Ma-
chine Learning, Computer Vision, and Robotics has
led to big advancements in the field of autonomous
cars. This, however has not been the case for the ad-
vancement of other types of autonomous vehicles such
as those that travel in air and water. Autonomous un-
derwater vehicles (AUVs) are a subset of these vehi-
cles which have great value in industry with uses such
as exploration of oceans, surveying sea floors for the
oil and gas sector, mine exploration for the military,
and in research for discovering and studying under-
water life.

RoboSub, organized by the Association for Un-
manned Vehicle Systems International (AUVSI)
Foundation and Office of Naval Research, is a compe-
tition for students that simulates tasks and challenges
that an AUV would face in the real world. Every year

Figure 1: Enigma

a course is set with challenges that an underwater ve-
hicle must overcome autonomously.

IllinoisAUV is a team of students from various de-
partments at the University of Illinois at Urbana-
Champaign. With the goal to adapt and incorpo-
rate both cutting edge research in various fields, and
allowing interested students the opportunity to ex-
periment, learn and research; IllinoisAUV has built
Enigma, an AUV which uses a variety of new tech-
niques to complete tasks involving vision, navigation,
acoustic sensing, planning and object manipulation.

2 Design Overview

Enigma is Illinois AUV’s first ever autonomous un-
derwater vehicle(Figure 1). The main structure was
purchased from Bluerobotics and has been modified
for Robosub Competition. Enigma has six degrees of
freedom and been gone through rigorous testing to
get precise movement. Enigma was developed with a
strong focus towards software which involves: elimi-
nating the need of DVL, improving mapping(using
SLAM [1] [3]) and localizing software frameworks, re-
inforcement learning [4] for battery optimized move-
ment and using generative neural networks for devel-
oping better simulation softwares. Being a first year

Illinois AUV Page 2

(a) Bomb Dropper

(b) Torpedo (c) Inside view of the torpedo

Figure 2: Bomb dropper and Torpedo

team, a lot of time was spent in developing the me-
chanical and electrical systems. Initial investment in
mechanics and electronics helped us build a solid base
for reliable and maintainable software.

Bluerobotics Bluerov 1 was chosen as the main
structure for two main reasons: Our team was mostly
experienced with software and bluerov 1 helped as ac-
celerate our development cycle by 7 to 8 months. Al-
though we bought the frame, additional mechanical
changes were made to alter the bluerov1 for the Ro-
bosub competition. One way we did this was through
the use of 3D printing which helped us expedite me-
chanical development and to experiment and imple-
ment various mechanical subparts.

One of the main considerations in the initial designs
of Engima was to have a GPU onboard for faster im-
age processing and running real-time machine learn-
ing algorithms. With 256 Cuda cores and the size of a
Raspberry Pi2, the NVIDIA Jetson TX1 was a clear
choice. The computing capabilties provided by Jet-
son TX1 opened many doors for us and the small size
of Jetson TX1 also meant that we would not have to
make major mechanical changes.

With major improvements in Artificial Intelligence
in the past decade, this project has never been more
interesting. Major investment was put into research-
ing the robustness and application of modern Artifi-
cial Intelligence systems in underwater robotics.

Enigma’s sensor suite consists of 3x SJ4000 Action
Sports Cameras(2x front and 1 downward), Bluer-
obotics Bar30 High-Resolution Pressure Sensors and
3x Teledyne Reason TC 4013 Hydrophones.

3 Mechanical

3.1 Mechanical Structure

Enigma’s mechanics were mainly developed on top of
the Bluerov 1 frame. A second 4” wide pressure hull
was added on top of the main pressure hull to hold the
Enigma’s compute. 3D printed custom brackets were
designed and manufactured to hold the pressure hull

on top of the first pressure hull. Due the constraints
imposed by Bluerov 1 structure we decided to develop
completely mechanical bomb droppers and torpedos.
This drastically decreased the space requirements for
torpedos and bomb droppers. Current implementa-
tions of bomb droppers and toredos operate without
any external energy source.

3.2 Bomb Dropper

The bomb dropper is two parts, assembled like scis-
sors(Figure 2a). On the top is a locking mechanism
which opens and closes using the elasticity of the 3D
print filament to our advantage. To lock, simply close
the dropper until two pieces are latched together. To
unlock, the latching piece must be pulled up before
the two pieces can be pulled apart. The bottom of
the dropper is where the bomb is held, using a spring-
loaded nail to hold the bomb in place. The spring-
loaded nail is also what pushes the two pieces apart
when the latching piece is pulled up.

3.3 Torpedos

The torpedo is composed of many parts. The main
parts are the shell of the torpedo, the input gear, the
output gear, and the propeller fan(all three can be
seen in Figure 2c). The shell of the torpedo is the case
for the torpedo, inside of which the “motor” is held.
The torpedo is set up like a wind-up toy. A rubber
band is used to wind up the input gear, which, when
unwinding, causes the output gear to turn. The out-
put gear is attached to the same axle as the propeller
fan, causing the whole torpedo to move through the
water. The torpedo is wound up beforehand, and until
it is ready to be fired it is suspended by locking the
propeller fan in place. When ready to fire, the tor-
pedo is pushed off the lock, allowing the propeller fan
to rotate and move the torpedo forward. A complete
implementation of Torpedo can be seen in Figure 2b.

2

Illinois AUV Page 3

Figure 3: Electrical Block Diagram

4 Electrical Design

The design of the 2016-2017 AUV was created with
ease of use and consistency in mind. The design is
based on Bluerobotics BlueRov. The abundance of
open source software and support brought us to con-
clude that the BlueROV suited our needs. It was fur-
ther modified to make it suitable for our application.
Block daigram of the design can be seen in Figure 3

4.1 BlueROV

The BlueROV kit consists of a frame, 6 BlueRobotics
underwater T200 thrusters, and a 12” long, 4” wide
watertight enclosure. The kit is easily assembled, and
the simple electronics setup means that the BlueROV
is fast to get from the box into the water.

4.2 Electronics

All electronics systems were COTS. From the Jet-
son TX1 to the motor speed controllers, we selected
COTS parts for simplicity of implementation. Design-
ing our own electronics would have been expensive
and time consuming, since low volume manufacturing
has low turnaround and high price. These limitations
led us to use off the shelf hardware to meet our needs.

4.2.1 Power

The AUV has two 4S LiPo batteries, one for actua-
tion and one for computing. The actuation battery
first passes through a 3D Robotics power module for
current and voltage measurement, as well as 5V regu-
lation for the PIXHAWK autopilot. The Jetson TX1

is 12-19V tolerant, so no extra power conversion is
needed for it.

4.2.2 Actuation

Six BlueRobotics T200 underwater thrusters provided
motion control for our AUV. The T200 thrusters are
brushless motors that are specifically designed for use
underwater. Their inbuilt waterproofing and low pri-
cepoint make them ideal for use on a small AUV such
as our own. T200 thrusters are controlled through
BlueESC’s, which are the BlueRobotics rebranding
of the Afro Electronic Speed Controllers. The motor
outputs are controlled through a Pulse Width Mod-
ulated (PWM) signal generated from the PIXHAWK
autopilot.

4.2.3 PIXHAWK Autopilot

The PIXHAWK Autopilot is a flight controller ini-
tially designed for fixed wing Micro Air Vehicles
(MAV) and multirotors. Though it is not specifically
designed for underwater motion, open source projects
have added the required functionality for AUV and
ROV control. The PIXHAWK features a 3 axis ac-
celerometer, 3 axis gyroscope, and 3 axis magnetome-
ter. The PIXHAWK communicates with a companion
computer over a UART connection via the MAVLink
communication protocol.

4.2.4 Jetson TX1

The Jetson TX1(Figure 4b) is a compute module
from Nvidia that features a powerful and low power
CPU/GPU combo. Featuring 256 CUDA cores and
quad-core 64-bit ARM processor, the compactness

3

Illinois AUV Page 4

(a) Software Design

(b) Jetson TX1

Figure 4: Software Design and Jetson TX1

of the Jetson makes it ideal for our vision process-
ing application. Typically, Jetson TX1 modules are
placed on large (6.7”x6.75”) development board that
is meant to take advantage of every possible applica-
tion of the Jetson. Rather than attempt to use the de-
velopment board, we opted to use one of the many car-
rier boards available, the ConnectTech Orbitty carrier
board. The Orbitty board (3.425”x1.968”) is small
enough to fit into one of our watertight enclosures (4”
diameter).

5 Software

Our software stack(Figure 4a) runs aboard the Jet-
son TX1, communicating with the Pixhawk PX4 stack
via MavLink serial packets. Our software stack uti-
lizes three main components: Robot Operating Sys-
tem (or ROS), our computer vision frameworks, and
our navigation system.

5.1 Robot Operating System

Robot Operating System (ROS) is a centralized com-
munication system for robot software. It utilizes a
publisher / subscriber model to transmit data and
commands between different programs. For example,
one program (say, an image processing framework)
can publish whether it has seen a buoy in the water,
and different navigation programs can pull from that
and move our submarine in such a way to avoid or
pick up the buoys.

We utilize several ROS packages in order to com-
municate and process the large amount of data being
generated by our inputs. These ROS packages include
MAVROS, usb cam, image proc, stereo image proc,
as well as our own custom ROS packages, including a
buoy detector and an image publisher.

5.1.1 MAVROS

To interface with each of the submarine’s engines, we
utilize MAVROS onboard our TX1, an open-source
ROS package which can send and receive MAVLink
messages over serial communication to a PixHawk de-
vice. The PixHawk, as described in the Hardware
section, has multiple sensors onboard, including an
IMU and temperature sensor. It also contains a flight
management unit which we can utilize to move our
submarine. It becomes essential to interface with it
at a higher level, and send commands / receive data
to autonomously navigate our submarine.

To this end, MAVROS supports all of these func-
tions and more. We can easily pull data by sub-
scribing to any of the /mavros/ ROS topics, and
control the individual thrusters by publishing to the
/mavros/rc/override topic. To control the submarine,
we first utilized an Xbox controller to see how the sub-
marine reacted to different values on each of the RC
channels. The RC channels are expressed as an array
of values corresponding to a direction, with thresholds
determining button presses, and ranges correspond-
ing to how much we want to push the thrusters in
a specific direction. Utilizing that, we can send the

4

Illinois AUV Page 5

(a) Stereo Camera Implementation (b) An example of Disparity Image

Figure 5: Stereo Camera and Software Implementation

Figure 6: Stereo camera calibration

approximate speed and direction we want to go to, a
task more specifically covered in section 1.4: Naviga-
tion.

One important thing to note is that MAVROS
here is specially configured for a submarine oper-
ation. Originally, MAVROS is utilized on quad-
copters/UAVs, and so has different topics optimized
for that, including /global position/gps fix. On our
submarine, we disable these topics as to not utilize
any extra memory. We keep MAVROS as submarine
operation is relatively similar to quadcopter opera-
tion, just in different modes (water versus air).

5.1.2 usb cam, image proc and
stereo image proc

Our three cameras are connected to the Jetson via
USB, and so require a USB driver to send images
to the board. This driver takes shape in the form
of usb cam, which publishes to a /camera/image raw
topic. These images are raw sensor values - they have
not been transformed into real image values yet. This
is where the image proc and stereo image proc pack-
ages come in. image proc takes in a raw image and
transforms it into a color image, while also remov-
ing any distortions that the camera may add to the

image. (See the section on calibration for more de-
tails about the distortion removal.) image proc also
outputs greyscale and compressed images for faster
transport and use.

stereo image proc, on the other hand, does the
work of image proc, but with two cameras instead
of one. stereo image proc takes in raw camera feeds,
along with a calibration file, and undistorts/rectifies
the camera streams, along with calculating a disparity
map. This disparity map acts as a depth map of sorts,
and allows us to build up a small point cloud of the
view right in front of us. For more details about stereo
calibration, see the section under Computer Vision.

5.2 Computer Vision

Cameras are cheap and powerful ways to obtain a rep-
resentation of the environment around us. As com-
puter vision algorithms have progressed in the last
decade, the ability to put it on a robot and run in
real-time have become achievable. We use OpenCV
for our vision, mainly to provide an estimation of our
position and velocity, as well as an object detector to
determine where to go next.

5.2.1 Calibration

Calibration here refers to undistorting an image such
that straight lines in the real world are straight lines
in the image. An example of this can be found in
the Figure 6. We see that the checkerboard’s straight
lines are not straight in an image from the cam-
era. Knowing the intrinsic and extrinsic parameters
of the camera, however, we can undistort and rec-
tify the image such that straight lines are straight.
Most of the undistortion takes place in image proc
and stereo image proc.

To obtain the intrinsic and extrinsic calibration, we
utilize the ROS camera calibrator node. This takes in
the raw image streams with a checkerboard pattern
in the feed. We move the checkerboard around at
different angles to get an estimate of the focal length,
camera center, skew (otherwise called intrinsic param-
eters) and the distortion coefficients (extrinsic param-

5

Illinois AUV Page 6

eters). The calibration routines picks up the squares
on the checkerboard and computes the parameters
to undistort the actual image such that the lines are
straight. It is essential to therefore move the checker-
board at as many angles and places in the image to
obtain a good estimate of the parameters.

5.2.2 Stereo

We utilize two SJ4000 action cameras(red cameras
in Figure 5a) in order to provide a stereo estimate
using stereo image proc. Stereo refers to estimating a
depth map based on two cameras. Similarly to human
vision, using 2 cameras allows us to estimate how far
away things are, or at least help us associate a depth
value to objects. This is useful for the submarine for
multiple reasons, as we can build up a point cloud
for the environment around us, as well as do object
detection and collision avoidance.

Our cameras are mounted with a 29cm baseline be-
tween the cameras, allowing for a 83.5 degree horizon-
tal field of view and an error of 12.3 cm at a 5 meter
distance, according to [1]. For underwater operation,
where we typically cannot see more than a few me-
ters anyways, this is a very good result. An example
of the output of the depth estimation algorithm can
be seen in Figure 5b.

The actual estimation itself is done in
stereo image proc, This ROS package combines
two image streams, takes in a calibration file, and
outputs a disparity map like in Figure 2. It also
outputs a point cloud estimate relative to the current
pose (position + orientation) of the robot. Utilizing
these two pieces of information, we can infer dis-
tances, as well as associate pixels in our cameras with
a depth value for collision avoidance.

5.2.3 Localization and Odometry

Odometry refers to the estimation of speed values
based on sensor inputs. For example, a car odome-
ter estimates the number of miles traveled on a car
based on the number of times the wheels have spun.
Similarly to that, we use an odometry system called
Semi-Direct Visual Odometry (SVO) [2] to provide ve-
locity and speed estimates. Unlike most VO/SLAM
systems, SVO utilizes a downward-facing camera in
order to estimate the position and velocity. SVO is
a semi-direct method, meaning it minimizes photo-
metric error of several already extracted features be-
tween frames to obtain a more precise depth estimate.
Since it relies on both feature-based and direct meth-
ods, SVO is able to handle high-frequency textures
and fast movements. In addition, it runs much faster
than real-time, allowing us to continually re-estimate
the pose with the smallest change. Finally, the open-
source version can be integrated with ROS, allowing
us to quickly and easily bring together the estimation
into our system.

Figure 7: Trajectory generation from SVO

Figure 8: Hydrosystems Lab Testing Facility

SVO [2] was originally designed (and tested with)
quadcopters, and we soon realized that we can adapt
it to submarine operation as well. Based on previ-
ous videos and experiences, we saw that the floor
of the pool we were testing was advantageous to a
downward-facing camera, as we could extract many
features off of it. As a result, we put a third SJ4000 ac-
tion camera on the bottom of the submarine, allowing
us to extract pose estimates using SVO. Since SVO
is fairly light computationally (running well above 30
frames per second) adding it to our system does not
put too much of a burden on our hardware. An ex-
ample of trajectory generation:7

6 Acknowledgement

Illinois AUV would like to specially thank our fac-
ulty advisors and mentors, Professor David Forsyth
and Professor Volodmyr Kindratenko, who has given
us direction and financial support through our many
hours of development and testing. Additional thanks
goes out to Van Te Chow Hydrosystems Lab at Uni-
versity of Illinois for providing pool and other testing
facility(8). Finally, we would like to thank our spon-
sors: Microsoft, Nvidia, UIUC SORF, ACM UIUC
and Wittenstein SE.

6

Illinois AUV Page 7

References

[1] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM:
Large-scale direct monocular SLAM. In Euro-
pean Conference on Computer Vision (ECCV),
September 2014.

[2] Christian Forster, Matia Pizzoli, and Davide
Scaramuzza. Svo: Fast semi-direct monocular vi-
sual odometry. In IEEE International Conference
on Robotics and Automation. IEEE, 2014.

[3] Raul Mur-Artal, Jose Maria Martinez Montiel,
and Juan D Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE Transac-
tions on Robotics, 2015.

[4] Junku Yuh. Learning control for underwater
robotic vehicles. IEEE Control Systems, 14(2),
1994.

7

	Introduction
	Design Overview
	Mechanical
	Mechanical Structure
	Bomb Dropper
	Torpedos

	Electrical Design
	BlueROV
	Electronics
	Power
	Actuation
	PIXHAWK Autopilot
	Jetson TX1

	Software
	Robot Operating System
	MAVROS
	usb_cam, image_proc and stereo_image_proc

	Computer Vision
	Calibration
	Stereo
	Localization and Odometry

	Acknowledgement

