

1

1. Abstract

RUMarino started with an agenda more ambitious than ever for this year’s

competition following the boost in morale and productivity last year’s great performance in
the RoboSub Competition gave our members. Despite having to deal with a Hurricane, and
its prolonged aftermath, the members found a way to thrive in these harsh conditions. At the
beginning of the academic year a completely new design of the AUV was created and was
being developed, but due to a huge change in circumstances, the team adapted to the situation
by deciding to modify our previous AUV model. It had many improvements such as in the
mechanical structures, electrical & embedded systems, and software architecture for an even
more efficient AUV.

2. Competition Strategy

This year’s competition strategy was to tackle the same missions with a more robust
and effective AUV. This would allow the team to focus on constructing a properly
functioning platform that could be later expanded to accomplish more missions. Working on
the same missions also allowed the team to show new members the previous system and the
errors that were being corrected.

Since last year was the first time RUMarino competed in the RoboSub Competition,
the team learned a lot from the experience. Every working team was inspired to implement
their fresh ideas as best they could. This was done with certain key quality metrics that the
team wanted to achieve; these include: usability, maintainability, reliability, modularity, and
expandability. Another goal was to make sure that the team would be able to implement the
design in time for testing before the competition.

In general, the Autonomous Architecture and Computer Vision teams upgraded their

in-house code by modularizing it so that it could retrofit a node based framework. While they
adapted to this year's new missions, the teams took their existing architecture and completely
overhauled it by upgrading to the Robotic Operating System (ROS) framework. These
changes were meant to enhance the usability and expandability of the system so that in the
future most of the code can be reused [1].

The Embedded Systems Team worked with upgrading the existing system while
looking out for possible sensing solutions that could work cost effectively within the team's
allotted budget. They also upgraded the sensors and actuators so that these could run with the
new architecture designed by the Software Development Division's working teams.

The Mechanical Structures Division and Electrical Systems Divisions had a new
drastic perspective because of last year's competition. They wanted to design and implement
a new mechanical structure from scratch. This would contain a more robust wiring system
that would permit easy access to electrical components whilst improving upon previous areas
that caused difficulty. These structures would be designed in such a manner that they would
be able to keep up with the rapidly developing nature of the team; thus, serving us for many
more years.

2

The team also noticed that it suffered a lot due to general problems with organization,
such as not having documentation for recurring tasks like testing the mechanical structure and
vision algorithms. This was a potential hazard and slowed us down, taking into account this
year’s membership growth of 100%. Due to the obvious need for a more organized team, a
new division was added: Operations Management. This division is meant to alleviate many of
the administrative tasks that hinder the team leaders from focusing on technical development.
Thus, the Operations Management Division focuses on the optimization of workspaces and
processes, documentation, locating potential sponsors, and making sure the knowledge from
previous members is properly passed on to the new ones.

The team had to face immense struggles due to Hurricane Maria that ravaged our
home island. This lead to a lot of changes in the plans we had made. Even though the vision
for the teams held largely the same, compromises had to be made. We lost our workplace, we
lost more than two months of development time, shipping components to the island took at
least five weeks to arrive, and we had to balance a semester's worth of class in three months.
However, the team members adapted, and this didn't stop us from being ready to this year’s
competition.

3. Design Creativity

The design creativity took flight after the end of the first competition. During the
members' time in San Diego, they were exposed to a great amount of new ideas from talking
to other team’s members and were eager to work them in our future design.

The biggest upgrade this year was set to be the mechanical structures. A new dual hull

design, vectored thrusters, better connector placement, and more was to be put in place to
make the system more reliable, usable and upgradable. However, due to the setbacks, it could
not obtain the necessary materials to manufacture it, and had to adapt. To accomplish this, the
team found a way to preserve the core functional points of the new design and implement
them reusing most of last year’s components.

The use of rapid prototyping helped to keep the structural design simple and creative,

while being able to make quick changes when they were necessary. Using the same core
design of last year’s competition, the AUV was developed as compact as possible, and this
time, as light a posible. The 3D printed components are now the main structural element, and
four of the aluminum extrusions from Proteus 2.0, are used to add support and stability.
These components also add to the aesthetics of the AUV, projecting a new style and a
uniform look, thus Proteus 3.0 is born (seen in Figure 1).

3

Figure 1: Proteus 3.0

The Electrical Systems Division redesigned the electrical system of the sub to make it

more robust, modular, and reliable. The division designed Printed Circuit Boards (PCB) to
facilitate the connections between the Arduino and the Electronic Speed Controllers (ESC),
and designed another PCB to turn off the motors without cutting power to the electronics.
This enables the Software Development Division to continue working in the case that the
AUV malfunctions while doing one of the missions. The division also moved the batteries to
their own enclosure, complimented by LED voltmeters (Figure 2), to facilitate the assembly,
as well as monitoring, and recharging process.

Figure 2: Battery Cabin

The high-level code was designed considering the Autonomous Architecture team

diverse levels of skill. The team opted to code in Python. This decision arises since Python
offers itself as a versatile programming language, providing a simpler learning curve, in
comparison to other high-level languages. However, it is still powerful enough to encapsulate
the overall necessities needed from the project. Its relative simplicity allows for novice
programmers to learn and contribute to the software development, whereas the more senior
programmers may benefit from its versatility and be able to produce a more complex code.
This allowed the team to add in object-oriented code and designs.

4

Last year, most of the code was done “in-house”. This meant the team members were
developing by themselves software that was already available, which slowed progress down.
Therefore, the Software Development Division saw the benefits of implementing the popular
ROS framework and decided to adopt it. With the adoption of ROS, a new software
architecture was made to take advantage of all the functionality that ROS provides [2]. Given
that ROS has a relatively high learning curve it took the team some time to get into its
mindset, as a result the development of the new architecture took more time than expected.
The new architecture was more autonomous in its core, since the architecture starts to be able
to account for abnormal function situations, such as not finding an obstacle or getting lost,
something that last year’s architecture was unable to do. A layer of abstraction was also
added to this new architecture which allowed the Mission Code and the Vision Code to work
seamlessly with ROS without the team members of those sub teams having to learn about the
intricacies of the communication between the two. ROS also permitted to run the controllers,
which were originally run on microcontrollers on the main computer. This meant that the
microcontrollers would serve as hardware interface boards.

The Autonomous Architecture team also had to adapt to the changing environment of

other teams, since changes in their design affects how the missions can play out. This means
that they had to be watchful for these changes.

One of the main challenges faced when designing the AUV’s vision system was the

lack of depth perception because of the use of a single camera as our front and bottom facing
inputs [3]. The team worked around this by implementing a feedback loop with the AUV’s
mission logic controller that made use of the region of interest’s centroid coordinate to align
with said object. To achieve this, a reasonable set of bounding coordinates was determined
through trial and error, where the bounding area was not too big or too small, making the
system both precise and stable [4].

Members of the team also had some sparks of inspiration and because of the
competition a few members are working on developing novel positioning systems for AUVs
using machine learning.

4. Experimental Results

Due to many setbacks, the period allocated for testing had to be delayed. It was
decided that if we were to compete, we had to be able to at least complete the pre-qualifying
mission before the Robosub inscription end date. Even with a preliminary build of the AUV
the team was able to complete this ultimatum it set forth. Now that the semester is over more
time is being dedicated to quickly implement and test our system.

As of the writing of this paper, the only thoroughly tested code is the embedded
systems hardware interface using an arduino with ROS. This means that the communications
to the motors and the pressure sensors was tested to function properly.

Currently, the updated mechanical structure is passing its final tests. The new dual

hull system caused issues with the stability of the system, since its center of mass and center
of buoyancy were too close together. Hence additional testing was needed in order to make

5

sure the system was mechanically stable. After these tests, the controllers will be tested to
ensure proper calibration.

In parallel, the Embedded Systems Team is testing and debugging the ROS
implementation of the mission controller. This controls the flow of the missions and allows
one to make alterations. In the future to easily add and run specific missions on the fly. This
is passing preliminary integration tests. Once they pass and the mechanical structure is ready,
system wide integration and pool mission test will be done.

5. Acknowledgements
After such an adverse academic year due to natural disasters and their consequences,

RUMarino would like to thank all of its team members and the faculty members of the
Engineering Department of the University of Puerto Rico for their unwavering support. There
is a special acknowledgement to all our sponsors who have helped guide us and challenge us
to become better; RUMarino would not be here today without their help. From small to large,
the team appreciates all the contributions and donations that have led to the team’s
participation in the upcoming RoboSub 2018 competition. The team would also like to thank
all the students who researched in collaboration with the Industrial Affiliate Program (IAP),
and excelled within the development of the AUV. The passion and knowledge passed on by
these students have left a legacy within RUMarino.

6. References

1. Cacace, J. and Joseph, L. (2018). Mastering ROS for Robotics Programming, Second
Edition. Birmingham: Packt Publishing.

2. Martín Gómez, David & Marín, Pablo & Hussein, Ahmed & de la Escalera, Arturo &
Armingol, J.M.. (2016). ROS-based Architecture for Autonomous Intelligent Campus
Automobile (iCab). 257-272.

3. Bertozzi, M., Broggi, A. and Fascioli, A. (2000). Vision-based intelligent vehicles:
State of the art and perspectives. Robotics and Autonomous Systems, 32(1), pp.1-16.

4. Docs.opencv.org. (2018). OpenCV: Optical Flow. [online] Available at:
https://docs.opencv.org/3.4/d7/d8b/tutorial_py_lucas_kanade.html [Accessed 3 Jul.
2018].

6

Appendix A: Component Specifications

Component Vendor Model/Type Specs
Cost (if

new)

Frame
McMaster-Carr T-slot Extrusions

Material:
Aluminum 6061

Size: 40 mm

Hatchbox PLA Filament Diameter: 1.75 mm $22

Waterproof Housing

BlueRobotics

Watertight
Enclosure:

Acrylic Tube (4"
& 2")

Max Depth: 330 ft
ID: 4in & 2in OD:

4.5in & 2.25in
Length: 13.15in

4" Series:
$183 2"

Series: $107

CrustCrawler
Robotics

WaterProof
Vessel

Depth Rating: 150
ft ID: 6.5 in OD: 7
in Length: 12.75 in

Waterproof
Connectors

BlueRobotics
Cable Penetrators

for 6mm and
8mm Cables

Bolt Threading:
M10

Thrusters BlueRobotics T100 Thruster

Max Thrust –
Forward: 5.2lbf

Operating Voltage:
12V Max Power:
130W Diameter:

3.8 in

$119.00

Motor Control BlueRobotics Basic ESC

Voltage: 7-26 V
Current: 30 Amps

Signal: Pulse-width
(PWM)

Max Reverse: 1100
μs

Stopped: 1500 μs
Max Forward: 1900

μs
Deadband:

1475-1525 μs

$25.00

High Level Control

Battery Venom Power
LiPo 3 Cell

Batteries
Capacity: 5000

mAh Voltage: 11.1

7

V

CPU A57 Cortex j

Internal Comm
Network

External Comm
Interface

Programming
Language 1

Python 2/3

Programming
Language 2

C++/Arduino

Inertial
Measurement Unit

(IMU)
VectorNav VN-100

3-axis
accelerometers,
3-axis gyros, 3-axis
magnetometers, and
a 32-bit processor.

Cameras BlueRobotics
Low-Light HD
USB Camera

Field of View
(Horizontal): 80°

Field of View
(Vertical): 64°

$89.00

