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SeabeeIII is an autonomous underwater vehicle (AUV) developed by a team of students at the University of 
Southern California for the International Robosub Competition.  
 
1.0 INTRODUCTION 
 
The University of Southern California’s Autonomous Underwater Vehicle Team (USC 
AUV) is dedicated to participating in and furthering robotics research not only at USC, but 
also around the world. USC AUV is a consistent participant in the Robosub Competition 
and strives to continually improve through exchange of ideas and involvement in the AUV 
community. USC AUV uses a full-year design cycle between iterations of the SeaBee AUV, 
allowing time for thorough testing and integration of new designs. From preliminary internal 
design reviews to a critical review attended by experts in the field, designs and changes to 
SeaBee III undergo a thorough analysis culminating in vital improvements to the AUV 
without wasteful or unnecessary expense. This year USCR is mid-way through the SeaBee IV 
design cycle and the current SeaBee AUV features the SeaBee III platform with new 
mechanical, electrical, and software improvements that increase not only task-centered 
capability but also focus on modularity and reuse.  
 
2.0 MECHANICAL 
 
2.1 MECHANICAL OVERVIEW 

The mechanical design philosophy for SeaBee III is intended to create a modular, compact, 
and lightweight AUV. The single-hull design with an internal rack system enables easy 
removal and centralized access to electronics while the external frame provides support for 
long term development by allowing individual component redesigns with little to no effect 
on the overall structure of the AUV. Electrical connections are established by using 
waterproof connectors, supplied from Fischer Connectors, from the hull end cap to external 
components such as the IMU, SONAR, marker dropper, shooter, cameras, and thrusters 
allowing simplified electrical reconfiguration. Similar wet-pluggable connectors are also in 
place to allow devices to be plugged into SeaBee without worrying about water creating a 
short, saving time during wet tests and competition runs. 



 

2.2 HULL 

The hull for SeaBee is constructed out of 3/16” thick T6061 anodized aluminum. The 
enclosure employs a cylindrical design measuring 7.5” in diameter and 13” in length. It 
shields the internal electrical systems from water damage with a watertight design. In the hull 
cap design, the cap is covered with waterproof Fischer Connectors allowing access to the 
electrical systems from components outside of the hull.  

2.3 EXTERNAL FRAME 

The new external frame is part of the design for the next iteration of the SeaBee AUV and 
consists of an octagonal cage surrounding the main hull. Each Octagon measures 10.836” 
around an inscribed circle. Four Octagons create three sections of the frame. Panels 
constructed of T6061 anodized aluminum measuring 7” x 4.5” x 3/16” make up the walls of 
the octagonal cage resulting in a total of twenty-four panels. Each panel is associated with a 
certain location of the frame and a component.  In addition, panels can move around the 
frame easily if design changes are necessary. The front and back surfaces of the octagonal 
cage serve as mounts for the depth thrusters and the flotation structure. 

These panels are designed around a common panel template in SolidWorks and can be 
quickly machined through a laser-cutting process and then anodized. The panel redesigns 
dramatically reduce the design and manufacturing time of any mechanical changes to the 
SeaBee AUV or it components and are compatible with either the SeaBee III or upcoming 
SeaBee IV designs.  



 

The flotation is also built into the external frame. Due to the higher density of aluminum, 
flotation is a necessary addition to the sub. Four 3” diameter acrylic air canisters are placed at 
the corners of the AUV. Mounted alongside them are smaller acrylic tubes that can be 
loaded with weights. The weight tubes can be manually adjusted to achieve neutral buoyancy. 
With the mounted flotation system, SeaBee occupies a space of 28” x 26” x 20”. 

2.4 INTERNAL FRAME 

SeaBee utilizes a custom designed internal frame attached to the main hull end cap, which 
can slide in and out of the hull on Teflon rails. This frame is machined from aluminum and 
is designed around the central electronics, including the carrier board, power board, and 
batteries ensuring a secure mounting platform for every device that is installed in SeaBee. 3D 
CAD drawings are used to guarantee that the electrical boards are compatible with the 
Internal Frame. The frame maximizes and efficiently uses space within the hull and provides 
a cooling infrastructure for the main computer. 

2.5 LIQUID COOLING 

SeaBee’s quad core processor and other highly thermally demanding elements necessitate a 
cooling system to prevent damage to the electronics. SeaBee takes advantage of a unique 
liquid-cooling system consisting of custom aluminum cooling block, an external radiator and 
a circulation pump. The cooling block is mounted to the standard XTX heat-spreader to 
cool the CPU while simultaneously pulling heat away from the motor-driver H-bridges. The 
radiator is an off the shelf 120mm radiator used in PC liquid cooling applications. Using the 
lower temperature of the water as a cooling source, SeaBee is able to passively cool the 
radiator in the surrounding environment.  

2.6 MOTORS/THRUSTERS 



SeaBee uses six SeaBotix BTD150 thrusters arranged in three main groups: horizontal for 
forwards and backwards movement, vertical for depth, and strafing to enable five degrees of 
control. 

2.7 MARKER DROPPER 

The marker dropper mechanism is constructed using linear actuators. This design features a 
compact frame and a robust releasing structure that is quick, accurate, and reliable. The 
dropper is connected to the internal electronics using a 4-pin connector on the end cap. 
When the control signals activate the relays, the two solenoids on the marker dropper release 
a marker, which is held in place with two spring-loaded arms. The markers are shaped like 
mini-torpedoes with angled fin tails to induce a spin during the descent. This shape ensures a 
highly hydrodynamic marker that will fall in a more streamlined way than that of a spherical 
marker. 

2.7 GRABBER 

The grabber mechanism is the component of the SeaBee that is used to pick up the object in 
the recovery phase. SeaBee’s grabber is an attachment on the bottom made of aluminum 
(See Figure ). It is lined with several small acrylic teeth that push the PVC briefcase into one 
of the slots. This revision of the grabber incorporates a retractable design. The grabber is 
able to slide within the constraints of the robot when it is not in the pool to maintain 
SeaBee's compact design. When the SeaBee AUV is positioned above the object, the slots 
open allowing the PVC pipe to fall into place. The slot levers are controlled by small torsion 
springs that close the slots after the object is acquired.  

2.8 BATTERY PODS 

Two aluminum battery enclosures are mounted to the underside of the vehicle’s frame. This 
frees up space for the electrical systems inside the primary hull. Battery pods can be hot 
swapped, allowing for extended runtime. The battery enclosures feature a rectangular design 
in order to compactly fit the rectangular batteries. They are sealed via an O-ring in a face-seal 
configuration. They are also fitted with pressure relief valves as a safety measure to prevent 
the buildup of hazardous pressure levels. 
 
3. ELECTRICAL 
 
OVERVIEW 
 
The Seabee electrical system provides the robot and its systems with power and provides the 
appropriate interface between all of the electrical devices. The main electrical system is made 
up of two backplanes, and three daughter cards each featuring its own Atmel 1280 
microprocessor. This eliminates the need for excessive wires inside the submersible hull, 



giving the final product a cleaner look, and increasing the overall reliability by alleviating the 
risk of loose wires and poor connections 
 
 
3.1 POWER DISTRIBUTION 
 
The Seabee III Power Board is developed as a versatile platform on which to develop a wide 
array of electrical systems. In addition to supporting the vehicle's power management and 
regulation needs, the Power Board serves as an interface for any sensors not capable of 
directly interfacing with the XTX Carrier Board. 
 
At the heart of the power board is the Parallax Propeller P8X32A microcontroller. The 
P8X32A has eight 32-bit processors, making it well-suited to the robot's high-precision, low-
latency requirements. Nicknamed BeeSTEM, the microcontroller is responsible for 
maintaining communication with these sensors. As the BeeSTEM receives data from the 
sensor suite, it updates its control loops and forwards the data to the XTX Carrier Board. 
The BeeSTEM also produces the appropriate commands to initialize the sensors and place 
them in desired operating modes. 
 
The Power Board produces regulated power at the common voltages of +3.3V, +5V, and 
+12V. To ease the process of swapping or adding sensors, the Power Board has auxiliary 
connectors. The Power Board incorporates nine motor drivers, which are controlled by 
BeeSTEM. Six of these provide power to the thrusters, and the other three support 
additional actuators, such as the Marker Dropper or Torpedo Launcher. 
 
3.2 COMPUTING 
Computer design for the Seabee III is governed by the vehicle's need to perform complex 
computer vision and machine learning algorithms in real time in spite of restrictive space 
requirements. An XTX computer-on-module (COM) was selected for its balance between 
size and performance. The Seabee III XTX Carrier Board was designed to break out 
important signals such as power,  USB, VGA, and Ethernet, SATA, and USART.  
 
3.3 SENSORS 
The Seabee III sensor suite was designed to provide as close to a 6-DOF state-space 
solution as is possible within team budget. The Seabee III is capable of actively monitoring 
the status of its own systems through the use of internal temperature sensors, internal 
pressure transducers, current monitoring in each motor driver channel (nine total), and 
coulomb counting in each battery pod. Four high-performance Internet-Protocol (IP) 
cameras equipped with wide-angle lenses are used to complete specific vision-related tasks 
and to provide an additional position estimate via visual odometry. 
 



For the aforementioned 6-DOF localization the Seabee III incorporates a Xsens MTi 
Attitude and Hearing Reference System (AHRS),  a Honeywell HMC6343 3-axis compass, 
and a pressure transducer used to calculate depth. The primary advantage of using an AHRS 
like the MTi over a traditional inertial measurement unit (IMU) comes in the form of the 
unit's on-board signal processor, which allows it to be calibrated for the electromagnetic 
fields present on the Seabee III and thus achieve virtually no drift.  
 
Some of the sensors on the Seabee III such as the IP cameras, are capable of directly 
interfacing with the XTI carrier board via USB. Most of the sensors on the robot, however, 
utilize serial protocols such as RS232, I2C, and SPI. The BeeSTEM is responsible for 
meeting these bus requirements. 
 
3.4 BATTERIES 
The Seabee III battery system consists of two custom +22.2V lithium polymer battery packs 
in parallel for a total of 20,000 mAh. Each pack contains a Seabee III Battery Board based 
on the ATMEGA 406 microcontroller. In addition to regulating the LiPo cells to ensure 
even discharge, the Battery Boards actively monitor state of charge (SOC) through use of 
current integration, or “coulomb counting”. Each Battery Board incorporates an LED 
display to provide visual feedback to the operator. 
 
3.5 KILLSWITCH 
The killswitch was designed with reliability as the primary focus. The design is robust and 
minimal, functional in the most demanding situations.  A single reed switch is mounted 
inside the primary hull, actuated by a magnet tethered to the outer hull. A tiny logic-gate-
based circuit ascertains the state of the reed switch and produces a 5V TTY  “kill” signal to 
the microcontroller on the power board. The microcontroller is then responsible for placing 
the motor and actuator drivers into a low-power state.  
One can place a high degree of confidence in the killswitch as its implementation, which 
takes place at the lowest level possible short of physically disconnecting the batteries, ensures 
that it will function properly even if other systems on the sub malfunction. Additionally, the 
robot's software monitors the state of the killswitch via the power board microcontroller. 
This means that if the robot enters the “kill state”, processing can be halted until the state is 
exited and then proceed as normal, a helpful tool during development. 
 
3.6 PASSIVE SONAR ARRAY 
A passive sonar system is essential to completion of the recovery task, and can provide an 
estimate of relative location to be incorporated into the SLAM implementation. F Four 
Reson TC4013 hydrophones are placed in a tetrahedral configuration in a pressure case 
attached to the primary  mechanical frame. The hydrophones are spaced to allow for non-
ambiguous determination of phase difference between incoming waves in the 20-30 kHz 
range. Using a plane-wave approximation, a high-confidence estimation of the relative 



location of the pinger in three-dimensional space is obtained. 
or the sake of minimizing complexity and integration time, a largely DSP-oriented approach 
was chosen. The Electrical Team's role in the sonar system, then, is to ensure that the 
hydrophone signal makes its way to the computer with minimal loss. Due to size limitations, 
placing a full ADC solution in the same pressure case as  the hydrophones is not possible. 
Instead, a single-channel preamplifier stage is connected to the immediate output of each 
hydrophone, inside the pressure case, and the ADCs is placed inside the main hull. Because 
of the small distance between the hydrophones and preamplifiers, very little noise is 
amplified. Since any noise picked up between the preamplifiers and the ADCs will have a 
significantly lower amplitude than the hydrophone signal, filtering is trivial. The ADCs 
interface with the on-board computer using Cheetah SPI Host Adapters. Each ADC-
Cheetah pair (one per hydrophone) can achieve a sampling rate of 40 MHz. As such, the 
data that reaches the software portion of the sonar solution is as close to the “pure” signal as 
possible. 
 
3.7 ACTUATION 
The actuation daughtercard features twelve H-bridge motor controllers with PWM. Six 
controllers directly drive the robot’s thrusters, and are able to run them forwards and 
backwards, as well as to throttle them effectively via a PWM signal. The other six controllers 
can be used for manipulators on the robot, including the dropper and torpedo firing system. 
The current draw of each motor controller is monitored by a current sense resistor, 
providing the computer with vital information as to the power being drawn by any motor. 
The computer is also able to shut off any or all of the motors in the event of a malfunction. 
The vehicle employs six SeaBotix BTD-150 thrusters. They are positioned to allow for 
control over all six degrees of freedom. 
 
4 SOFTWARE 
 
4.1 UBUNTU 
 
Seabee3 uses Ubuntu Linux 10.10 “Maverick Meerkat” as its operating system. This selection 
was made based on the open-source nature of Ubuntu, its portability, and its good support 
for our intended software architecture. 
 
4.2 ROS 
 
Seabee has used ROS, an open-source toolkit developed by Willow Garage, since the 2010 
RoboSub competition. ROS, or the “Robot Operating System”, provides a language-generic, 
modular paradigm for the development of software systems. 
 



System components are discretised into units called “nodes”, each of which has at least one 
dedicated thread and the ability to control parts of its life cycle. 
 
When necessary, these nodes are able to communicate via explicitly defined, language-
generic messages sent over a named, simplex channel, or “topic”. The direction of these 
topics is determined at compile time; a node can “advertise” an outgoing topic via a 
“publisher” object or “subscribe” to an incoming topic via a “subscriber” object. However, 
topics can be redirected or “remapped” at runtime, allowing for the creation of more 
loosely-defined distributed systems. 
 
Arbitrary levels of complexity can be achieved through the creation of multiple publishers 
and subscribers within a node. More complex paradigms, such as “actions” or “preemptable 
tasks”, have been implemented to take advantage of this fact.  
 
At a low level, inter-node communication is accomplished by message serialization within 
publisher objects, transmission of serialized data, and message deserialization within 
subscriber objects. However, if two nodes can be run on the same machine, and furthermore 
within the same process, this communication can instead be performed without serialization 
via shared pointers, thus allowing for high-performance, low-overhead 
communication.[ROS] 
 
Perhaps more importantly, ROS provides fairly generic implementations of many common 
algorithms known to the field of robotics, including such categories as sensing, navigation, 
planning, and visualization. 
 
4.3 QUICKDEV 
 
While ROS provides a solid foundation on which to build, working within the toolkit often 
involves creating unnecessary redundancies across implementations. Furthermore, the 
serialization-free communication described above is traditionally time consuming to set up, 
as modules utilizing it must follow the “nodelet” paradigm rather than the more common 
“node” paradigm. We solve this issue by maintaining a set of scripts and generic wrappers 
around the more commonly-used ROS components in an open-source package called 
“quickdev” available in USC's “usc-ros-pkg”. 
 



4.4 VISION PIPELINE 

 
Seabee's view of the competition pool 

 
In its current state, Seabee views the world through two PointGrey Firefly USB cameras: one 
facing forward and one facing downward. Both cameras are configured to stream bayered 
320x240 images at 30 hz. While the hardware interface to these cameras is USB, they 
support the IIDC 1394-based Digital Camera Specification over USB, allowing for the use of 
“firewire” camera drivers. Conveniently, ROS provides an acceptable firewire camera driver 
node, which we use to read images from our cameras. Figure 1 shows an example of some 
of the competition objects as seen by SeaBee's cameras. 
 
Images streamed from our cameras are bayered and distorted by various optical effects, 
including those from the camera lenses and the results of different physical mediums 
surrounding the sensor tubes containing the cameras. To compensate for these effects, we 
use another useful community-developed ROS node called “image_proc”, which utilizes 
several common OpenCV functions to de-bayer and un-distort (given a camera calibration) 
the incoming raw images. 
 
Following basic low-level image filtering, we perform a color-space conversion from BGR to 
HSL. In order to optimize our the vision algorithms farther down the pipeline, we seek to 
mimic neural adaptation and avoid unnecessarily processing pixels that are not changing by a 
sufficient amount. This value is determined by calculating a weighted sum of the differences 
between each pixel in each channel in the current image and the value of that pixel at the 
point in time that it was last determined to have changed. Pixels found to have changed by a 
minimum amount are recorded in a binary mask, which is published along with the 



corresponding HSL image. We call this mask-image pair an “adaptation image.” Figure 2 
shows an adaptation image fed to the color classifier, reducing the number of pixels fed 
through the classification algorithm by over 90%. The bands seen in the middle image 
(probability image) are the result of pixels that have not yet changed enough to necessitate 
re-classification. 
 
Newly-generated adaptation images are fed through a color classification node which utilizes 
a naiive Bayes classifier trained on actual camera footage. The classifier identifies newly-
changing pixels, calculates the likelihood that a given pixel should be classified under each of 
a set of colors, and then publishes these probabilities as an array of images, with each image 
representing the classification for the corresponding color. Subsequent color-sensitive 
feature extraction algorithms in the pipeline can utilize these probability images in their 
calculations. Figure 3 shows an example of a probability image for the orange color 
produced by the color classifier next to the input image as well as the image on which the 
orange color model was trained. 
 
4.6 RECOGNITION PIPELINE 
 
Recognition and subsequent localization relative to landmarks, or unique competition 
objects, is critical to success in the RoboSub competition when the robotic platform used is 
not aided by a Doppler Velocity Logger; however, these landmarks are subject to change 
each year. From a software standpoint, it is desirable to interact with a generic landmark 
recognition interface rather than directly calling upon multiple specialized interfaces. In 
order accomplish this, Seabee utilizes an extensible landmark recognizer that accepts a 
landmark filter and calls on child modules to perform specialized landmark recognition. This 
ensures that, with the exception of drastic changes to the competition, landmark-dependent 
algorithms can remain mostly unchanged, while specialized recognition algorithms can be 
easily developed, tested, and deployed through a standard, familiar interface. 
 
Where possible, it is desirable to be able to recognize landmarks via an adaptive, generic 
system, thereby avoiding as much specialization-related overhead as possible. SeaBee 
accomplishes this by calling on a scale- and rotation-invariant feature recognition system 
which utilizes OpenCV 2D feature extraction, or contour extraction, performed on color-
classified images produced by the vision pipeline. A set of template contour features, in the 
form of normalized, rotation-aligned histograms, is trained for any landmarks or landmark 
components and passed along with any candidate contour features located within incoming 
images to a generic recognition algorithm, which calculates and returns match qualities for 
each template-candidate pair. In this way, specialized landmark recognition algorithms can 
offload a significant amount of specialization to a central, generic system, yet still ensure the 
use of alternate, arbitrarily specialized recognition methods. 
 



In its current state, SeaBee uses a specialized recognition algorithm for each unique 
landmark, excepting landmarks differing only in color. Furthermore, recognition is 
specialized based on the expected sensor source of landmarks relative to the sub; for 
example, we assume that pipelines and bins will only enter the field of view of the 
downward-facing camera, while buoys, hedges, and windows are expected to be found only 
in the field of view of the forward-facing camera. Given this assumption, we only search for 
the former set of landmarks in the images streamed from the corresponding source, and so 
on. 
 
We assume that certain landmarks are only located within certain parts of the competition 
pool, and we further assume that given an arbitrary set of goals, only some subset of these 
landmarks need to be recognized. Given these assumptions, we conclude that it is possible 
to search for only some subset of landmarks dependent on our current location and/or goal. 
Therefore, it is desirable to utilize some simple means of applying a landmark filter, with 
either narrowing or widening constraints, through our recognition algorithms, in order to 
improve performance. We accomplish this via a custom color- and shape-based filtering API 
that accepts a list of filter items, each specifying either a narrowing or widening constraint to 
be applied to the color or type of a landmark. For example, when we are attempting to locate 
a buoy, we look for orange pipelines and buoys of any color on approach, then look for 
buoys of a single color on each buoy-touching attempt, then look for only orange pipelines 
and yellow hedges as we attempt to locate the first hedge, etc. 
 
4.7 SENSING AND LOCALIZATION 
 
Currently, our most advanced sensor is an XSens MTi IMU. This inertial measurement unit 
provides us with “drift-free” 3D heading and acceleration data calculated by an on-board 
EKF fed by the device's accelerometers, gyroscopes, and magnetometers in realtime at 100 
Hz. Our team used this device effectively at the 2011 RoboSub competition to maintain a 
surprisingly accurate heading while navigating un-assisted within the competition pool. This 
year, we plan to expand our use of this device to pitch and roll stabilization, both of which 
proved to be significant issues for SeaBee while moving at high speeds during last year's 
competition. 
 
SeaBee's hull is also fitted with an external pressure sensor, which is used to estimate the 
absolute depth of the AUV below the surface of the water via an experimentally-derived 
conversion from arbitrary pressure units to a distance in meters. With our current electronics, 
this measurement is taken at about 10 Hz. 
 
Many other teams utilize a Doppler velocity logger (DVL), a very precise sonar device which 
can provide the linear components of velocity and pose of the sensor with respect to its 
environment. This sensor is currently out of our price range, so we must rely on alternate, 



often noisy sources of odometry. Furthermore, both the sensor and thruster configuration of 
our platform is almost always subject to change; depending on the progress of the electrical 
and mechanical teams, we may or may not have at our disposal a variety of sensors, each 
with varying capabilities in terms of both functionality and measurement noise. For this 
reason, we have found it necessary to develop both a generic realtime simulation of our 
vehicle's dynamics, as well as a generic Bayesian measurement fusion system capable of 
combining all components of all observables, whether simulated or actual, into 
corresponding “filtered” measurements. 
 
Given our current sensing capabilities, the linear components of pose and velocity (those 
that would be trivially provided by a DVL) are the most difficult for us to obtain. In order to 
compensate, we run a realtime simulation of the sub's dynamics using a software library 
called BulletPhysics. Given our vehicle's mass, per-axis linear drag coefficients, the current 
thruster configuration (per-thruster capabilities and relative pose), and the motors value 
being set on each thruster, we are able to calculate all components of pose and velocity with 
moderate accuracy. We then fuse this output and any other odometry measurements 
together on a per-axis basis into a complete odometry estimate. 
 
When combined, our filtering and simulation modules allow for maximum functionality and 
modularity within the constantly changing constraints of our platform; as sensors are added 
and removed, the accuracy of the corresponding measurements will vary accordingly. For 
example, if we were to integrate a DVL into our platform, we would expect to see the 
accuracy of the linear components of our odometry increase significantly. As an added 
bonus, these systems also allow for the advanced testing of other software modules via 
arbitrary levels of simulation of sensor values and other information, in circumstances when 
a desirable real-world testing environment is not practical or is entirely unavailable, or when 
the effects of a theoretical change to the system need to be studied. 
 
4.8 NAVIGATION PIPELINE 
 
As with most of our software, we sought to build our navigation system out of modules with 
varying levels of specialization, connected by generic interfaces. At a high level, our current 
implementation accepts a series of navigation constraints in the form of “waypoints,” 
generates a trajectory with an arbitrarily high “temporal resolution”, and then attempts to 
follow the trajectory within an additional set of constraints. This functionality is distributed 
over several modules including a trajectory planner, a high-level trajectory follower, a low-
level velocity-based controller, and a platform-specific serial interface. Any module wanting 
to accomplish trajectory-based control of our vehicle must provide a trajectory to be 
followed. Within our system, a trajectory is composed of discrete intervals, each containing a 
constant acceleration over that interval and the desired state of the vehicle at the beginning 
of that interval, in the form of a waypoint (pose and velocity). Low-level velocity-based 



control is also possible; indeed, it is utilized by our trajectory following module, which is 
discussed in a later section. 
 
A trajectory-planning paradigm was developed to simplify the creation of these trajectories 
while following waypoint-based constraints. In general, a trajectory planner accepts a list of 
two or more waypoints to be traversed in order, including the initial state of the vehicle, any 
intermediate states, and the final state of the vehicle, and returns a trajectory that meets the 
given constraints as closely as possible. The trajectory planner also accepts a temporal 
resolution parameter, which determines the maximum length of intervals over changing 
accelerations, as well as constraints on the maximum velocity and acceleration of the 
resulting trajectory (used to specialize the trajectory for the capabilities of a given platform). 
We currently use a linear trajectory planner, which iteratively generates a trajectory between 
each waypoint, ignoring intermediate velocities for simplicity. Starting with the initial vehicle 
state, the planner attempts to accelerate at the maximum given acceleration, up to the 
maximum given velocity, and generates a new trajectory interval for each change in 
acceleration, following a simple set of rules: if the error in position to the current waypoint is 
below some threshold, the planner returns an empty trajectory; otherwise, if the error in 
position is below some threshold, the planner attempts to strafe to the desired position, then 
attempts to face the desired heading; otherwise, if the error in position is above some 
threshold, the planner attempts to rotate the vehicle to face the location of the desired 
waypoint, then attempts to translate the vehicle to the desired position along its forward axis, 
and finally attempts to face the desired heading. After the final waypoint is reached, the 
planner returns the complete trajectory. 
 
After a trajectory is generated by a trajectory planner, it is passed on to a trajectory follower 
for realization. In this case, the trajectory follower is generic due to our generic trajectory 
design; regardless of the implementation of the planner that generated the trajectory, the 
trajectory follower can utilize the same algorithm to traverse the given trajectory. Along with 
a trajectory, this module also accepts constraints related to the accuracy of the realization of 
the given trajectory, including the maximum deviation from the trajectory, both in pose and 
time, as well as the planner to use, if any, to attempt to recover in the event that the given 
constraints are not able to be met. If this failure occurs, the trajectory follower notifies the 
module that initiated the current goal, then attempts to re-plan from the vehicle's current 
pose to the beginning of the given trajectory, if a recovery planner was specified. In this way, 
the trajectory follower can be passed a trajectory that does not necessarily start at the 
vehicle's current state, and it will automatically prepend a path that brings the vehicle to the 
beginning of the original trajectory, if possible. For a given interval in the trajectory, the 
follower interpolates between the starting velocity and the calculated ending velocity 
according to the acceleration specified by the interval, for the duration specified by the 
interval, publishing a desired velocity at each step; this interpolation occurs at a user-
specified rate, and can therefore be specialized for a given platform. Realization of a 



trajectory, then, is as simple as iterating over all intervals in the trajectory, interpolating, and 
performing any recovery applicable recovery behaviors. 
 
The output format of the trajectory follower (velocities) was selected to ensure generic 
means of controlling a given platform. However, generic conversion from desired velocity to 
platform-specific motor values was not handled, though it is likely feasible. Instead, we 
opted for a PID-based controller over error between current and desired position; 
specifically, for each movement axis, we employ both an independent PID controller and a 
specialized conversion function. In the current implementation, these axes include all 
individual linear and angular axes. However, we only seek to stabilize pitch and roll, while we 
seek to both stabilize and manipulate all other axes. That is, we actively attempt to keep the 
actual value for each axis near the desired value for each axis, but we do not allow the 
desired value of pitch and roll to vary from zero. Therefore, in high-level code, we assume 
that the pitch and roll of the vehicle are near zero. In the future, we may lift this constraint 
on pitch in order to assist in diving; the current implementation was chosen in order to 
simplify the vehicle's behavior. 
 
The final actuation is handled by a custom serial driver written specifically for our vehicle's 
current hardware implementation. This driver is able to read sensor values, including internal 
pressure, external pressure, and kill switch state, as well as set the voltage of all motor drivers 
on the vehicle's power board. 
 
In order reduce the significant overhead required to interact with the vehicle's complex 
control systems, we have implemented a set of motion primitives that allow the vehicle to be 
commanded through a short list of simple yet powerful functions. These functions will 
automatically invoke the functionality of the appropriate navigation components mentioned 
earlier, and include the ability to move to the position and/or orientation encoded in a pose, 
align to a position, orbit a given position, and activate the torpedo launchers and marker 
droppers. Furthermore, the pose of a named object (whether static or dynamic), such as a 
buoy or any other landmark, can be trivially looked up and passed to these functions, 
enabling the creation of short, easily-readable high-level navigation code. 
 
4.9 COMPETITION AI 
 
The final, highest-level controller in our software architecture is our competition AI. This 
component is responsible for directing our vehicle to perform the most effective possible 
action at any given time, given all known goals and constraints. It is also responsible for 
enabling/disabling lower-level, situational modules and filters, such as those related to 
movement, object recognition, and behavior production. We fulfill these complex 
requirements by discretising all actions into subtasks, each containing any actions to perform 
as well as the cost (in terms of distance and estimated completion time) and reward (in terms 



of points earned) associated with the task. We then build a task tree of arbitrary height, 
thereby allowing for an arbitrary level of task specificity, and feed this structure into a 
custom hierarchical cost-based decision algorithm, which attempts to maximize the overall 
reward earned in the allotted time. Any distance-based costs are converted into estimated 
completion time using the vehicle's current pose and any distance that would be accumulated 
while traversing the tree down to that task.  
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