
AUVSI TECHNICAL REPORT, July 2014
University of Southern California Autonomous Underwater Vehicle (USC AUV)

SeaBee III

Written By: Michael Kukar, Brennan Swanton, and Ben Shiroma

SeabeeIII is an autonomous underwater vehicle (AUV) developed by a team of students at the University of
Southern California for the International Robosub Competition.

1.0 INTRODUCTION

The University of Southern California’s Autonomous Underwater Vehicle Team (USC
AUV) is dedicated to participating in and furthering robotics research not only at USC, but
also around the world. USC AUV is a consistent participant in the Robosub Competition
and strives to continually improve through exchange of ideas and involvement in the AUV
community. USC AUV uses a full-year design cycle between iterations of the SeaBee AUV,
allowing time for thorough testing and integration of new designs. From preliminary internal
design reviews to a critical review attended by experts in the field, designs and changes to
SeaBee III undergo a thorough analysis culminating in vital improvements to the AUV
without wasteful or unnecessary expense. This year USCR is mid-way through the SeaBee IV
design cycle and the current SeaBee AUV features the SeaBee III platform with new
mechanical, electrical, and software improvements that increase not only task-centered
capability but also focus on modularity and reuse.

2.0 MECHANICAL

2.1 MECHANICAL OVERVIEW

The mechanical design philosophy for SeaBee III is intended to create a modular, compact,
and lightweight AUV. The single-hull design with an internal rack system enables easy
removal and centralized access to electronics while the external frame provides support for
long term development by allowing individual component redesigns with little to no effect
on the overall structure of the AUV. Electrical connections are established by using
waterproof connectors, supplied from Fischer Connectors, from the hull end cap to external
components such as the IMU, SONAR, marker dropper, shooter, cameras, and thrusters
allowing simplified electrical reconfiguration. Similar wet-pluggable connectors are also in
place to allow devices to be plugged into SeaBee without worrying about water creating a
short, saving time during wet tests and competition runs.

2.2 HULL

The hull for SeaBee is constructed out of 3/16” thick T6061 anodized aluminum. The
enclosure employs a cylindrical design measuring 7.5” in diameter and 13” in length. It
shields the internal electrical systems from water damage with a watertight design. In the hull
cap design, the cap is covered with waterproof Fischer Connectors allowing access to the
electrical systems from components outside of the hull.

2.3 EXTERNAL FRAME

The new external frame is part of the design for the next iteration of the SeaBee AUV and
consists of an octagonal cage surrounding the main hull. Each Octagon measures 10.836”
around an inscribed circle. Four Octagons create three sections of the frame. Panels
constructed of T6061 anodized aluminum measuring 7” x 4.5” x 3/16” make up the walls of
the octagonal cage resulting in a total of twenty-four panels. Each panel is associated with a
certain location of the frame and a component. In addition, panels can move around the
frame easily if design changes are necessary. The front and back surfaces of the octagonal
cage serve as mounts for the depth thrusters and the flotation structure.

These panels are designed around a common panel template in SolidWorks and can be
quickly machined through a laser-cutting process and then anodized. The panel redesigns
dramatically reduce the design and manufacturing time of any mechanical changes to the
SeaBee AUV or it components and are compatible with either the SeaBee III or upcoming
SeaBee IV designs.

The flotation is also built into the external frame. Due to the higher density of aluminum,
flotation is a necessary addition to the sub. Four 3” diameter acrylic air canisters are placed at
the corners of the AUV. Mounted alongside them are smaller acrylic tubes that can be
loaded with weights. The weight tubes can be manually adjusted to achieve neutral buoyancy.
With the mounted flotation system, SeaBee occupies a space of 28” x 26” x 20”.

2.4 INTERNAL FRAME

SeaBee utilizes a custom designed internal frame attached to the main hull end cap, which
can slide in and out of the hull on Teflon rails. This frame is machined from aluminum and
is designed around the central electronics, including the carrier board, power board, and
batteries ensuring a secure mounting platform for every device that is installed in SeaBee. 3D
CAD drawings are used to guarantee that the electrical boards are compatible with the
Internal Frame. The frame maximizes and efficiently uses space within the hull and provides
a cooling infrastructure for the main computer.

2.5 LIQUID COOLING

SeaBee’s quad core processor and other highly thermally demanding elements necessitate a
cooling system to prevent damage to the electronics. SeaBee takes advantage of a unique
liquid-cooling system consisting of custom aluminum cooling block, an external radiator and
a circulation pump. The cooling block is mounted to the standard XTX heat-spreader to
cool the CPU while simultaneously pulling heat away from the motor-driver H-bridges. The
radiator is an off the shelf 120mm radiator used in PC liquid cooling applications. Using the
lower temperature of the water as a cooling source, SeaBee is able to passively cool the
radiator in the surrounding environment.

2.6 MOTORS/THRUSTERS

SeaBee uses six SeaBotix BTD150 thrusters arranged in three main groups: horizontal for
forwards and backwards movement, vertical for depth, and strafing to enable five degrees of
control.

2.7 MARKER DROPPER

The marker dropper mechanism is constructed using linear actuators. This design features a
compact frame and a robust releasing structure that is quick, accurate, and reliable. The
dropper is connected to the internal electronics using a 4-pin connector on the end cap.
When the control signals activate the relays, the two solenoids on the marker dropper release
a marker, which is held in place with two spring-loaded arms. The markers are shaped like
mini-torpedoes with angled fin tails to induce a spin during the descent. This shape ensures a
highly hydrodynamic marker that will fall in a more streamlined way than that of a spherical
marker.

2.7 GRABBER

The grabber mechanism is the component of the SeaBee that is used to pick up the object in
the recovery phase. SeaBee’s grabber is an attachment on the bottom made of aluminum
(See Figure). It is lined with several small acrylic teeth that push the PVC briefcase into one
of the slots. This revision of the grabber incorporates a retractable design. The grabber is
able to slide within the constraints of the robot when it is not in the pool to maintain
SeaBee's compact design. When the SeaBee AUV is positioned above the object, the slots
open allowing the PVC pipe to fall into place. The slot levers are controlled by small torsion
springs that close the slots after the object is acquired.

2.8 BATTERY PODS

Two aluminum battery enclosures are mounted to the underside of the vehicle’s frame. This
frees up space for the electrical systems inside the primary hull. Battery pods can be hot
swapped, allowing for extended runtime. The battery enclosures feature a rectangular design
in order to compactly fit the rectangular batteries. They are sealed via an O-ring in a face-seal
configuration. They are also fitted with pressure relief valves as a safety measure to prevent
the buildup of hazardous pressure levels.

3. ELECTRICAL

OVERVIEW

The Seabee electrical system provides the robot and its systems with power and provides the
appropriate interface between all of the electrical devices. The main electrical system is made
up of two backplanes, and three daughter cards each featuring its own Atmel 1280
microprocessor. This eliminates the need for excessive wires inside the submersible hull,

giving the final product a cleaner look, and increasing the overall reliability by alleviating the
risk of loose wires and poor connections

3.1 POWER DISTRIBUTION

The Seabee III Power Board is developed as a versatile platform on which to develop a wide
array of electrical systems. In addition to supporting the vehicle's power management and
regulation needs, the Power Board serves as an interface for any sensors not capable of
directly interfacing with the XTX Carrier Board.

At the heart of the power board is the Parallax Propeller P8X32A microcontroller. The
P8X32A has eight 32-bit processors, making it well-suited to the robot's high-precision, low-
latency requirements. Nicknamed BeeSTEM, the microcontroller is responsible for
maintaining communication with these sensors. As the BeeSTEM receives data from the
sensor suite, it updates its control loops and forwards the data to the XTX Carrier Board.
The BeeSTEM also produces the appropriate commands to initialize the sensors and place
them in desired operating modes.

The Power Board produces regulated power at the common voltages of +3.3V, +5V, and
+12V. To ease the process of swapping or adding sensors, the Power Board has auxiliary
connectors. The Power Board incorporates nine motor drivers, which are controlled by
BeeSTEM. Six of these provide power to the thrusters, and the other three support
additional actuators, such as the Marker Dropper or Torpedo Launcher.

3.2 COMPUTING
Computer design for the Seabee III is governed by the vehicle's need to perform complex
computer vision and machine learning algorithms in real time in spite of restrictive space
requirements. An XTX computer-on-module (COM) was selected for its balance between
size and performance. The Seabee III XTX Carrier Board was designed to break out
important signals such as power, USB, VGA, and Ethernet, SATA, and USART.

3.3 SENSORS
The Seabee III sensor suite was designed to provide as close to a 6-DOF state-space
solution as is possible within team budget. The Seabee III is capable of actively monitoring
the status of its own systems through the use of internal temperature sensors, internal
pressure transducers, current monitoring in each motor driver channel (nine total), and
coulomb counting in each battery pod. Four high-performance Internet-Protocol (IP)
cameras equipped with wide-angle lenses are used to complete specific vision-related tasks
and to provide an additional position estimate via visual odometry.

For the aforementioned 6-DOF localization the Seabee III incorporates a Xsens MTi
Attitude and Hearing Reference System (AHRS), a Honeywell HMC6343 3-axis compass,
and a pressure transducer used to calculate depth. The primary advantage of using an AHRS
like the MTi over a traditional inertial measurement unit (IMU) comes in the form of the
unit's on-board signal processor, which allows it to be calibrated for the electromagnetic
fields present on the Seabee III and thus achieve virtually no drift.

Some of the sensors on the Seabee III such as the IP cameras, are capable of directly
interfacing with the XTI carrier board via USB. Most of the sensors on the robot, however,
utilize serial protocols such as RS232, I2C, and SPI. The BeeSTEM is responsible for
meeting these bus requirements.

3.4 BATTERIES
The Seabee III battery system consists of two custom +22.2V lithium polymer battery packs
in parallel for a total of 20,000 mAh. Each pack contains a Seabee III Battery Board based
on the ATMEGA 406 microcontroller. In addition to regulating the LiPo cells to ensure
even discharge, the Battery Boards actively monitor state of charge (SOC) through use of
current integration, or “coulomb counting”. Each Battery Board incorporates an LED
display to provide visual feedback to the operator.

3.5 KILLSWITCH
The killswitch was designed with reliability as the primary focus. The design is robust and
minimal, functional in the most demanding situations. A single reed switch is mounted
inside the primary hull, actuated by a magnet tethered to the outer hull. A tiny logic-gate-
based circuit ascertains the state of the reed switch and produces a 5V TTY “kill” signal to
the microcontroller on the power board. The microcontroller is then responsible for placing
the motor and actuator drivers into a low-power state.
One can place a high degree of confidence in the killswitch as its implementation, which
takes place at the lowest level possible short of physically disconnecting the batteries, ensures
that it will function properly even if other systems on the sub malfunction. Additionally, the
robot's software monitors the state of the killswitch via the power board microcontroller.
This means that if the robot enters the “kill state”, processing can be halted until the state is
exited and then proceed as normal, a helpful tool during development.

3.6 PASSIVE SONAR ARRAY
A passive sonar system is essential to completion of the recovery task, and can provide an
estimate of relative location to be incorporated into the SLAM implementation. F Four
Reson TC4013 hydrophones are placed in a tetrahedral configuration in a pressure case
attached to the primary mechanical frame. The hydrophones are spaced to allow for non-
ambiguous determination of phase difference between incoming waves in the 20-30 kHz
range. Using a plane-wave approximation, a high-confidence estimation of the relative

location of the pinger in three-dimensional space is obtained.
or the sake of minimizing complexity and integration time, a largely DSP-oriented approach
was chosen. The Electrical Team's role in the sonar system, then, is to ensure that the
hydrophone signal makes its way to the computer with minimal loss. Due to size limitations,
placing a full ADC solution in the same pressure case as the hydrophones is not possible.
Instead, a single-channel preamplifier stage is connected to the immediate output of each
hydrophone, inside the pressure case, and the ADCs is placed inside the main hull. Because
of the small distance between the hydrophones and preamplifiers, very little noise is
amplified. Since any noise picked up between the preamplifiers and the ADCs will have a
significantly lower amplitude than the hydrophone signal, filtering is trivial. The ADCs
interface with the on-board computer using Cheetah SPI Host Adapters. Each ADC-
Cheetah pair (one per hydrophone) can achieve a sampling rate of 40 MHz. As such, the
data that reaches the software portion of the sonar solution is as close to the “pure” signal as
possible.

3.7 ACTUATION
The actuation daughtercard features twelve H-bridge motor controllers with PWM. Six
controllers directly drive the robot’s thrusters, and are able to run them forwards and
backwards, as well as to throttle them effectively via a PWM signal. The other six controllers
can be used for manipulators on the robot, including the dropper and torpedo firing system.
The current draw of each motor controller is monitored by a current sense resistor,
providing the computer with vital information as to the power being drawn by any motor.
The computer is also able to shut off any or all of the motors in the event of a malfunction.
The vehicle employs six SeaBotix BTD-150 thrusters. They are positioned to allow for
control over all six degrees of freedom.

4 SOFTWARE

4.1 UBUNTU

Seabee3 uses Ubuntu Linux 10.10 “Maverick Meerkat” as its operating system. This selection
was made based on the open-source nature of Ubuntu, its portability, and its good support
for our intended software architecture.

4.2 ROS

Seabee has used ROS, an open-source toolkit developed by Willow Garage, since the 2010
RoboSub competition. ROS, or the “Robot Operating System”, provides a language-generic,
modular paradigm for the development of software systems.

System components are discretised into units called “nodes”, each of which has at least one
dedicated thread and the ability to control parts of its life cycle.

When necessary, these nodes are able to communicate via explicitly defined, language-
generic messages sent over a named, simplex channel, or “topic”. The direction of these
topics is determined at compile time; a node can “advertise” an outgoing topic via a
“publisher” object or “subscribe” to an incoming topic via a “subscriber” object. However,
topics can be redirected or “remapped” at runtime, allowing for the creation of more
loosely-defined distributed systems.

Arbitrary levels of complexity can be achieved through the creation of multiple publishers
and subscribers within a node. More complex paradigms, such as “actions” or “preemptable
tasks”, have been implemented to take advantage of this fact.

At a low level, inter-node communication is accomplished by message serialization within
publisher objects, transmission of serialized data, and message deserialization within
subscriber objects. However, if two nodes can be run on the same machine, and furthermore
within the same process, this communication can instead be performed without serialization
via shared pointers, thus allowing for high-performance, low-overhead
communication.[ROS]

Perhaps more importantly, ROS provides fairly generic implementations of many common
algorithms known to the field of robotics, including such categories as sensing, navigation,
planning, and visualization.

4.3 QUICKDEV

While ROS provides a solid foundation on which to build, working within the toolkit often
involves creating unnecessary redundancies across implementations. Furthermore, the
serialization-free communication described above is traditionally time consuming to set up,
as modules utilizing it must follow the “nodelet” paradigm rather than the more common
“node” paradigm. We solve this issue by maintaining a set of scripts and generic wrappers
around the more commonly-used ROS components in an open-source package called
“quickdev” available in USC's “usc-ros-pkg”.

4.4 VISION PIPELINE

Seabee's view of the competition pool

In its current state, Seabee views the world through two PointGrey Firefly USB cameras: one
facing forward and one facing downward. Both cameras are configured to stream bayered
320x240 images at 30 hz. While the hardware interface to these cameras is USB, they
support the IIDC 1394-based Digital Camera Specification over USB, allowing for the use of
“firewire” camera drivers. Conveniently, ROS provides an acceptable firewire camera driver
node, which we use to read images from our cameras. Figure 1 shows an example of some
of the competition objects as seen by SeaBee's cameras.

Images streamed from our cameras are bayered and distorted by various optical effects,
including those from the camera lenses and the results of different physical mediums
surrounding the sensor tubes containing the cameras. To compensate for these effects, we
use another useful community-developed ROS node called “image_proc”, which utilizes
several common OpenCV functions to de-bayer and un-distort (given a camera calibration)
the incoming raw images.

Following basic low-level image filtering, we perform a color-space conversion from BGR to
HSL. In order to optimize our the vision algorithms farther down the pipeline, we seek to
mimic neural adaptation and avoid unnecessarily processing pixels that are not changing by a
sufficient amount. This value is determined by calculating a weighted sum of the differences
between each pixel in each channel in the current image and the value of that pixel at the
point in time that it was last determined to have changed. Pixels found to have changed by a
minimum amount are recorded in a binary mask, which is published along with the

corresponding HSL image. We call this mask-image pair an “adaptation image.” Figure 2
shows an adaptation image fed to the color classifier, reducing the number of pixels fed
through the classification algorithm by over 90%. The bands seen in the middle image
(probability image) are the result of pixels that have not yet changed enough to necessitate
re-classification.

Newly-generated adaptation images are fed through a color classification node which utilizes
a naiive Bayes classifier trained on actual camera footage. The classifier identifies newly-
changing pixels, calculates the likelihood that a given pixel should be classified under each of
a set of colors, and then publishes these probabilities as an array of images, with each image
representing the classification for the corresponding color. Subsequent color-sensitive
feature extraction algorithms in the pipeline can utilize these probability images in their
calculations. Figure 3 shows an example of a probability image for the orange color
produced by the color classifier next to the input image as well as the image on which the
orange color model was trained.

4.6 RECOGNITION PIPELINE

Recognition and subsequent localization relative to landmarks, or unique competition
objects, is critical to success in the RoboSub competition when the robotic platform used is
not aided by a Doppler Velocity Logger; however, these landmarks are subject to change
each year. From a software standpoint, it is desirable to interact with a generic landmark
recognition interface rather than directly calling upon multiple specialized interfaces. In
order accomplish this, Seabee utilizes an extensible landmark recognizer that accepts a
landmark filter and calls on child modules to perform specialized landmark recognition. This
ensures that, with the exception of drastic changes to the competition, landmark-dependent
algorithms can remain mostly unchanged, while specialized recognition algorithms can be
easily developed, tested, and deployed through a standard, familiar interface.

Where possible, it is desirable to be able to recognize landmarks via an adaptive, generic
system, thereby avoiding as much specialization-related overhead as possible. SeaBee
accomplishes this by calling on a scale- and rotation-invariant feature recognition system
which utilizes OpenCV 2D feature extraction, or contour extraction, performed on color-
classified images produced by the vision pipeline. A set of template contour features, in the
form of normalized, rotation-aligned histograms, is trained for any landmarks or landmark
components and passed along with any candidate contour features located within incoming
images to a generic recognition algorithm, which calculates and returns match qualities for
each template-candidate pair. In this way, specialized landmark recognition algorithms can
offload a significant amount of specialization to a central, generic system, yet still ensure the
use of alternate, arbitrarily specialized recognition methods.

In its current state, SeaBee uses a specialized recognition algorithm for each unique
landmark, excepting landmarks differing only in color. Furthermore, recognition is
specialized based on the expected sensor source of landmarks relative to the sub; for
example, we assume that pipelines and bins will only enter the field of view of the
downward-facing camera, while buoys, hedges, and windows are expected to be found only
in the field of view of the forward-facing camera. Given this assumption, we only search for
the former set of landmarks in the images streamed from the corresponding source, and so
on.

We assume that certain landmarks are only located within certain parts of the competition
pool, and we further assume that given an arbitrary set of goals, only some subset of these
landmarks need to be recognized. Given these assumptions, we conclude that it is possible
to search for only some subset of landmarks dependent on our current location and/or goal.
Therefore, it is desirable to utilize some simple means of applying a landmark filter, with
either narrowing or widening constraints, through our recognition algorithms, in order to
improve performance. We accomplish this via a custom color- and shape-based filtering API
that accepts a list of filter items, each specifying either a narrowing or widening constraint to
be applied to the color or type of a landmark. For example, when we are attempting to locate
a buoy, we look for orange pipelines and buoys of any color on approach, then look for
buoys of a single color on each buoy-touching attempt, then look for only orange pipelines
and yellow hedges as we attempt to locate the first hedge, etc.

4.7 SENSING AND LOCALIZATION

Currently, our most advanced sensor is an XSens MTi IMU. This inertial measurement unit
provides us with “drift-free” 3D heading and acceleration data calculated by an on-board
EKF fed by the device's accelerometers, gyroscopes, and magnetometers in realtime at 100
Hz. Our team used this device effectively at the 2011 RoboSub competition to maintain a
surprisingly accurate heading while navigating un-assisted within the competition pool. This
year, we plan to expand our use of this device to pitch and roll stabilization, both of which
proved to be significant issues for SeaBee while moving at high speeds during last year's
competition.

SeaBee's hull is also fitted with an external pressure sensor, which is used to estimate the
absolute depth of the AUV below the surface of the water via an experimentally-derived
conversion from arbitrary pressure units to a distance in meters. With our current electronics,
this measurement is taken at about 10 Hz.

Many other teams utilize a Doppler velocity logger (DVL), a very precise sonar device which
can provide the linear components of velocity and pose of the sensor with respect to its
environment. This sensor is currently out of our price range, so we must rely on alternate,

often noisy sources of odometry. Furthermore, both the sensor and thruster configuration of
our platform is almost always subject to change; depending on the progress of the electrical
and mechanical teams, we may or may not have at our disposal a variety of sensors, each
with varying capabilities in terms of both functionality and measurement noise. For this
reason, we have found it necessary to develop both a generic realtime simulation of our
vehicle's dynamics, as well as a generic Bayesian measurement fusion system capable of
combining all components of all observables, whether simulated or actual, into
corresponding “filtered” measurements.

Given our current sensing capabilities, the linear components of pose and velocity (those
that would be trivially provided by a DVL) are the most difficult for us to obtain. In order to
compensate, we run a realtime simulation of the sub's dynamics using a software library
called BulletPhysics. Given our vehicle's mass, per-axis linear drag coefficients, the current
thruster configuration (per-thruster capabilities and relative pose), and the motors value
being set on each thruster, we are able to calculate all components of pose and velocity with
moderate accuracy. We then fuse this output and any other odometry measurements
together on a per-axis basis into a complete odometry estimate.

When combined, our filtering and simulation modules allow for maximum functionality and
modularity within the constantly changing constraints of our platform; as sensors are added
and removed, the accuracy of the corresponding measurements will vary accordingly. For
example, if we were to integrate a DVL into our platform, we would expect to see the
accuracy of the linear components of our odometry increase significantly. As an added
bonus, these systems also allow for the advanced testing of other software modules via
arbitrary levels of simulation of sensor values and other information, in circumstances when
a desirable real-world testing environment is not practical or is entirely unavailable, or when
the effects of a theoretical change to the system need to be studied.

4.8 NAVIGATION PIPELINE

As with most of our software, we sought to build our navigation system out of modules with
varying levels of specialization, connected by generic interfaces. At a high level, our current
implementation accepts a series of navigation constraints in the form of “waypoints,”
generates a trajectory with an arbitrarily high “temporal resolution”, and then attempts to
follow the trajectory within an additional set of constraints. This functionality is distributed
over several modules including a trajectory planner, a high-level trajectory follower, a low-
level velocity-based controller, and a platform-specific serial interface. Any module wanting
to accomplish trajectory-based control of our vehicle must provide a trajectory to be
followed. Within our system, a trajectory is composed of discrete intervals, each containing a
constant acceleration over that interval and the desired state of the vehicle at the beginning
of that interval, in the form of a waypoint (pose and velocity). Low-level velocity-based

control is also possible; indeed, it is utilized by our trajectory following module, which is
discussed in a later section.

A trajectory-planning paradigm was developed to simplify the creation of these trajectories
while following waypoint-based constraints. In general, a trajectory planner accepts a list of
two or more waypoints to be traversed in order, including the initial state of the vehicle, any
intermediate states, and the final state of the vehicle, and returns a trajectory that meets the
given constraints as closely as possible. The trajectory planner also accepts a temporal
resolution parameter, which determines the maximum length of intervals over changing
accelerations, as well as constraints on the maximum velocity and acceleration of the
resulting trajectory (used to specialize the trajectory for the capabilities of a given platform).
We currently use a linear trajectory planner, which iteratively generates a trajectory between
each waypoint, ignoring intermediate velocities for simplicity. Starting with the initial vehicle
state, the planner attempts to accelerate at the maximum given acceleration, up to the
maximum given velocity, and generates a new trajectory interval for each change in
acceleration, following a simple set of rules: if the error in position to the current waypoint is
below some threshold, the planner returns an empty trajectory; otherwise, if the error in
position is below some threshold, the planner attempts to strafe to the desired position, then
attempts to face the desired heading; otherwise, if the error in position is above some
threshold, the planner attempts to rotate the vehicle to face the location of the desired
waypoint, then attempts to translate the vehicle to the desired position along its forward axis,
and finally attempts to face the desired heading. After the final waypoint is reached, the
planner returns the complete trajectory.

After a trajectory is generated by a trajectory planner, it is passed on to a trajectory follower
for realization. In this case, the trajectory follower is generic due to our generic trajectory
design; regardless of the implementation of the planner that generated the trajectory, the
trajectory follower can utilize the same algorithm to traverse the given trajectory. Along with
a trajectory, this module also accepts constraints related to the accuracy of the realization of
the given trajectory, including the maximum deviation from the trajectory, both in pose and
time, as well as the planner to use, if any, to attempt to recover in the event that the given
constraints are not able to be met. If this failure occurs, the trajectory follower notifies the
module that initiated the current goal, then attempts to re-plan from the vehicle's current
pose to the beginning of the given trajectory, if a recovery planner was specified. In this way,
the trajectory follower can be passed a trajectory that does not necessarily start at the
vehicle's current state, and it will automatically prepend a path that brings the vehicle to the
beginning of the original trajectory, if possible. For a given interval in the trajectory, the
follower interpolates between the starting velocity and the calculated ending velocity
according to the acceleration specified by the interval, for the duration specified by the
interval, publishing a desired velocity at each step; this interpolation occurs at a user-
specified rate, and can therefore be specialized for a given platform. Realization of a

trajectory, then, is as simple as iterating over all intervals in the trajectory, interpolating, and
performing any recovery applicable recovery behaviors.

The output format of the trajectory follower (velocities) was selected to ensure generic
means of controlling a given platform. However, generic conversion from desired velocity to
platform-specific motor values was not handled, though it is likely feasible. Instead, we
opted for a PID-based controller over error between current and desired position;
specifically, for each movement axis, we employ both an independent PID controller and a
specialized conversion function. In the current implementation, these axes include all
individual linear and angular axes. However, we only seek to stabilize pitch and roll, while we
seek to both stabilize and manipulate all other axes. That is, we actively attempt to keep the
actual value for each axis near the desired value for each axis, but we do not allow the
desired value of pitch and roll to vary from zero. Therefore, in high-level code, we assume
that the pitch and roll of the vehicle are near zero. In the future, we may lift this constraint
on pitch in order to assist in diving; the current implementation was chosen in order to
simplify the vehicle's behavior.

The final actuation is handled by a custom serial driver written specifically for our vehicle's
current hardware implementation. This driver is able to read sensor values, including internal
pressure, external pressure, and kill switch state, as well as set the voltage of all motor drivers
on the vehicle's power board.

In order reduce the significant overhead required to interact with the vehicle's complex
control systems, we have implemented a set of motion primitives that allow the vehicle to be
commanded through a short list of simple yet powerful functions. These functions will
automatically invoke the functionality of the appropriate navigation components mentioned
earlier, and include the ability to move to the position and/or orientation encoded in a pose,
align to a position, orbit a given position, and activate the torpedo launchers and marker
droppers. Furthermore, the pose of a named object (whether static or dynamic), such as a
buoy or any other landmark, can be trivially looked up and passed to these functions,
enabling the creation of short, easily-readable high-level navigation code.

4.9 COMPETITION AI

The final, highest-level controller in our software architecture is our competition AI. This
component is responsible for directing our vehicle to perform the most effective possible
action at any given time, given all known goals and constraints. It is also responsible for
enabling/disabling lower-level, situational modules and filters, such as those related to
movement, object recognition, and behavior production. We fulfill these complex
requirements by discretising all actions into subtasks, each containing any actions to perform
as well as the cost (in terms of distance and estimated completion time) and reward (in terms

of points earned) associated with the task. We then build a task tree of arbitrary height,
thereby allowing for an arbitrary level of task specificity, and feed this structure into a
custom hierarchical cost-based decision algorithm, which attempts to maximize the overall
reward earned in the allotted time. Any distance-based costs are converted into estimated
completion time using the vehicle's current pose and any distance that would be accumulated
while traversing the tree down to that task.

ACKNOLEDGEMENT

Support from The University of Southern California, iLab, the USC Dornsife
College of Letters, Arts, and Sciences Machine Shop, and the Viterbi School of Engineering
allows USC AUV to continue to be an integral part of student research at the USC Viterbi
School of Engineering.

Thank you to our industry sponsors: the Boeing Company, Northrop Grumman,
Digi-Key Corporation, Lockheed Martin, and ADL Embedded Solutions.

REFERENCES

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: an open-source Robot Operating System,” in International Conference on Robotics
and Automation, ser. Open-Source Software workshop, 2009.

