
ROBOTICS AT MARYLAND 1

Qubo: The Tortoise Who Lived
Sean Gillen, Yichao Peng, John Rogers, Ben Hurwitz, Greg Harris, Camden Miller, Alex Jiao, Beth Priege, David
Linko, Jeremy Weed, Justin Becker, Justin Kanga, Justin Mayle, Kevin Wittmer, Kyle Montemayor, Ross Baehr,

Dr. David Akin

Abstract—Qubo is an autonomous underwater vehicle (AUV)
designed, modeled, fabricated, assembled, and tested by an
interdisciplinary team of students at the University of Maryland
in College Park, MD. The vehicle, which measures 21.00” x 24.25”
x 12.50” and weighs approximately 35 pounds, runs off of either
a pair of 4-cell lithium polymer battery packs or a 20V external
supply capable of up to 30A. It features internal battery charging,
two orthogonal cameras for vision, and a modular design for
future expansion. Eight thrusters are used for motion with six
degrees of freedom. The primary runs a ROS based software
system that allows for flexible execution of competition tasks.
An embedded system, controlled through a TI Tiva C controller
board, handles the lower level tasks and sensor processing. Qubo
has been designed for simplicity and flexibility, primarily with
the goal of navigating the tank this year, and leaving the Robotics
At Maryland team in a good position for future competitions.

I. INTRODUCTION

ROBOTICS AT MARYLAND is the University of Mary-
land’s AUVSI Robosub team. our team of 25 undergrad-

uate students has worked for three years to create our most
advanced AUV to date. Tortuga IV, the club’s previous vehicle,
finally became obsolete in 2014. It had accrued several years
of patches, updates, and lost documentation, meaning that a
clean slate design was required. The name “Qubo,” which
means “turtle” in Swahili, was chosen for a robot that would be
smaller and more modular than our previous design. Two years
of team turnover due to graduation and budgetary struggles
hampered this effort though. These factors left less than one
year to design, build, and test Qubo. The short time frame
has necessetated compromises, However Qubo will compete
at Robosub 2017, and the modularity and scalability of the
basic deisgn mean that Qubo will see many upgrades over the
course of a long life.

II. DESIGN STRATEGY

The current version of Qubo was conceptualized over the
last week of February 2017, with a preliminary design review
the first week of March. This left only months until compe-
tition, meaning that the design was pared down to meet time
constraints. The main goal was to have a vision system that
could navigate the simplified Qubo through the course. The
electrical system was drastically simplified to decrease design
time and the chances of failure. Mechanically, Qubo lost a
manipulator, torpedoes, a separate battery hull, and a separate
motor controller hull, among several reductions. The software

Robotics At Maryland is with the Institute for Systems Research at the
University of Maryland, College Park, in conjunction with the Space Systems
Laboratory at the Neutral Bouyancy Research Facility under the Department
of Aeorspace Engineering. Email: president@ram.umd.edu.

Fig. 1. CAD Rendering of Qubo

was simplified as well to a single I2C bus and minimal other
communications, with a major focus on controls and vision.
“Feature creep” was targeted and excised, keeping Qubo
streamlined and focused on the most essential tasks. Estimates
based on the 2016 competition showed that if we could
successfully navigate the course, even without accomplishing
any other tasks, Qubo would earn enough points to have
placed. This confirmed navigation as our main priority. Due to
time restrictions, decisions were made with less information
that otherwise would be warranted, and modeling was less
complete than desired. Simulations were run from the software
side, but with the number of team members dwindling as some
were lost to class work, the remainder worked overtime to put
Qubo in the water.

III. MECHANICAL SYSTEM

Qubo’s mechanical system is composed of a main pressure
hull, eight Blue Robotics T200 thrusters, two camera hulls,
and an aluminum frame. The main pressure hull houses the
electronics system and the computers. Two camera hulls are
placed in the vertical center plane, one forward facing, and
one downward facing. The robot relies heavily on vision
for maneuvering. Mechanisms for firing a torpedo, dropping
markers, and manipulating objects will be added in the future.

The mechanical design of Qubo emphasizes modularity
and ease of machining. One of the lessons learned from
Qubo’s predecessor, Tortuga IV, was that a simple frame
design can reduce the serviceability of and limit access to
internal components. In Qubo, the frame was designed with



ROBOTICS AT MARYLAND 2

respect to the hardware configuration. The design eliminates
the spatial dependency of systems, and allows for quick part
removal, swapping, and modification. Additionally, the robot
was designed to reduce machining complexity. Only a few
of parts require CNC milling, while others can be manually
machined or 3D printed.

A. Propulsion

Fig. 2. Top View of Frame and Thruster Configuration

The propulsion system is intended to give the robot fine
control of its movements. In RoboSub, the ability to perform
forward, strafing, and yaw motion while maintaining depth
is critical. On Qubo, four downward facing thrusters are
placed in a rectangular pattern. Together, they maintain a
horizontal operating plane which other four thrusters move on.
The sideway thrusters are aligned to provide vector thrust 45
degrees from the center plane. Ideally, they provide more thrust
for forward motion, and direct control for yaw. Further, the
high degree of freedom allows the robot to perform complex
maneuvers if so desired.

This configuration requires the thruster to quickly recip-
rocate and deliver similar forward and backward thrust. The
T200 thruster from Blue Robotics is an affordable option that
meets the required specification[1]. Each thruster is mounted
via an adapter that can be quickly detached and swapped in
case of a malfunction.

B. Frame

The frame consists of two 16” x 12” x 0.25” water-jetted
aluminum panels with four main aluminum rods holding them
together. The water jetted pattern offers option to mount addi-
tional hardware. The front and back plate provide additional
mounting space. Each side is reinforced with cross beams.
Stress analysis shows the frame can withstand several times
its operational load.To protect the thrusters in the event of a
collision, laser-cut Delrin bumpers are fitted onto the frame.
As for corrosion consideration, all fasteners used are stainless

steel and the aluminum members are protected by a sacrificial
anode.

Fig. 3. CAD Rendering of Frame

C. Main Pressure Hull

The main pressure hull is an enclosure that houses major
electronic and control components. The hull measures 7 inches
in outer diameter, 6.5 inches in inner diameter, and 13 inches
long. It is comprised of a CPU-side endcap, a connector-
side endcap, and an acrylic tube. The connector-side endcap
is responsible for mounting and cooling of eight Electronic
Speed Controllers (ESCs). Each ESC corresponds to a Blue
Robotics Penetrator with thruster cable running through. The
computer, Jetson TX100, is cooled by the CPU-side endcap,
whose heat fins ensures continual operation in water and on
land. Also on the inside of the CPU endcap is a four-pin
scaffold on which the two batteries and main electronic board
are mounted to. The pins work in conjunction with rods on
the connector side to correctly alignment. The exterior of the
CPU endcaps has six more Blue Robotics Penetrators, a ball
valve for pressure equalization, and several spots for SubConn
wet-mate electrical connectors.

Fig. 4. CAD Rendering of Main Pressure Hull

The endcaps are CNC milled from blocks of 6061 aluminum
for optimal heat dissipation and strength. The rough outline



ROBOTICS AT MARYLAND 3

of the parts is defined to accommodate the 12 mounting holes
on the frame side panel, so that both endcaps can be fixed
on the frame. Stress analysis was conducted on the hull to
ensure that no parts will fail due to fatigue in its lifetime.
For thermal considerations, thermal pads on heat generating
components increase conduction to the endcap, and two 60
mm fans force internal air circulation. Before fabrication, a
thermal CFD of the entire hull verified the system will remain
in its safe operating temperature.

D. Camera Hull

The two cameras hulls onboard Qubo were taken from
Tortuga and fitted with new Mako G cameras and Blue
Robotics penetrators for ethernet connection. There is also a
slimmer hull built for the camera. This is used as a backup
hull.

Fig. 5. Modified Tortuga camera hull (left), Qubo camera hull (right)

IV. ELECTRICAL SYSTEM

The electrical subsystem of Qubo handles all of the power
distribution and signal routing required for the AUV to
function effectively. It runs off two four-cell lithium-polymer
batteries which it subdivides into three power rails for a variety
of uses, with the embedded system generating a fourth voltage
level. A relay is used as a kill-switch mechanism to the
thrusters, which allows all non-moving subsystems to remain
on for debugging purposes in case of a catastrophic failure. A
backplane/daughterboard structure was implemented to allow
more flexibility and modularity within the system, with the
daughterboard handling the input voltage and switching be-
tween the batteries and shore power. The daughterboard also
carries the charging solution, which will be discussed in more
detail later. It allows the operator to run the system using the
batteries, or run the system using the shore power connection
while charging the batteries, giving maximum flexibility.

There were two primary goals that drove most of the design
choices for the electrical subsystem. The first was simplic-
ity; because Qubo required a late redesign, fewer moving
parts would decrease the likelihood of individual part failure,
thereby increase the chances of successful integration. This
lead to a significant reduction in the number of components
that were used, both in terms of chips as well as instrumen-
tation, leaving Qubo with a much reduced capacity. It also
significantly reduced costs and the time required for design
cycles, allowing for significantly more iterations. The second

goal limit the number of times the main hull needed to be
opened. This was emphasized for two reasons. First, the act of
opening and closing the o-ring seal inherently weakens the seal
itself, increasing the risk of failure. The second was because
of prior year competition feedback that the competition space
was very dusty, which could interfere with the o-ring sealing
or other internal components. By following these two design
parameters, Qubo’s electrical system has been designed to be
both robust and flexible.

TABLE I
SYSTEM-LEVEL ELECTRICAL PARAMETERS

Parameter Typ. Value [Unit]

Input Voltage 13-20 [V]

Max. System Current 34 [A]

Max. 12V and 5V Current 4 [A]

Max. Thruster Current 25 [A]

Max. Operating Temperature 65 [◦C]

Nominal Thruster Current 9 [A]

Nominal 12V Current 1.5 [A]

Nominal 5V Current 1.35 [A]

Steady-State Ambient Temperature 42 [◦C]

A. Batteries

With an emphasis on simplicity and efficiency, Qubo’s
batteries were selected to minimize the number of DC/DC
conversions that would be required to power everything. The
critical components for the system were the Jetson TX1
computer and the BlueRobotics T200 thrusters; the computer’s
carrying board can handle a maximum of 17V, while the
thrusters can take up to 20V. There was also a physical space
constraint, meaning the batteries needed to be small. However,
Qubo also needed to make full runs, and potentially long test
runs, without constantly recharging. Finally, the thrusters can
draw a lot of current, so the battery had to be able to source
at least 30A - this accounts for 4A for the four translation
thrusters, 1A between the four balance thrusters, 3A on the
12V rail (the maximum computer draw), and 4A on the 5V rail
(the maximum for the entire rail), plus a safety factor. A 25A
fuse is used as hardware protect against over-current events.
All of this culminated in the choice of a pair of 14.8V lithium-
polymer battery packs, each with a 5000mAh (74Wh) capacity,
for a total of 10Ah, at a steady discharge of 45C (and a
burst discharge of 90C), way above the system’s requirements.
However, with a secondary emphasis on future adaptability,
these batteries allow Qubo to expand significantly without too
many changes to the batteries themselves.

B. Power Daughterboard

The power daughterboard handles the switching of the input
power between the parallel four cell lithium polymer battery
packs and our “shore” power system. The shore power is a
high current, adjustable, AC-to-DC voltage converter which
is used to simultaneously power the entire vehicle out of the
water and charge the batteries, all internal to the electrical hull.



ROBOTICS AT MARYLAND 4

TABLE II
BATTERY SPECIFICATIONS

Parameter Value [Units]

Capacity 5000 [mAh], 74 [Wh]

Configuration 4S1P

Chemistry Lithium-Polymer

Voltage 12-16.8 [V]

Discharge Rate 45 [C]

Max. Burst Discharge Rate 90 [C]

Weight 480 [g]

Dimensions 154 x 46 x 30 [mm]

The subsystem uses a waterproof switch to alternate between
shore and battery powered operation. The switch alternates
between shore and battery modes by turning on and off the
LTC4364 ideal diode ORing chips and the MAX1737 battery
charge management ICs. Coupled with the two different power
inputs, this switch allows for three modes of operation: shore
power, battery power, and system off. The daughterboard also
handles to proper charging and discharging of the batteries
themselves. The block schematic diagram can be seen in Fig.
6.

When the switch is positioned to battery power, the system
will run only off of the batteries. It is important to note that
in this mode, it is critical that the shore power connection
not be in, otherwise undesired behavior may occur. Once
the system is assembled, the batteries are connected and
no longer removed. Their output flows through these ideal
diode ORing ICs, one per battery, which provide a number
of critical features. First and foremost, they allow us to
safely parallelize battery packs. This is done through an ideal
diode structure, which disallows reverse current flow into the
batteries, preventing either pack from attempting to charge
the other. These ICs also provide over- and under-voltage
protections as well as over-current sensing. Finally, the Linear
chips also offer a restart feature that automatically restarts
the chip after a designer-specified time limit if any of the
fault conditions (such as incorrect voltage or current) are
triggered. This is important because it can be done without
the intervention of the embedded system, adding an additional
redundant safety measure. The embedded system monitors the
battery voltage by monitoring the thruster voltage rail, which is
merely the battery voltage. (These rails are discussed further in
the Backplane section.) Lithium polymer batteries are highly
susceptible to over- and under-voltage conditions since there
is no innate protection. Therefore it is imperative that this
monitoring be done effectively. The cells are considered fully-
charged at 4.2V per cell, and should not be discharged below
3.0V per cell. In the interest of adding a safety factor, Qubo’s
batteries are cutoff at 3.25V per cell via the LTC4364 ICs
which is backed up in the embedded system. This prevents
us from easily accidentally over-draining them with some
headroom for leakage.

Fig. 6. Schematic block diagram of the power daughterboard.

The third mode is the shore power, or charging, mode,
which requires shore power be plugged in. (Note that if
shore is not plugged in, this becomes the third mode: system
off.) When the switch is turned to the charging mode, the
LTC4364 ICs are electrically held in shutdown mode while the
charging ICs, the MAX1737, are powered on. This cuts off the
connection from the batteries to the load directly via the ideal
diodes. The MAX1737 is a lithium-polymer battery charge
controlling IC, and, coupled with some passives, uses a switch-
mode technique with a large inductor to generate nearly-
arbitrarily high currents to charge these battery packs with up
to four cells. It handles a number of potential downfalls with
LiPo charging, including the aforementioned under- and over-
voltage conditions, current control and management, thermal
concerns, and timing. It uses an internal state machine to move
between a constant-current “fast charging” mode, a constant-
voltage “full-charge” mode, and a “top-off” state; movement
between these states is dependent on internal current and
voltage measurements as well as on the timer capacitors that
can be added as an additional safeguard. Qubo’s charging
system currently runs at 4A of charging current, which is
about 0.8C for the batteries detailed previously. This is a fast
charging current [2], but with a 5Ah capacity, a high current
was required to charge them to a reasonable level within a
reasonable amount of time. The fast-charge stage will charge
to about 80% of the maximum, about 4Ah, which takes about
an hour, followed by a maximum of 45 minutes for the “full-
charge” stages, and a second 45 minutes of “top-off”. With full
batteries, Qubo should be able to run for between 45 minutes
and an hour of continuous movement; charging them will take
approximately 2-2.5 hours. This leads to the next advantage
of the MAX1737: the input voltage both charges the batteries
and provides power to the load simultaneously. This allows us
to continue to test either in water or in air while the batteries
are charging, eliminating the lost time that would otherwise
be required.

C. Backplane

The backplane exists to route power and signals between
the various subsystems and components that compose Qubo.
The block diagram for this board is shown in Fig. 7. Power
is applied via the power daughterboard through a Samtec



ROBOTICS AT MARYLAND 5

Fig. 7. Schematic block diagram of the backplane.

eighty pin connector - these 80-pin connectors were chosen
for an earlier version of Qubo, and will be highly valuable in
later revisions with more daughterboards, allowing for a wide
variety of signals. Power is routed into three rails: 5V, 12V, and
the thruster voltage, which is simply the battery voltage. There
is also a 3.3V bus that is generated by the Tiva C embedded
processing board. This Tiva C is the second major component
of the backplane; it is this embedded computer, discussed later,
that handles all of the lower-level sensors and control. The
third primary component of this subsystem is the power relay
that allows us to externally cut off power to the thrusters if
something goes wrong while allowing the software to continue
operating and logging data.

Going back to the battery selection, it was decided that the
driving constraint for the battery selection was the thrusters,
and that everything else would run off of a converted bus.
This became the driving constraint for our bus voltages. While
the Jetson can handle a range that includes the 14.8V for
the battery, it was decided that because, one, shore power
would need to be above the battery’s maximum voltage of
16.8V, and two, the Jetson is fragile and expensive, that a
12V was dedicated to the Jetson alone. This would provide
a stable power bus for the high-end computer, decreasing the
chances of issues with power. Everything else runs off of a 5V
bus, where “everything” refers to the Tiva C, controlling ICs,
sensors, fans, and an ethernet switch (for talking to multiple
ethernet-controlled cameras), in total drawing less than 4A
at steady-state. This simplified the overall electrical design
by minimizing the number of different possible voltages. The
lone exception was our temperature sensor, the BME280; it
runs off the 3.3V line sourced by the Tiva C embedded board.
In a future revision, this will be revised to be a 5V alternative.
The cameras were the last to be powered; they run directly off
the battery voltage, before the relay, thus avoiding the 12V bus
and the kill-switch mechanism.

There are a number of control and monitoring elements
on the board as well. A 16-channel PWM generator chip
controls our thrusters through Afro 12A electronic speed
controllers over the I2C bus. ACS713 current sensors are
on each voltage bus and on each thruster output for real-
time current monitoring. These are coupled with a set of
INA219 voltage sensors so that the embedded system can
determine real-time system-wide power draw. This is critical

for the percise control of our thruster outputs which can be
implemented with just current readings but works much better
with the power draw. There is a single BME280 temperature
sensor near the power generating ICs; with the two internal
fans, this is enough to get a good reading on the internal
temperature without worrying about local variations.

D. Computers

Qubo has two computers on board, one for low level control
of sensors and other hardware, and the other for high level
computations. The high-level computer is a Nvidia Jetson
Tx1. The Jetson has a beefy 1 GHz 4 core ARM processor,
on-board Maxwell GPU with 1 TFLOP of power, and only
draws around 10W of power under normal loads at 12V. This
makes it ideal for handling our large computational needs
without putting excess strain on our power system or causing
thermal problems, especially since the primary use for the
main computer will be the vision processing.

The low-level computer is a TI Tiva C microcontroller. The
Tiva is powered by an 80 MHz ARM cortex-M4 processor
with 256 KB of flash and 32 KB RAM. This controller
runs what is called Qubo’s embedded system; it handles the
monitoring of all systems, reading sensors, and commanding
our thrusters. The two computers are connected directly via
USB, and communicate using our custom protocol, Qubobus.
The Tiva C has four different I2C bus terminations which are
both 5V and 3.3V tolerant, which lends more flexibility to the
system, and can also communicate over many other protocols,
including USB, SPI, and CAN.

E. Thrusters

The BlueRobotics T200 thruster was chosen to drive Qubo.
There were several reasons for this choice. First, they were in
widespread use in the 2016 competition, and research indicated
that teams were very satisfied with their performance. Second,
their technical requirements made them an easy fit into Qubo,
with a wide range of input voltages, PWM controls, and simple
three-phase design. This made integration with the third-
party motor controllers physically straightforward (though the
software integration was rather more involved). Further, the
thrust-to-power curves were friendly to our design, since our
light-weight robot requires significantly less power draw than
previous thruster choices. The third reason was that the Space
Science Laboratory was using them for another vehicle, and
was planning to do extensive underwater testing with them
that we could use as well. For these reasons, Qubo runs on
eight T200 thrusters, giving it a full six degrees of freedom
with redundancy.

F. Electrical and Mechanical Integration

The integration of the electrical and mechanical subsystems
was one of the trickier tasks in Qubo’s development. Origi-
nally, the electrical hull housed the backplane, power distribu-
tion, and main computer stack only, requiring bulkheads for
every other instrument and device external to that hull to be
connected via a bulkhead. This allowed for maximum modu-
larity, though it was far more complicated to design. With the



ROBOTICS AT MARYLAND 6

shift to the pared-down version three, most of the bulkheads
were removed in favor of simpler and cheaper penetrators,
which a relatively easy to replace in the middle of competition.
Further, with far few external electrical components; only the
cameras and shore power, it was an easy way to cut costs.
The shore power connection remained a bulkhead so that it
could be disconnected easily, as did the tether connection. The
Teledyne Wet-Mate-able Impulse series cabled and bulkheads
were chosen for their widespread use in industry, at prior
Robosub competitions, and the recommendation of the SSL
graduate students and Dr. Akin. An interesting solution for
the cameras was found by using an RJ-50 cable. The cameras,
the Allied Vision Mako-G series, are ethernet-controlled with
a 12V input and less than 0.4W of power drawn, and required
a more interesting solution to their external connection. An
RJ-50 cable (a 10-pin ethernet-like cable) was used to provide
both data via four twisted-pairs and power and ground via the
last pair. By using a single cable, the penetrators were better
able to maintain a seal around the cable itself, reducing the
chances of leakage or failure.

V. SOFTWARE

The software system for Qubo is divided into two categories
depending on which computer they are run on. High level
software runs on the Jetson and embedded software runs on
the Tiva.

Both of these code bases were written with several guiding
principles in mind, the first being modularity. We wanted
to maximize the amount of code that can be used between
iterations of Qubo and make adding new capabilities straight-
forward. This goal was at times at odds with the desire to make
our code perform as fast as possible. While we do strive to
write fast code, we made some compromises in the name of
flexibility that reduce the performance of our code.

We also wanted to make our code easy for new members
to parse and contribute to. To aid this we attempted to keep
our code simple and small. We made active efforts to revise
our code every few months and to remove experiments or
unfinished projects from the main branches of our code base.

In addition all of our code is free and open sourced,
available at Github.

A. Embedded Software

The Embedded system was written using the FreeRTOS
real time operating system. We chose FreeRTOS because we
needed a system that would be able to react in real time to
multiple inputs, and one that would be able to seemlessly
handle multiple tasks at once. Through the software examples
Texas Instruments provided, we were able to create a simple
Makefile build system that utilized TI’s Tiva C libraries in
conjunction with FreeRTOS. Using FreeRTOS, we are able to
create multiple ”threads” of execution, called tasks, that run
on the Tiva. Each of these tasks handles a different aspect
of the embedded system, such as communicating with each
sensor, commanding each of the thrusters, and maintaining
communication with the Jetson. Using FreeRTOS queues,

semaphores, and notifications, we are able to communicate
between tasks safely and effectively.

The embedded software’s source code is separated into
into directories called tasks, lib, interrupts, and include. Each
subdirectories have its own include directory that contains
headers that pertain only to that directory. The tasks directory
has one file for each task, following a similar structure. The
lib directory contains code that can be used multiple times and
from any task, such as sending or receiving data on the I2C
bus and interacting with hardware. The interrupts directory
contains interrupt handlers that are written and then linked to
in a startup file. The global include directory contains headers
that don’t have associated source files. These may be constants
or extern variables that can easily be shared across the system.

Drivers included from TI’s software are stored in a directory
above the source code. The driver headers’ location is passed
into the compiler and reachable from any source file we write.
Our microcontroller has all the drivers we need stored on a
ROM chip, so we were able to preserve the flash memory for
our own code.

1) Qubobus: Qubobus is a byte stream protocol that de-
scribes implements the format of messages between the Jetson
and embedded system. There is a handshake procedure to
connect the devices on startup. It includes protocol version
negotiation, checksum for data integrity, and KeepAlive for
connection integrity.

B. High Level Software

The high-level software was written using the Robotic
Operating System (ROS) as a base. The primary advantage of
ROS is the large library of utilities it comes with. This includes
OpenCV for image processing, Actionlib for handling long
lived inter process coordination, and the Gazebo simulator are
all modules that we used heavily. In addition to the obvious
utilities, ROS also benefits from large community support.
There are many forums around to help answer questions or
address problems that we come across.

The high-level software is divided into four different section
as seen in figure8.

1) Vehicle Layer and Simulation: The vehicle layer block
is a hardware abstraction layer that handles all parts of the
system that are not vehicle agnostic. In practice this means
it contains a thruster management node, and nodes for our
different sensors. The output of this node is a 3D orientation,
a depth reading, and either one or two camera feeds. The
thruster management node takes commands from the control
system to it’s six degrees of freedom, which it then breaks out
to the corresponding real or simulated thrusters.

The way in which we handle our camera feeds provides
an example of the trade offs made between flexibility and
performance. We decided to use a camera node which takes
our cameras and publishes the feed as a ROS message that is
consumed by our vision node, rather than have our vision node
directly pull data from our cameras. This decision was made
to accommodate our simulator, which uses ROS messages to
publish all vision data. By adding a camera node to abstract



ROBOTICS AT MARYLAND 7

Fig. 8. High level software overview

away the camera interface we are able to use the exact same
vision code for our simulator as we do for our real robot, at
the cost of taking a performance hit.

For our simulation we used the Gazebo package because
of it’s popularity and tight integration with ROS. To add
realistic underwater simulation capabilities to our simulator
we used a package called UUVSimulator, developed by a
research team in Germany [3]. This package allowed us to
simulate our robot’s buoyant forces and account for nonlinear
drag terms. The realistic drag and buoyancy terms greatly
aided in the development and tuning of our control system.
Furthermore Gazebo allows the simulation of cameras and can
place arbitrary meshes in the robot’s environment. This allows
a crude simulation of the robots visual environment. While not
useful for tuning vision algorithms, it is very useful for testing
our vision systems integration with our controls.

2) Autonomy: The autonomy node is where all the deci-
sions are made and is the node responsible for calling all
other parts of the vehicle to action. We implemented a state
machine architecture, which performs well in the deterministic
environment of RoboSub. Each task has one state in the state
machine, and includes several recovery states if we lose sight
of an obstacle. An addition advantage to using a state machine
is its relative flexibility. If we want to add a different task to
our run, it’s as simple as adding a new state to the existing
machine.

3) Vision: Our vision node handles all the image processing
required by this competition. It offers ROS services and
Actionlib actions to the autonomy node to call. Our actions are
meant to locate the target in the frame, and output the distance
in pixels from the center of the frame to the target. We have
made great efforts to make our vision system as modular as
possible. The result is a system where you can ”plug and play”
different algorithms, without needing to rewrite the boilerplate
required to communicate with the rest of our software system.
This has made prototyping different algorithms a much more
efficient process.

Fig. 9. View from the robot

Fig. 10. view after MOG background subtraction

We’re also aware that no matter how well we prepare our
algorithms, we will need to make adustments to them at
competition. To this end, for every algorithm we develop we
also develop a ”tuner” program. The tuner allows us to run the
algorithm step by step, and to change parameters and see the
results in real time. When we couple this with ROS’s ability
to save a play back camera feeds from our runs, we are able
to make the changes we need quickly and efficiently.

One algorithm we’ve found especially fruitful is the Mixture
Of Gaussians (MOG) background subtraction algorithm. This
allows us to filter out the noise inherent in the course (algae
on the walls, water ripples, divers, etc.), which has been
very useful when used in conjunction with our normal vision
detection algorithms. After we do background subtraction we
are able use Haar lines to detect the gate and channel tasks,
and a simple blob detector for the buoys. Preliminarily these
techniques seems to work very well at robustly identifying our
targets.

4) Controls: The control system is kept simple with a PID
controller around each of our Degrees of Freedom. We get
most of our movement queues from the vision system. For
example, in the buoy task we have the vision process output



ROBOTICS AT MARYLAND 8

the distance in pixels from the center of the cameras frame
to the buoy, and then feed this as the error term to our yaw
and heave DOFs. When the error is sufficiently small, we surge
forward. Our vehicle is naturally stable about it’s pitch and roll
axes, and we actually found our control system works better
when we make no attempt to activley control these DOFs.

VI. VEHICLE TESTING

A. Mechanical

Many of the mechanical parts are tested before fabrication.
All the components are assembled in Autodesk Inventor, down
to bolts, to eliminate interference. Multiple 3D printed parts
was produced for test fit and machining discussion. Extensive
stress analysis was conducted on frame and pressure hulls
to ensure a high factor of safety. Additional thermal CFD
simulation was conducted on main electronic hull to examine
systems cooling performance during operation.

Fig. 11. Main Pressure Hull Thermal CFD in Autodesk Simulation

For physical testing, we conducted part by part study.
Performance of the magnesium sacrificial anode was tested
by placing it with a piece of aluminum in the tank for an
extensive period. The result allowed us to estimate the usage
life for an anode piece. We also produced a test hull to
observe if Blue Robotics penetrator can prevent ingress of
water at depth of 20 ft. Lastly, we tested the marine epoxy for
its sealing capabilities using similar methods. In the coming
weeks, we aim to perform more system level testing with a
fully assembled robot.

B. Electrical

The electrical subsystem’s testing consisted of modeling
critical circuitry using various flavors of SPICE to begin with,
and then after fabrication various electrical tests are done to
look for potential concerns and issues. Fig. 12 shows the
layouts that were designed for the 5V rail using the LT8640
and Linear Technology’s LT Power CAD II, with similar
modeling being done for the 12V rail. CAD modeling and
thermal modeling were done in NX as well to determine
localized hot spots and internal air flow, as well as physical
separation and spacing of the components.

Fig. 12. The schematic for the 5V rail.

C. Software

Testing of the software system benefited immensely from
our use of the Gazebo simulator. Not only were we able to test
higher level functionality while waiting for Qubo’s hardware
to be complete, but we were also able to sanity check new
features without needing to deploy the robot. Of course there
is no replacement for in water testing, but our simulator greatly
sped up our testing process.

Another very valuable resource has been the collection of
competition footage from previous years. These videos allow
us to test our vision algorithms on the actual conditions we
can expect at robosub, which allows us to develop more robust
algorithms in advance of the competition. We will also make
sure to keep video logs of the runs to allow future teams
additional data.

D. Complete System

No complete system integration testing has taken place as of
this writing. Mechanical models have been completed of the
entire system in NX, and complete system software modeling
has also been done using Gazebo.

VII. CONCLUSION

The AUV called Qubo was conceptualized, designed, fab-
ricated, assembled, and tested over a five month period in
2017 by a small team of student engineers at the University of
Maryland. It was made to be a simple and robust, with a focus
on vision and navigation tasks. The platform is conceived to be
adaptable, with many upgrades possible over the coming years.
This version of Qubo is just the start of many generations of
this AUV, and with a strong base, these newer iterations can
attempt more tasks and with better efficiency than before. New
members will be able to be quickly integrated into the team,
and with a fully functional robot to test and see results on,
they will remain involved for longer. The lessons learned from
these years of hard work will be used for many generations
of projects to come, both at Maryland at beyond.



ROBOTICS AT MARYLAND 9

TEAM PHOTO

Fig. 13. The Robotics At Maryland team.

ACKNOWLEDGMENTS

Robotics at Maryland would like to thank Dr. David Akin,
our faculty advisor. His expertise in autonomous systems de-
sign was invaluable to our project. We would also like to thank
the Space Science Laboratory graduate students, who lent
us their considerable RoboSub experience and their valuable
time. The University of Maryland Robert H. Smith School of
Business, Electrical and Computer Engineering Department,
Clark School of Engineering, and Computer Science Depart-
ment, all donated generously to support Robotics at Maryland.
DesignME contributed the use of their machines, Terrapin
Works offered their support, guidance, electrical fabrication
and assembly tools and equipment, and CCTV Camera World
donated several cameras that proved very useful. We appreciate
their generosity and dedication to robotics education.

REFERENCES

[1] “T200 thruster documentation,” http://docs.bluerobotics.com/thrusters/
t200/, Blue Robotics Inc., 2017, accessed: 2017-03-10.

[2] S. Keeping, “Designer’s guide to lithium battery charg-
ing,” https://www.digikey.com/en/articles/techzone/2016/sep/
a-designer-guide-fast-lithium-ion-battery-charging, Digi-Key Corp.,
September 2012, accessed: 2017-02-27.

[3] M. M. M. Manhães, S. Scherer, M. Voss, L. R. Douat, and T. Rauschen-
bach, “UUV simulator: A gazebo-based package for underwater interven-
tion and multi-robot simulation,” in OCEANS’16 MTS/IEEE Monterey,
September 2016, pp. 1–8.

http://docs.bluerobotics.com/thrusters/t200/
http://docs.bluerobotics.com/thrusters/t200/
https://www.digikey.com/en/articles/techzone/2016/sep/a-designer-guide-fast-lithium-ion-battery-charging
https://www.digikey.com/en/articles/techzone/2016/sep/a-designer-guide-fast-lithium-ion-battery-charging

	Introduction
	Design Strategy
	Mechanical System
	Propulsion
	Frame
	Main Pressure Hull
	Camera Hull

	Electrical System
	Batteries
	Power Daughterboard
	Backplane
	Computers
	Thrusters
	Electrical and Mechanical Integration

	Software
	Embedded Software
	Qubobus

	High Level Software
	Vehicle Layer and Simulation
	Autonomy
	Vision
	Controls


	Vehicle Testing
	Mechanical
	Electrical
	Software
	Complete System

	Conclusion
	References

