
The University ofMaryland, College Park

Abstract

TortugaV is an autonomous underwater vehicle (AUV) designed and constructed by stu-
dents from the University of Maryland, College Park as part of a student government sponsored
club. It is designed primarily to compete at AUVSI and ONR’s RoboSub competition, however,
real world applications for AUVs such as sea floor mapping, mine detection, and underwater
scientific research continuously motivate further development of similar vehicles. TortugaV is
capable of serving as a development and testing platform for underwater actuation, underwa-
ter machine vision, sensor fusion algorithms, and six degrees of freedom control algorithms.
TortugaV retains many of the previous design concepts of TortugaIV while improving signifi-
cantly on the dynamics, sensing capabilities, and reliability. Advances in the software system
provide expanded modularity, more sophisticated estimation algorithms, a greatly improved
AI and invaluable testing and tuning software.

Authors: Christopher Carlsen, Nicholas Limparis, Donald Gregorich, Eliot Rudnick-Cohen, Stephen Chris-
tian, Katherine McBryan, Johnny Xian Yi Mao, Justin Kanga, Joshua Pugh, Rajath Shetty

Faculty Advisors: Dr. David L. Akin, Dr. Nuno Martins, Ph.D.

Introduction

Tortuga V is an Autonomous Underwater
Vehicle (AUV) designed and built by
Robotics@Maryland (R@M) an undergraduate
student organization based at the University of
Maryland, College Park. The original Tortuga was
created in 2006 to compete in the Tenth Annual
International AUV Competition hosted by AUVSI
and ONR. The purpose of the competition is to
develop AUV technology by challenging students
to construct submersibles capable of completing
underwater tasks that simulate possible missions.
Since it’s inception, the competition has gotten
more difficult; introducing manipulation tasks,
sonar, and more complex vision tasks. Just as the
competition has improved, so has Tortuga. In the
current configuration, Tortuga V is now capable of
navigating relative to active sonar pingers, complex
visual assessment, controlled underwater motion,
and the manipulation of objects.

Figure 1: Tortuga V

Team Overview
Building an autonomous underwater vehicle is

a very complex task and requires students from all
disciplines to work together. Sub-teams allow the
very large complex task of making an autonomous
vehicle to be broken down into simpler and more

Robotics@Maryland 1



manageable components. Theses sub-teams, based
on disciplines, are: mechanical, electrical, AI,
vision, and controls. A core leadership, made up of
the more experienced and dedicated students, lead
the sub-teams and discuss system issues. A systems
engineer and program manager help to keep the
project on schedule and manage the financing.

One of they key parts of each sub-team is to
train new recruits. At the start of the new year,
recruiting begins and a new batch of interested
students are introduced to Tortuga. While many
students are very interested, most lack the required
technical knowledge that can only come from
working on an autonomous underwater vehicle.
Each sub-team has a series of introductory projects
which teach the students about the discipline and
the specifics of Tortuga. These introductory
projects are designed to allow new students to go
from the basics to working on Tortuga at their own
pace.

Figure 2: R@M at Transdec 2013

TortugaV Overview
Tortuga has one main electronics hull and a

number of smaller pressure hulls. The main hull
is made of acrylic which allows the team to see
inside the vehicle. This is important as it allows
all the indicators on all the electronics boards to be
read and used for testing. The acrylic hull allows
the vehicle to operate at a maximum depth of 30
feet. At this depth, Tortuga can maintain position
and orientation for over two hours without needing
to recharge. This allows the vehicle to complete
an entire day at competition without needing to

charge the batteries. The batteries are located in the
main acrylic hull along with the computer, a 2009
mac mini, a stack of custom boards and sensors.
The other pressure hulls include: a pneumatics
housing to control all the mechanisms on board, a
magnetometer boom to move the sensors away from
the computer and thrusters, and a Doppler Velocity
Log (DVL), and two camera housings.

Sensor Quantity
9DOF Memsense IMU 2
Depth Sensor 1
Digital Compass 1
Doppler Velocity Log (DVL) 1
Firewire Camera 2

Table 1: Navigational Sensors

1 Mechanical System
The mechanical design of Tortugas frame

values modularity and ease of access. Constructed
out of 80/20 Inc. T-slot aluminum beams the
relatively simple design allows for a variety of
actuators and hulls to be added and removed as
required for mission completion. In addition the
accessibility of the design allows easy access to all
of the major components.

1.1 Main Hull
The main hull houses the processor and power

supply for the robot. It consists of an acrylic tube
sealed with 2 aluminum end caps. The acrylic
tubing allows for visual inspection of the o-ring
seals and debug displays on the electronics. One
of the aluminum end caps acts as the mounting
surface for the various SubConn wet-mate electrical
connectors. The other end cap has been machined
to give the maximum exposed surface area for
heat dissipation. The heat dissipating end cap is
mounted on 80/20 frame where it is latched onto
the robot. These latches allow us to quickly remove
the hull from the robot if necessary. Finally, to
allow activation of the robot when sealed there
are a number of magnetically activated switches

Robotics@Maryland 2



positioned close to the inside surface of the hull for
easy activation and deactivation of the robot.

1.2 Camera Hulls

For completion of visual tasks the robot uses
two cameras; one downward facing and one
forward facing. These 2 cameras are in individual
custom hulls designed by the team which allow
them to be adjusted independently.

Figure 3: Camera Housing

1.3 Pneumatics

For the actuation of manipulators Tortuga
utilizes a CO2 pneumatic system. The core of this
system is the pneumatics hull. This hull can support
up to twelve dual action pistons. The system is very
robust and reliable. In addition, the CO2 cartridges
are easily accessible allowing the gas supply to be
quickly refreshed.

1.4 Downward Manipulator

The bottom manipulator consists of piston
actuated tines. When the robot descends onto
open frame structures the tines allow the structures
crosspieces to passively catch within spring
tensioned latches which sit between the tines. When
the robot needs to release the structure the piston
extends flexing the tines causing them to release the
latching mechanisms. The passive grabbing system
has high reliability due to its simplicity.

Figure 4: Tortuga with downward grabbers

1.5 Bin Droppers
The markers consist of illuminated cylinders

with ferromagnetic bases. These are suspended
against Delrin stoppers with magnets actuated by
pistons. When the robot needs to release a marker a
pneumatic piston pulls the magnet away allowing
the marker to fall straight down. The actuators
are adjacent to the downward facing camera. This
allows increased accuracy with the droppers when
the camera is centered over the bins.

2 Electronics
As in previous years, the electrical system on

this update to Tortuga IV is a modular system
with a radial control structure chosen for its logical
separation of functions, expandability, and ease of
servicing. In this design, a central board links
plug-in cards, each card with a specific set of
functions. Our electronics stack consists of a
backplane board which holds six other modules: the
power regulator (DC/DC), battery load balancing,
power distribution, actuator control, sensor, and
sonar processing boards.

2.1 Power
Power within Tortuga V is handled primarily

by three of the main six boards, namely the
DC/DC, Battery Balancing, and Distribution
boards, with additional device-specific regulation
by two peripheral UVQ boards. Power for the
system is drawn from a 5-pack block of 25.9 volt,
lithium-ion batteries. In order to supply sufficient

Robotics@Maryland 3



current for the robot, these packs must be connected
in parallel, which necessitates battery balancing to
keep the draw as even as possible from each pack.
The even draw mechanism disconnects batteries
which have a lower nominal voltage, preventing the
batteries from wasting power, and ensuring a long
operational period.

Next, the power is distributed throughout the
robot. This task is handled primarily by the
dedicated distribution board, which serves the
various devices requiring high currents, such as the
motors, the Doppler Velocity Log (DVL), and the
computer, while controlling which devices receive
power. The remaining distribution is handled by
the backplane itself, which shares power between
all of the plug-in boards. The distribution board
gives Tortuga control over which devices are
currently receiving power. This manner of power
distribution does not require all devices to be active,
which allows for quick diagnosis of problems and
power conservation when the robot is not in the
water. There is also a safety mechanism which
can terminate power to any device if the software
detects unsafe conditions.

The final step in the power subsystem is to
regulate the voltage from the input batteries to
useful, common voltages for the lower power
devices. This is handled by three separate boards.
The first is the regulator board, which handles
power to the backplane, hydrophones, inertial
measurement units, and the router. The voltages
produced by this board are 20 volts, 12 volts, 9
volts, and 5 volts.

The remaining regulation is performed by a
pair of UVQ boards, so named for manufactures
designation for isolating DC-DC converters. The
UVQ boards provide the power needed for
the DVL and the computer (2009 Mac Mini).
Currently, power into and out of the UVQ boards
requires filtering to prevent excessive electrical
and magnetic interference (EMI) from interfering
with other systems. This is accomplished using
an inductor/capacitor pair on the input and output
wires.

Figure 5: Power Distribution Layout

2.2 A Software, Firmware, and
Sensor Communication

Communication between the main computer
and the various actuators and sensors happens
through a serial communications bus to a single
integrated circuit (IC). This Microchip dsPIC (the
master IC), distributes commands to all of the other
microcontrollers, and allows any microcontroller
with enough pins to interface with the current
electrical system. Any microcontroller capable
of a few simple protocols (I2C, rs-232, and SPI)
could easily replace the current PIC architecture,
but Microchip dsPICs were chosen over Atmel or
ARM microcontrollers because the electrical team
was already familiar with their use.

Certain high-bandwidth sensors, such as the
Doppler velocity log (DVL), inertial measurement
units (IMU), and cameras, are interfaced directly
to the computer rather than through the master
IC interface. The DVL and IMUs are connected
directly through USB to serial converters, while
the cameras connect via firewire. This allows
the computer to more quickly pull data from the
sensors, rather than relaying request commands
through the IC network.

2.3 Actuator Control and
Communication

The current actuation system is comprised
of six thrusters and various pneumatic pistons.
The thrusters are controlled through a simple I2C

Robotics@Maryland 4



interface. Although the I2C protocol allows for
all the thrusters to communicate on the same 2-
wire bus, we have isolated each thruster so that a
failure or power outage in any individual thruster
does not affect our ability to communicate with any
other thruster. The pneumatic system is run by a
single dsPIC connected through serial lines to the
main hull. To actuate the pneumatic system, the
small pneumatic relays are opened and closed to
control the flow of pressure to and from the piston
chambers.

3 Control and Estimation
Tortuga V is designed with preference of

maneuverability over speed, having control over all
six degrees of freedom. In order to control all six
degrees of freedom, we have chosen to incorporate
six thrusters into the design rather than dynamically
vectoring the thrust. This system allows for simple
control that can perform complex motions requiring
the use of multiple degrees of freedom at the same
time. The six SeaBotix SBT153 thrusters are
placed near the vehicle’s center of mass in order
to maximize control effort. These thrusters include
integrated motor controllers and encoders which
allow precise control over the thruster output.

Designing an effective control system requires
the careful consideration of nearly every aspect
of the AUV’s design. Starting with the careful
attention to vehicle dynamics, the selection
of accurate sensors and actuators, and the
design of communication hardware to allow
low-latency transmission of measurements and
thruster commands, the foundation for a well-
behaved vehicle is laid before any control
algorithms are written. The control subsystem
software architecture has been designed with
the primary goal of creating a modular object-
oriented system which can accommodate multiple
control algorithms, allowing for quick switching
between algorithms without recompilation. An
object-oriented design significantly reduces the
amount of logic required, converting semantic
errors to syntax errors, which are much easier
to identify. This makes development and
testing of new control algorithms significantly

easier and less error prone. This design also
separates code into reasonably sized components,
drastically improving the readability and making
the understanding of logic flow much easier.

Figure 6: Controls Diagram

3.1 Depth Control
Tortuga V primarily holds a fixed depth, so

depth control has been implemented as a regulator
as opposed to a tracking controller. The vehicle
is positively buoyant which can cause a non-
linearity. However, due to the buoyancy design of
the vehicle, this non-linearity can be treated as a
constant disturbance. Thus, any linear controller
can be used as long as it is augmented with
an integrator for constant disturbance rejection.
Several depth controllers have been implemented
on the vehicle. PID, LQG, and model based
observer controllers [2] are currently available to
be selected at run time. Since the vehicle’s
buoyancy and trim characteristics are often altered
for new actuators or adjustment of ballast, the
robustness of the control algorithms is as important
as controller performance. After comparing the
various depth-control algorithms on the vehicle, a
PID implementation was chosen.

3.2 Rotational Control
The rotational control algorithm is based off

[3], a full three axis non-linear PD controller. The
controller uses quaternions, making it singularity
free (i.e. immune to ’gimbal lock’). This rotational
controller is a tracking controller and subsequently
can be commanded to rotate the vehicle in any
direction by either specifying a desired orientation

Robotics@Maryland 5



or specifying a desired angular rate and integrating
the desired orientation. A more advanced rotational
control algorithm based on Egeland and Godhavn’s
adaptive attitude control algorithm [1] has also
been implemented. As an adaptive controller, it
can ’learn’ Tortuga V’s inertia, drag, and buoyant
moment properties while running to provide a
significant improvement to the vehicle’s attitude
control.

3.3 Motions

The ultimate goal of the control system is to
allow the execution of complex motions. To achieve
this an artificial planning subsystem generates a
trajectory for the controller to follow, which allows
the controller to reach our desired state more
quickly. This also allows the planning subsystem
to keep track of when the controller has finished a
motion and can then begin the next motion.

3.4 Visual Servoing

A visual servoing controller has been
implemented for use in aligning with various vision
objectives in the competition. The controller sets
the Cartesian velocities of the robot based off a
proportional control scheme. The velocities are
then maintained using a PID controller. This
controller allows the vehicle to quickly and
accurately position itself around the objectives for
the course.

Figure 7: Bins positions are identified by the
vision system

4 Software
The software architecture on TortugaV is

designed around a few core concepts: modularity,
extensibility, and configurability. Focusing on these
tenets has helped reduce development and testing
time while improving software quality. C++ is
the core language because of its object-oriented
facilities, good performance, and easy integration
with other languages. All performance sensitive
code is written in C++, aside from the drivers,
all of which are written in ANSI C. Code that
is not performance-sensitive is written in Python
because it is more expressive than C++, leading
to shorter development times, and does not require
compilation after modifications are made.

4.1 Modularity
Modularity comes about naturally from the

use of object-oriented design. The software is
divided into subsystems, each of which represents
an abstraction around a particular task. Each
subsystem makes use of abstract classes, each of
which serves as an interface to a different physical
device or algorithm, reducing both the amount
of code that must be written and the number of
locations where modifications must take place to
integrate new devices or algorithms.

4.2 Extensibility
Extensibility is a measure of the amount of

work required to implement enhancements. Even
a modular system is not necessarily extensible.
Extensibility requires foresight of what future
enhancements will need to be implemented. Since
the software on Tortuga V is under continuous
development and new algorithms are frequently
being added, careful attention has been paid to
make the design general enough to incorporate
algorithms that require slightly different input. This
extensibility is partly attained through an event-
driven architecture. An event-driven architecture
reduces the coupling between subsystems as the
location in the code where an event is published can
be changed without requiring changes to the code of
the subscriber.

Robotics@Maryland 6



4.3 Configurability

Configurability is an extremely important
design aspect. The configuration system allows a
selection of different algorithms and the ability to
tune parameters without the need for recompilation.
Compilation is one of the most processing intensive
operations and consequently requires a significant
amount of battery power. By reducing or
eliminating the need for compilation while testing
and tuning, the amount of time that Tortuga can be
operating in the water without the need to change
or recharge batteries has been greatly extended.
YAML was selected as the configuration language
because it is human readable and writable, allowing
new members to quickly learn the system. It also
integrates very well into Python and C++.

Figure 8: Tortuga V Software System Diagram

4.4 Development Practices

In order to facilitate development in a team
environment, Github is used to host all of the code,
and CMake as a build system. In addition, Trac is
used to assign tickets and monitor progress. These
tools reduce development times, allow multiple
developers to work simultaneously on the same
code, and provide a system in which to solve bugs
systematically while providing documentation of
the solution. The build system generator allows
different environments to easily build the code with
minimal work required from the developer.

4.5 Debugging Tools

There are several debugging and tuning tools
which help speed development and analysis of the
software. The first is the event player which reads
logs of received events during a dive operation
and can replay them so developers can more
closely examine what occurred during a dive. This
system enables developers to more easily debug
errors. Another tool is the real-time state visualizer,
which enables any networked computer to plot
time series of any aspect of Tortuga’s sensor suite.
This immediate feedback is invaluable for tuning
estimation algorithms and controllers.

4.6 Operator Control Interface

Tortuga Vs dive operations are supplemented
by an Operator Control Interface (OCI) program
designed to allow simple interaction with all of the
subsystems while displaying telemetry data in a
modular fashion. The OCI is composed of multiple
panels, each displaying one category of telemetry,
such as orientation or artificial intelligence state.
The layout of these panels can be reconfigured
during runtime to display as much or as little
information as the user desires. Individual panels
also reconfigure themselves based upon the number
and types of devices present on the vehicle.
Interaction with the subsystems is accomplished via
an integrated Python interpreter.

Figure 9: Operator Control Interface

Robotics@Maryland 7



4.7 Simulation
The OCI can also be run concurrently with

the Simulator. This program simulates Tortuga Vs
hardware as well as the competition environment,
completely replicating a testing environment.
Additionally, the simulator is able to display
the view of the on-board cameras, thus enabling
integration testing of almost all of the software
systems without time-consuming physical dive
operations. The simulator, through the use of these
mock subsystems, enables concurrent development
of the AI and subsystems it is dependent on.

4.8 AI
The main focus for the 2014 competition was

to redesign the AI system, to be easier to use and to
pave the way forward for a new software system in
the future. The new AI state machine is designed
to solve these problems by putting a strong focus
on simplicity and reusability, giving developers a
way to mix and match AI states to form a robust
and stable routine. One of the key features of this
new state machine is the ability to run nested state
machines inside individual states, allowing a single
state to represent a complex behavior, such as a
search pattern or visual tracking. This way, one can
build a repertoire of useful actions that can be easily
reused and extended.

5 Vision System
The vision system serves to give Tortuga V’s

software information about the locations of visual
objectives in the view of the forward and downward
facing cameras. The vision system input consists
of two Toshiba Teli FireDragon cameras which
stream video over FireWire to the Mac Mini. The
two cameras are stored in seperate housings from
the rest of the vehicle’s electronics. The external
housings provide each camera with a flat optical
viewing surface.

The vision system is split into a series of
detectors, corresponding closely with the set of
vision objectives. This allows the AI system to
select which detector to use for a task and keeps the

vision system simple. The use of YAML files allow
the detector parameters to be modified without
needing to recompile. Open source algorithms,
such as OpenCV, allow for quicker implementation
time and therefore more testing. In addition, open
source algorithms are well documented and easy
to understand. This greatly decreases the learning
curve for new users.

Figure 10: Original image from cameras

Figure 11: Image with white balancing applied

The detection of objects is heavily dependent
on having an accurate color filter. An ideal filter
is one that only detects the desired color but can
also handle changes in lighting. Lighting changes
are particularly important when operating outdoors

Robotics@Maryland 8



9

where clouds, weather, and time of day all affect
what the camera sees. Two methods are used to
improve the color filter: the first is the use of
HSV color space rather than RGB. HSV (Hue,
Saturation, and Value) is a color space which
separates the color hue and the ’brightness’ of
the color. In this sense it is less susceptible to
lighting changes. A second benefit of using HSV
space it that only one channel, the hue channel,
requires filtering. This reduces the computational
complexity by 2/3 compared to RGB.

The second method to improve the color filter
is the use of a white balance. Images taken
underwater have a green or blue tint to them. This
greatly increases the difficulty in differentiating
some colors, such as green and yellow. A white
balance corrects this tint and allows the ranges for
the different colors to be increased without resulting
in false positives.

No vision algorithm is perfect, particularly if it
needs to run fast. False positives are an issue, as
they can greatly confuse the AI. In order to reduce
false positives, an object must remain in multiple
frames before it is declared ’found’. The center

of the object should be relatively close between
the frames. If it cannot find a match between
the previous two frames, or even one frame, it is
declared a false positive. This helps reduce the
effect of noise in the image.

6 Acknowledgements
Robotics@Maryland would like to thank its

sponsors, without whom TortugaV would have
never left the drawing board. Within the University
of Maryland we would like to thank the Institute
for Systems Research, the A. James Clark School
of Engineering, the Space Systems Laboratory,
the Student Government Association, the Maryland
Robotics Center, and the Departments of Computer
& Electrical Engineering, Aerospace Engineering,
and Computer Science. We would also like to thank
L-3 Communications, SAIC, MEMSense, Sidus
Solutions, TC technologies, SubConn, Advanced
Circuits, Teledyne RD Instruments, the NSF ECCS
division, Northrop Grumman, USBFireWire, BAE
Systems, and Lockheed Martin.

References
[1] O. Egeland and J.M. Godhavn. Passivity-based adaptive attitude control of a rigid spacecraft. IEEE

Transactions on Automatic Control, 1994.

[2] S. Skogestad and I. Postlethwaite. Multivariable feedback control: analysis and design. Wiley, Chich-
ester, 1996.

[3] B. Wie and P.M. Barba. Quaternion feedback for spacecraft large angle maneuvers. Journal of Guid-
ance, Control, and Dynamics, 1985.


